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Abstract. In this paper we describe some recent progresses in the study of the leading
quantum correction at strong coupling of the dressing phase appearing in the Bethe Ansatz
for string theory on the AdS3 × S3 × T 4 background. Using the SU(2) rigid circular string
as guiding example, we find that the phase is different than in the AdS5,4 cases. We discuss
in detail the determination of the phase using both a Word-Sheet approach and the Algebraic
Curve formalism.

1. Introduction
The discovery of the integrability in the context of the AdS/CFT correspondence opened the
possibility for spectacular developments in the past years: in particular the spectral problem
for the most studied example of the duality - N = 4 SYM - II B string theory on AdS5 × S5

- has been completely solved in terms of a system of Thermodinamic Bethe Equations. Many
other interesting objects in the theory have been investigated exploiting the integrability of the
model, ranging from correlation functions, Wilson loops, scattering amplitudes etc. The situ-
ation is similar for the second main example of integrable theories in the AdS/CFT duality:
ABJM - II A string theory on AdS4 × CP 3 (for a review see [1]).

In both these cases the first step in the solution of the spectral problem has been its reformu-
lation in terms of a spin chain description, mapping the calculation of the anomalous dimensions
for (long) gauge invariant operators in the solutions of some sets of Bethe Equations (BE).

It is well known that other backgrounds with an AdSn factor allow for integrable string theory,
at least at the classical level (see for example [2]): recently the backgrounds AdS3×S3×S3×S1

and AdS3×S3×T 4 received much attention, and a first conjecture for the the Bethe Equations
describing the spectrum of these models has been proposed in [3], followed by the second pro-
posal of [4]. As it happens in the previous AdS5,4 cases, these BE contains a dressing factor,
which is not fixed by the symmetry of the model.

The main goal of this paper is to report some recent results [5, 6] in the study of the dressing
phase appearing in the aforementioned set of BE for the AdS3 × S3 × T 4 background: techni-
cally this backgound can be thought as a special case of the more general AdS3×S3×S3×S1:
setting the radius of AdS3 to 1, then the radii of the two 3-spheres can be parametrized as R2

+ =
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α−1, R2
− = (1−α)−1, and the AdS3×S3×T 4 model with R2 =∞ (after recompactification) cor-

responds to α = 1; strings on AdS3×S3×T 4 and AdS3×S3×S3×S1 are described respectively
by the GS superstring action on the supercosets PSU(1, 1|2) × PSU(1, 1|2)/SU(1, 1) × SU(2)
and D(2, 1;α)×D(2, 1;α)/SU(1, 1)× SU(2)× SU(2): It is important to note that, contrary to
the AdS5,4 case, the supercoset description of the background, which is the core of the integra-
bilty of the model, is only partial for the AdS3 cases, the S1 and T 4 factors being missing. Due
to the difficulty to describe the complete background in the integrability setup, and the fact
that the α → 1 limit is not smooth, it is simpler to consider separately the two cases; in this
paper we concentrate on the AdS3 × S3 × T 4 case only.

In more detail the aim of the paper is to investigate the next to leading correction at strong
coupling of the dressing phase: the phase for the scattering of two magnons with momenta pj
and pk can be written in general as [7, 8]

ϑ(pj , pk) = 2
∞∑
r=2
s≥r+1
r+s odd

cr,s(λ)
( λ

16π2

) r+s−1
2

[
qr(pj) qs(pk)− qs(pj) qr(pk)

]
. (1)

where qn(p) is the elementary magnon n-th charge. The strong coupling expansion of the
coefficient functions cr,s(λ) is

cr,s(λ) = c(0)r,s +
1√
λ
c(1)r,s + . . . , (2)

where the leading term c
(0)
r,s = δr+1,s is fixed by the matching with the classical finite-gap equa-

tions, and it is the same AFS contribution [9] as in the AdS5,4 cases.

Our strategy to compute the c
(1)
r,s relies on the study of a simple solution, the SU(2) circular

spinning string as a guiding example. While the 1-loop correction to the dressing phase and the

c
(1)
r,s coefficients can be computed, in principle in a more general way, without refering to any

particular solution, in the Algebraic Curve (AC) framework, following the approach of [10], we
will need anyway an independent calculation of the 1-loop energy, done for the particular solu-
tion of the rigid circular string using the World-Sheet (WS) method, which is independent of the
integrability of the model: we need this particular example both to understand regularization
issues and to check the independence of the result from the missing modes in the AC, realtive
to the T 4 component of the background.

