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Abstract. We introduce a general setting for multidimensional dispersionless integrable
hierarchy in terms of differential m-form Ωm with the coefficients satisfying the Plücker relations,
which is gauge-invariantly closed and its gauge-invariant coordinates (ratios of coefficients)
are (locally) holomorphic with respect to one of the variables (the spectral variable). We
demonstrate that this form defines a hierarchy of dispersionless integrable equations in terms
of commuting vector fields locally holomorphic in the spectral variable. The equations of the
hierarchy are given by the gauge-invariant closedness equations.

1. Introduction
In this work we develop further the ideas of the work [1] and introduce a general setting for
multidimensional dispersionless integrable hierarchy in terms of some differential m-form Ωm,
in the spirit of construction of universal Whitham hierarchy given in [2], which corresponds to
the case of Ω2 with a Hamiltonian reduction. The coefficients of this form should satisfy the
Plücker relations (we call it a Plücker form), it should be gauge-invariantly closed and its gauge-
invariant coordinates (ratios of coefficients) should be (locally) holomorphic with respect to one
of the variables (the spectral variable). We demonstrate that this form defines a hierarchy of
dispersionless integrable equations in terms of commuting vector fields locally holomorphic in
the spectral variable. The equations of the hierarchy are given by the gauge-invariant closedness
equations.

First we consider the correspondence between Plücker forms and distributions and
demonstrate that involutivity of the distribution is equivalent to the gauge-invariant closedness
equations for Plücker form.

Then we introduce a spectral variable, suggesting that gauge-independent coordinates of the
form (ratios of coefficients) are holomorphic with respect to one of the variables and consider
some simple examples of integrable systems arising from gauge-invariant closedness equations.
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We demonstrate that nonlinear vector Riemann-Hilbert problem (or ∂̄-problem) is a natural
tool to construct gauge-invariantly closed Plücker forms holomorphic in the complex plane,
and show how to obtain polynomial Ωm and the corresponding multidimensional dispersionless
hierarchy.

2. Integrable distributions and closed Plücker forms
Let us consider a domain with a set of local coordinates x = (x0, x1, . . . , xN ). Distribution is a
K-dimensional subspace of the tangent space ∆x ⊂ Tx, depending smoothly on x (there exists
a basis of smooth vector fields). Involutive distribution is defined by the relation [∆,∆] ⊂ ∆,
where the standard commutator of vector fields is used. According to Frobenius theorem, the
distribution is integrable (corresponds to a foliation) ⇔ the distribution is in involution.

There are several dual formulations of Frobenius theorem in terms of differential forms, where
the subspace in cotangent space dual to the distribution (codistribution) is considered. Here
we will consider decomposable differential m = (N + 1 −K) forms (we will call them Plücker
forms) which are in one-to-one correspondence (up to a gauge) with the codistribution, and
will formulate the property of these forms which is equivalent to the involutivity of original
K-dimensional distribution.

Let us define a Plücker form as an m-form

Ωm =
∑

06i0≤···6im−16N

πi0 i1 ... im−1(x)dxi0 ∧ dxi1 ∧ · · · ∧ dxim−1

with coefficients satisfying Plücker relations (see e.g. [3])

m∑
l=0

(−1)lπi0 ... im−2 jlπj0 ... ǰl ... jm = 0,

where indices ip and jp range over all possible values from zero to N and the notation ǰp means
the omission of the index. Due to Plücker relations, the form Ωm is decomposable

Ωm = ω0 ∧ · · · ∧ ωm−1,

defines a vector subspace in cotangent space and a distribution as a dual object. It is also easy
to construct a Plücker form for a given distribution, it is defined up to a gauge. We will call the
Plücker forms which differ only by a gauge (multiplication by some function) equivalent.

Having the correspondence between Plücker forms and distributions, it is natural to ask a
question what property of Plücker form corresponds to the involutivity of the distribution.
To have a geometrical meaning, this property should be gauge-invariant. The answer to
this question can be found using the gauge-invariant closedness conditions for Plücker forms
introduced in [1].

Let us consider standard closedness equations[
∂πi0 i1 ...im−1

∂xim

]
= 0, (1)

where the bracket [. . . ] means antisymmetrization over all indices. We consider a pair of
equations with the choice of indices (0, 1, . . . ,m − 1, q), (0, 1, . . . ,m − 1, r), q, r ∈ {1, . . . ,K =
N −m+ 1}, q 6= r, introducing the basic set of gauge independent affine coordinates

aqk = (−1)kJ−1π0 ... k−1 k+1 ...m−1m−1+q,

J = π0 1 ...m−1
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where k ∈ {0, . . . ,m− 1}, q ∈ {1, . . . ,K = N −m+ 1}. All the affine coordinates are expressed
through the basic set using Plücker relations, and the closedness equations take the form

∂J

∂xq+(m−1)
+
m−1∑
l=0

∂(Jaql)

∂xl
= 0,

∂J

∂xr+(m−1)
+
m−1∑
l=0

∂(Jarl)

∂xl
= 0, (2)

∂aqk
∂xr+(m−1)

− ∂ark
∂xq+(m−1)

+
m−1∑
l=0

(
arl
∂aqk
∂xl

− aql
∂ark
∂xl

)
= 0. (3)

Subsystem (3), invariant under the gauge transformations mentioned above, is the gauge
invariant part of the system (1) for Plücker form [1]; we will call it gauge-invariant closedness
equations for Plücker form. Equations (2) can be viewed as the equations for the gauge variable
J which transforms as J → ρJ under the gauge transformations. It is a straightforward check
that equations (2) are compatible due to the subsystem (3). We note that the system (2), (3)
can be rewritten in the form

Dq ln J +

m−1∑
n=0

∂aqn
∂xn

= 0, Dr ln J +

m−1∑
n=0

∂arn
∂xn

= 0, (4)

Draqk −Dqark = 0, k = 0, . . . ,m− 1 (5)

where Dq and Dr, q, r ∈ {1, . . . ,K}, are vector fields

Dq =
∂

∂xq+(m−1)
+
m−1∑
n=0

aqn
∂

∂xn
, Dr =

∂

∂xr+(m−1)
+
m−1∑
n=0

arn
∂

∂xn
. (6)

Equations of the type (4) were considered in [4], [5] as equations for the Jacobian of solutions of
linear equations defined by vector fields. So the subsystem (3) is equivalent to the commutativity
[Dq, Dr] = 0 of vector fields Dq and Dr.

Considering the set of gauge-invariant closedness equations (3), we come to the following
conclusions:

Proposition 1 The set of gauge-invariant closedness equations (3) is equivalent to the existence
of a gauge, in which the Plücker form is closed in the standard sense.

The gauge variable J corresponding to closed form is defined by linear equations (2).

Proposition 2 The Plücker form is gauge-invariantly closed ⇔ the corresponding distribution
is in involution

The Proposition 2 can be easily proved by purely geometrical means, using the Frobenius
theorem and some well-known properties of differential forms. It is known that closed
decomposable differential form has a decomposition in terms of exact 1-forms (see e.g. [6, 7]).
The fact that the Plücker form is decomposable implies that (gauge invariantly) closed Plücker
form possesses a decomposition into exact 1-forms (up to a gauge).

Proposition 3 Gauge-invariantly closed Plücker form can be represented as

Ωm = gdf0 ∧ · · · ∧ dfm−1, (7)

where g, f0, . . . , fm−1 are some functions.
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Examples of closedness equations
Let us consider some simple examples of closedness equations (2), (3) for Plücker forms, for
more detail see [1]. We will use the representation

Ωm = JΩ̃m = J(dx0 ∧ · · · ∧ dxm−1 + . . . ), (8)

where J = π0 1 ...m−1 is a gauge-dependent variable, and the Plücker form Ω̃m is gauge-
independent, it may be considered as the initial form in affine gauge.

The simplest case corresponds to m = 1, let us take N = 2:

Ω1 = J(dx0 − a10dx1 − a20dx2).

In this case we have no Plücker relations, and the closedness equations are

∂J

∂x1
+
∂(Ja10)

∂x0
= 0,

∂J

∂x2
+
∂(Ja20)

∂x0
= 0, (9)

∂a10

∂x2
− ∂a20

∂x1
+ a20

∂a10

∂x0
− a10

∂a20

∂x0
= 0. (10)

For the case m = 2, N = 3 we have

Ω2 = J(dx0 ∧ dx1 − a11dx0 ∧ dx2 − a21dx0 ∧ dx3 + a10dx1 ∧ dx2 +

+a20dx1 ∧ dx3 − (a11a20 − a10a21)dx2 ∧ dx3), (11)

where the Plücker relations are taken into account in the last term. The closedness equations
read

∂J

∂x2
+

1∑
m=0

∂(Ja1m)

∂xm
= 0,

∂J

∂x3
+

1∑
m=0

∂(Ja2m)

∂xm
= 0, (12)

∂a1k

∂x3
− ∂a2k

∂x2
+

1∑
l=0

(
a2l

∂a1k

∂xl
− a1l

∂a2k

∂xl

)
= 0, k = 0, 1. (13)

3. The spectral variable. Dispersionless integrable systems
To introduce dispersionless integrable systems, we need the solutions of gauge-invariant
closedness equations (3) holomorphic with respect to one variable (the spectral variable). Let us
consider (gauge invariantly) closed Plücker form Ωm with affine coordinates (ratios of coefficients)
holomorphic with respect to λ = x0 in some complex domain. This form defines a hierarchy of
dispersionless integrable equations in terms of commuting vector fields locally holomorphic in
λ. The equations of the hierarchy are given by the gauge-invariant closedness equations.