The paper is organised as follows: in section 2 we briefly review the AC setup for the
AdS3 × S3 × T 4 model, and present the calculation of the coefficients applying the AC method
naively. Section 3 is devoted to the same calculation in the WS approach. In section 4 we discuss
then the origin of the mismatch between the two results for the particular case of the circular
string and show that the difference is due to regularization issues in the sum over the modes.
The Section 5 briefly describes the second example of the folded string solution, and finally we
discuss open problems.

2. Algebraic Curve determination of the c
(1)
r,s

Introducing the function of the spectral parameter α̂(x) and the resolvents G,H defined in terms
of the Bethe roots xa,k as

α̂(x) = 4π√
λ

x2

x2−1 ,

Ga(x) =
∑Ka
k=1

α̂(xa,k)
x−xa,k , Ha(x) =

∑Ka
k=1

α̂(x)
x−xa,k , G(x) = G(1/x), H(x) = H(1/x).(3)
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the finite-gap equations can be written as:

2π n1 = −H2 −H2 +
G2(0) + xG′2(0)

x2 − 1
−
G2(0) + xG′

2
(0)

x2 − 1
, (4)

2π n2 +
4πJ x
x2 − 1

= 2H2 −H1 −H3 + 2H2 −H1 −H3 + 2
G2(0)−G2(0)

x2 − 1
, (5)

2π n3 = −H2 −H2 +
G2(0) + xG′2(0)

x2 − 1
−
G2(0) + xG′

2
(0)

x2 − 1
, (6)

2π n1 = −H2 −H2 −
G2(0) + xG′2(0)

x2 − 1
+
G2(0) + xG′

2
(0)

x2 − 1
, (7)

2π n2 −
4πJ x
x2 − 1

= 2H2 −H1 −H3 + 2H2 −H1 −H3 − 2
G2(0)−G2(0)

x2 − 1
, (8)

2π n3 = −H2 −H2 −
G2(0) + xG′2(0)

x2 − 1
+
G2(0) + xG′

2
(0)

x2 − 1
. (9)

Following on the work of [11], we define the quasimomenta in terms of the resolvents as (J is
the angular momentum of the string):

p1 = −p4 = −1

2
H1 −

1

2
H1 −

1

2
H3 −

1

2
H3 −

2πJ x
x2 − 1

+
x

x2 − 1
[G′2(0)−G′

2
(0)], (10)

p2 = −p3 = H2 +H2 −
1

2
H1 −

1

2
H1 −

1

2
H3 −

1

2
H3 −

2πJ x
x2 − 1

, (11)

p1 = −p4 = −1

2
H1 −

1

2
H1 −

1

2
H3 −

1

2
H3 +

2πJ x
x2 − 1

+
x

x2 − 1
[G′

2
(0)−G′2(0)], (12)

p2 = −p3 = H2 +H2 −
1

2
H1 −

1

2
H1 −

1

2
H3 −

1

2
H3 +

2πJ x
x2 − 1

. (13)

Up to winding contributions, we have

p1,2,3,4(x) = p1,2,3,4(1/x) . (14)

The above finite-gap equations are obtained with pi − pj = 2π nij where

(i, j) = (1, 2), (2, 3), (3, 4), (1, 2), (2, 3), (3, 4). (15)

The eight functions pi(x) and their branch cuts define the classical algebraic curve for the
AdS3 × S3 × T 4 background: Note that here the algebraic curve is a connected sum of two
pieces interchanged by the x→ 1/x transformation, while in the AdS5 × S5 case the curve is a
single connected invariant piece. In the recent paper [4] a second, different, set of BE has been
derived, using the bootstrap method: It is worth to note that these two versions of the BE,
while they are inequivalent at the quantum level, share the same finite-gap limit, and so they
lead to equivalent classical algebraic curves.

2.1. Semiclassical one-loop dressing factor
In the semiclassical quantisation of the AC, the first correction to the phase is encoded in a set of
potentials VI correcting the classical quasimomenta that characterize the curve: these potentials
compute the effect of the quantum fluctuations around the classical solution; for each quasi-
momentum pI the correction VI is obtained summing over all the fluctuations connecting the
sheets of the AC. The total phase corrections to the Bethe equations are obtained by evaluating
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V = VI − VJ .For the middle node 2 equation (the other BA equations are not corrected)
V(x) ≡ V2(x)− V3(x)

V(x) =

∫ 1

−1

dy

2π

[(
G2(y) +G2(y)

)′ α̂(x)

x− y
+
(
G2(y) +G2(y)

)′ α̂(1/x)

1/x− y

]
. (16)

If we excite only the node 2, it reduces to

V2(x) =

∫ 1

−1

dy

2π

[
G′2(y)

α̂(x)

x− y
+G

′
2(y)

α̂(1/x)

1/x− y

]
, (17)

where the notation is
∫ 1
−1 = 1

2

∫
C+ +1

2

∫
C− and the half circumferences C± (and their orientation)

are defined in the caption of figure 4 of [10].