More specifically, we consider the forms meromorphic in the complex plane (in the affine
gauge).

This setting for m = 2 can be reduced to Whitham hierarchy (Krichever [2]), for m = 3 to
heavenly equation hierarchy (Takasaki [8], [9]) and connected Dunajski equation hierarchy [10],
[11].

Important reductions are volume (or area) conservation corresponding to closedness in the
affine gauge (J = 1) and hyper CR (Cauchy-Riemann) reduction Ωm ∧ dλ = 0.

Most known examples correspond to the case when there exists polynomial (or Laurent
polynomial) set of affine coordinates (affine gauge). Below we will restrict ourselves to the
polynomial case. Examples corresponding to Laurent polynomials were considered in [1], [12].

A closely related geometric picture of dispersionless integrable systems in terms of coisotropic
deformations was introduced in [13], [14], and connection between this picture and the setting
of the present work was discussed in [1].
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Polynomial Ω1 The case m = 1 is non-generic, in this case there is no hierarchy of commuting
systems, and it is not clear how to solve it in general. The equations corresponding to this case
were considered in the framework of inverse scattering method with variable spectral parameter
[15]. The gauge-invariant closedness condition for the form

Ω1 = J(dλ+ udx− (1 + vλ+ λ2)dy),

which is given by equation (10), leads to the Liouville equation

ϕxy = eϕ, (14)

where u = 1
2e
ϕ, the Lax pair for this equation reads

∂xψ = u∂λψ

∂yψ = −(1 + vλ+ λ2)∂λψ.

The case of third order polynomial

Ω1 = J(dλ+ udx− (1 + wλ+ w′λ2 + λ3)dz)

leads to ‘higher Liouville equation’ introduced in [15],

ϕxxz − ϕxzϕx = 3
2e
ϕ, (15)

where w = ϕz, w
′ = e−ϕϕxz, the Lax pair for this equation is

∂xψ = u∂λψ

∂zψ = −(1 + wλ+ w′λ2 + λ3)∂λψ.

We should emphasize that equations (14), (15) are not commuting and they do not belong to a
hierarchy. It is also possible to introduce ‘higher Liouville equations’ of arbitrary order.

Polynomial Ω2 For the case m = 2, N = 3 we consider the form (11) with polynomial
coefficients

a10 = u0(x), a11 = u1(x) + λ,

a20 = v0(x) + λv1(x), a21 = v2(x) + λv3(x) + λ2.

Considering gauge-invariant closedness equations (13) and denoting x = x1, y = x2, t = x3 (see
[1] for more detail), one gets the Manakov-Santini system [16], [17]

uxt + uyy + (uux)x + vxuxy − vyuxx = 0,

vxt + vyy + uvxx + vxvxy − vyvxx = 0. (16)

Considering more variables and higher order polynomials, it is possible to introduce the form
Ω2 corresponding to the Manakov-Santini hierarchy [21].
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Reductions There are two important classes of reductions of dispersionless systems (hierarchies)
defined in terms of the form Ωm.

(i) The form Ωm is closed in standard sense in affine gauge (J=1). In general, the closedness
in the affine gauge leads to representation of the hierarchy in terms of volume-preserving
(divergence-free) vector fields. In this case the equations of gauge-invariant closedness (3)
are complemented by equations, implied by linear subsystem (2) for J = 1,

m−1∑
l=0

∂aql
∂xl

= 0, q ∈ {1, . . . ,K}.

For the Manakov-Santini system this reduction leads to the condition v = 0, defining the
dKP equation.

(ii) Reduction Ωm ∧ dλ = 0. In this case it is possible to consider Ωm = dλ ∧Ω′m−1 with Ω′m−1

not containing dλ and gauge-invariantly closed, and λ plays a role of a parameter. Vector
fields do not contain a derivative over spectral variable. In the case of Manakov-Santini
system (16) this reduction leeds to the condition u = 0 and the equation

vxt + vyy + vxvxy − vyvxx = 0

considered in [18], [19], [20]. For general Ωm this reduction defines the hyper CR (Cauchy-
Riemann) hierarchies.