At this point we can evaluate V2(x) for large x: Using the relation between the resolvent G2

and the conserved charges Qn,

G2(y) = −
∞∑
n=0

Qn+1 y
n, (18)

the resulting function of y is not singular anywhere on the circle |y| = 1 and the integration is
trivial. The result is

V2(x) =
α̂(x)

2π

∞∑
r=2

∞∑
s=1

ĉr,s
Qr
xs

, (19)

ĉr,s = −4
(
1− 1

2
δs,1

) 1− (−1)r+s

2

r − 1

r + s− 2
. (20)

Here ĉr,s are the (naive) prediction of the algebraic curve method for the values of the c
(1)
r,s co-

efficients which parametrize the phase. A serious problem of this result is that the coefficients
ĉr,s are not antisymmetric, which is an important consistency requirement.

If we now apply the AC method to the particular case of the SU(2) circular string, we get
for the 1-loop contribution of the dressing phase to the energy as:

δEAC1 = 1√
m2+J 2

(
m2 + J 2 log J 2

m2+J 2

)
− m2(2J (J−

√
J 2+m2)+m2)

2(J 2+m2)3/2
. (21)

In the next sections we show that the part that breaks the antisymmetry in the coefficients also
induces a mismatch with the WS calculation for the non-analytic term in the one-loop energy.
This disagreement turns out to be due to a regularization ambiguity in the sum over fluctuation
frequencies. Once this regularization problem is fixed, the algebraic curve approach result agrees
with the string theory result, the the antisymmetry of cr,s is recovered, and the result can be
consistently interpreted as a phase.

3. One-loop correction to the energy for the SU(2) string: WS approach
The 1-loop correction to the energy in the WS approach is obtained as usual as a sum over
the fluctuation frequences around the classical solution: at the classical level the solution is
identical than that of the AdS5 case, and the frequences in the AdS3 background can be easily
obtained by truncating a certain subset of the fluctuations fields and adjusting the number of
independent fluctuations, i.e. removing two bosonic frequencies that correspond to fluctuations
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in the transverse directions of S5, and halve the AdS and fermionic contributions. There are
also four additional bosonic and four fermionic massless modes coming from the T 4 part of
the background, but their contributions cancel among themselves. The result for the one-loop
correction to the energy is given by:

E1 =
∑

e(n) , (22)

e(n) =

√
1 +

(n+
√
n2 − 4m2)2

4(J 2 +m2)
+

√
1 +

n2

J 2 +m2
− 2

√
1 +

n2 −m2

J 2 +m2
. (23)

It is straightforward to check that this sum is UV finite. The dressing contribution to E1

is obtained isolating the non-analytic part in the sum, following the same method as in [7]:
expanding e(n) at large J and separating out the convergent (i.e. regular) and divergent (i.e.
singular) parts, we can write e(n) = esumreg (n) + esumsing(n). To deal with the singular part we define

eint(x) = e(J x) and expand it for large J at fixed x, getting eint(x) = eintreg(x) + eintsing(x) where

eintsing is the part whose integral is divergent at x = 0. The regular part in one regime is in fact
equal to the singular part in the other regime.

eintsing(x) = esumreg (J x), esumsing(n) = eintreg(n/J ), (24)

so that finally we get:

E1 = Eanalytic
1 + Enon−analytic

1 , (25)

Eanalytic
1 =

∑
esumreg (n), Enon−analytic

1 ≡ δE1 =

∞∫
−∞

J dxeintreg(x) . (26)

leading to:

δEAdS3
1 =

1√
J 2 +m2

(
m2 + J 2 log

J 2

m2 + J 2

)
, (27)

Clearly there is a mismatch with the previous AC results, the difference being the term:

∆E1 = −
m2

(
2J

(
J −

√
J 2 +m2

)
+m2

)
2 (J 2 +m2)3/2

(28)

4. Origin of the mismatch
Both problems, the non-antisymmetry of the coefficients and the mismatch ∆E1, can be traced
back to a regularization issue in the sum over the frequencies of the quantum fluctuations: in the
WS approach the natural cut-off is a common mode number N , while in the AC approach the
cut-off is a common radius for the contour integral in the spectral plane defining the potentials;
this difference is translated in a reordering of the terms in the sum over the frequences to compute
the 1-lopp energy E1 ∼