4. Nonlinear Riemann-Hilbert problem
Let us consider a form

Ωm = dΨ0 ∧ dΨ1 ∧ . . . dΨm−1 = JΩ̃m,

where Ψk are some functions (series in λ), J is some coefficient of the form in coordinates x, Ω̃m

is a gauge-invariant (affine) factor. It is easy to see that Ωm is a closed Plücker form, and the
only thing we need to construct a solution of some dispersionless integrable system is to provide
definite analytic properties of the affine factor.

Question How to provide some simple analytic properties of the affine factor? What kind of
functions Ψk correspond to a polynomial affine factor?

It is easy to see that Ω̃m is invariant under diffeomorphism

(Ψ0,Ψ1, . . . ,Ψm−1)→ F(Ψ0,Ψ1, . . . ,Ψm−1)

Let the functions Ψk be holomorphic (meromorphic) inside and outside the unit circle (or some
curve in the complex plane), having a discontinuity on it. If they satisfy a nonlinear vector
Riemann-Hilbert problem on the unit circle

(Ψ0,Ψ1, . . . ,Ψm−1)in = F(Ψ0,Ψ1, . . . ,Ψm−1)out, (17)

then the affine factor Ω̃m is holomorhic (meromorphic) in the complex plane.
Thus nonlinear vector Riemann-Hilbert problem gives a tool to construct closed Plücker

forms with holomorphic (meromorphic) affine factor, generating commuting vector fields with
holomorphic (meromorhic) coefficients.

Equivalently, it is possible to use a nonlinear vector ∂̄-problem in some domain of the complex
plane

∂̄Ψk = F k(Ψ0,Ψ1, . . . ,Ψm−1), 0 6 k 6 m− 1.

It provides the analiticity of affine factor Ω̃m in the domain.
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General hierarchy for the polynomial case
We will demonstrate how for a special choice of structure of functions Ψk, using nonlocal
Riemann-Hilbert problem, it is possible to obtain polynomial affine factor and the corresponding
hierarchy. We consider the formal series

Ψ0 = λ+
∞∑
n=1

Ψ0
n(t1, . . . , tm−1)λ−n, (18)

Ψk =

∞∑
n=0

tkn(Ψ0)n +

∞∑
n=1

Ψk
n(t1, . . . , tm−1)(Ψ0)−n, (19)

where 1 6 k 6 m − 1, depending on m − 1 infinite sequences of independent variables
tk = (tk0, . . . , t

k
n, . . . ), t

k
0 = xk, λ = x0.

Let us consider the Riemann-Hilbert problem (17) on the unit circle, where the functions Ψk

are analytic inside and outside the circle and in the neighborhood of infinity are given by the
series of the form (18), (19), Then the form Ω̃m is analytic in the complex plane, morover, due
to the structure of the series it is polynomial. Thus it corresponds to dispersionless hierarchy
for the polynomial case. Equations of the hierarchy are generated by the relation (see [11], [21])(

J−1dΨ0 ∧ dΨ1 ∧ . . . dΨm−1
)
− = 0

where (· · ·)− denotes the projection on the part of (· · ·) with negative powers in λ and

J = π0 1 ...m−1 = det(∂lΨ
k)k,l=0,...,m−1. Generating relation represents analyticity condition for

affine factor of the closed Plücker form, which can be provided by the Riemann-Hilbert problem
(17).

Using the Jacobian matrix

(Jac0) =

(
D(Ψ0, . . . ,Ψm−1)

D(x0, . . . , xm−1)

)
, det(Jac0) = J,

it is possible to write Lax-Sato equation of the hierarchy inthe form

∂knΨ =
m−1∑
i=0

(
(Jac0)−1)ik(Ψ

0)n)
)

+
∂iΨ, 1 6 k 6 m− 1, (20)

where 1 6 n <∞, Ψ = (Ψ0, . . . ,Ψm−1). First flows of the hierarchy read

∂k1 Ψ = (λ∂k −
m−1∑
p=1

(∂kup)∂p − (∂ku0)∂λ)Ψ, 1 6 k 6 m− 1, (21)

where u0 = Ψ0
1, uk = Ψk

1, 1 6 k 6 m− 1.
A compatibility condition for any pair of linear equations (e.g., with ∂k1 and ∂q1 , k 6= q) implies

closed nonlinear N-dimensional system of PDEs for the set of functions uk, u0, which can be
written in the form

∂k1∂qû− ∂
q
1∂kû+ [∂kû, ∂qû] = (∂ku0)∂q − (∂qu0)∂k,

∂k1∂qu0 − ∂q1∂ku0 + (∂kû)∂qu0 − (∂qû)∂ku0 = 0, (22)

where û is a vector field, û =
∑m−1

p=1 up∂p. For m = 3 this system after volume-preservation

reduction corresponds to the Dunajski system (generalizing heavenly equation).
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