∑
n∈Z

(ωBn − ωFn ), and is the origin of the ∆E1 term. We can repeat the

calculation of V enforcing the regularization of the AC curve to reproduce the WS result for the
circular string, solving both problems at once. At the level of the potential V(x) the choice of
the new regularization corresponds to an integration by parts, i.e. we start with the potential
correcting the Bethe equation

V(x) =

∫ 1

−1

dy

2π

[(
G2(y) +G2(y)

)′ α̂(x)

x− y
+
(
G2(y) +G2(y)

)′ α̂(1/x)

1/x− y

]
. (29)
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and integrating by parts we define the potential V̂(x), correspondin to the new regularization:

V̂(x) =

∫ 1

−1

dy

2π

[(
G2(y) +G2(y)

)′ α̂(x)

x− y
−
(
G2(y) +G2(y)

) ( α̂(1/x)

1/x− y

)′]
. (30)

The large x expansion of V̂(x) is

V̂(x) =
α̂(x)

2π

∞∑
r=1

∞∑
s=1

c
(1)
r,s Qr − c(1)r,s Qr

xs
, (31)

where the expansion coefficients are now antisymmetric:

c(1)r,s = 2
1− (−1)r+s

2

s− r
r + s− 2

, c(1)r,s = −2
1− (−1)r+s

2

r + s− 2

s− r
. (32)

These coefficients (only c
(1)
r,s is actually contributing) now lead precisely to the string theory

expression δEAdS3
1 for the non-analytic term in the circular SU(2) string case.

Using the new regularization, we can now compute the scattering phases between magnons,
following [10]: We identify the dressing phase contribution in the BE as:

ei V̂(x2,i) =
K2∏
k 6=j

σ2(x2,j , x2,k)

K
2∏
k

σ−2(x2,j , x2,k) =
K2∏
k 6=j

ei ϑ(x2,j ,x2,k)
K

2∏
k

e−i ϑ̃(x2,j ,x2,k). (33)

Using the discrete definition of the function G and integrating over y we obtain

ϑ(x, y) = − α̂(x) α̂(y)

2π (x− y)2

[
2 log

(x+ 1

x− 1

y − 1

y + 1

)
+ 2

(x− y) (x2 + y2 − 2)

(x2 − 1)(y2 − 1)

]
, (34)

ϑ̃(x, y) = − α̂(x) α̂(y)

2π (1− x y)2

[
2 log

(x+ 1

x− 1

y − 1

y + 1

)
− 2

(x− y) (x2y2 − 1)

(x2 − 1) (y2 − 1)

]
. (35)

5. Folded string and open problems
The choice of regularization used in the previous section allows to separate the original potential
V = Vphase + δV, where only the first part can be consistently interpreted as a phase, while the
second is understood as a regularization effect. Nevertheless the prescription is based on the
agreement between the AC and WS approaches in the particular case of the SU(2) curcular
string. If we consider as a second example the SL(2) folded string solution, we can repeat the
same steps: computing the 1-loop dressing contribution to the energy for the folded string, the
AC and WS give different result, and the mismatch is again due to the different regularizations.
While we can remove the discrepancy and get a consistent result on the string theory side, if we
compare the string prediction with the BE, using the phase derived in the previous section we
still have a discrepancy.

WS ≡ AC-reg. mismatch : Edressing
1 =

coth−1
(√
J 2 + 1

)
2J 3
√
J 2 + 1

S2 +O(S3),

BE with cr,s coeff. : Edressing
1 =

[coth−1
(√
J 2 + 1

)
2J 3
√
J 2 + 1

+
1

2J 4
√
J 2 + 1

]
S2 +O(S3).
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where the first line is the string theory result for a folded string with semiclassical spin S and
angular momentum J , the second line is the result obtained from the BE equations, assuming
the coefficients cr,s for the dressing phase.

This disagreement calls for a deeper understanding of the role of δV; while the regular-
ization/antisymmetrization prescription works perfectly in the SU(2) sector, the comparison
between string theory and BE predictions for more general cases is still problematic.

Another open issue is related to the fact that the magnon phases in eq.(35) don’t satisfy the
crossing relations found in [4]: to get crossing respecting phases the coefficients cr,s with r = 1
should be modified with an additional factor 1/2 [12, 13]. The relative phases for the magnon
scattering can be found starting from the original potential in eq.(16), and making the resulting
phase antisymmetric by hand θAC,asym(x, y) = 1/2[θAC(x, y)−θAC(y, x)]. But this phase, while
crossing symmetric, gives a contribution to the 1-loop energy not in agreement with the string
theory WS prediction, even in the case of the circular string solution.
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