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Abstract. We investigate the formation of shock waves in a warm dusty plasma with
equilibrium drift. We show that the natural decay rate of dust charge plays an important
role in determining the properties of the shock front in such a plasma.

1. Introduction
We now know that dust grains form an integral part of space and astrophysical plasmas [1–4] and
play an important role in determining the dynamical behavior of these systems. This realization
led many investigations which reveals the importances of dust grains on various wave modes
and their nonlinear counterparts [5,6]. Rao et. al. [7], are among the first few authors, to study
the dust-acoustic mode. Numerous investigations have been made which involved the study
of evolution of various nonlinear solitary waves [8, 9], shock waves [10, 11], as well as double
layers [12, 13]. In this paper, we investigate the dust-acoustic shock waves in a warm dusty
plasma.

2. Basic equations of the model
Below are the equations of our 1-D nonlinear model of warm dusty plasma,
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where ni,e,d are the ion, electron, and dust densities and the other symbols have their usual
meanings. While the dust particles are massive and inertial, the electrons and ions are assumed
to be Maxwellian, so that the electron and ion densities are solely described by the plasma
potential φ.

Using a perturbation scheme f = f0 + f̃ , where f0 is the equilibrium and f̃ is the perturbed
parts of any physical quantity f , we can approximate the Poisson equation as,

∂2φ̃

∂x2
' αφ̃+ βφ̃2 +

e
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The closure of the model will be provided by the dust-charging equation, which is given by,

∂qd
∂t

= Id, (7)

where qd is the dust-charge and Id is the charging current. The dust-charging equation in
presence of Maxwellian electron and ions can be simplified as,
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where the terms p1,2 are given by,
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and η is the natural decay rate of dust-charge [14,15].

3. Nonlinear perturbation and shock wave solution
We now employ the reductive perturbation to our set of equations, Eqs.(1-3,5,8) by introducing
a space and time stretching as ξ = ε(x−v0t), τ = ε2t, followed by an expansion of the perturbed
plasma parameters, (f = nd, udpd, φ), f =

∑∞
j=0 ε

jf (j), where ε is the small expansion parameter.

Note that in these expansions, φ(0) = 0. Using this scheme and applying to our model equations,
to the lowest order in ε, we get the following relations,
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where p = end0p1/ε0 and V = v0 − ud0 is the relative velocity of the comoving frame of the
perturbation with respecting to the equilibrium drift ud0, that the dust particles might have.
The above equations requires a compatibility condition that,

V 2 = v2th +
ω2
d

(α+ p/η)
, (12)

where ωd =
√
nd0e2z

2
d0/(ε0md) is the dust plasma frequency and vth =

√
γpd0/(mdnd0) is the

dust thermal velocity.
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Continuing to the next higher order in ε, we get the following equations,
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Eliminating the second order quantities from Eqs.(13-17) and using the results for the first order
quantities in terms of φ(1), we finally derive the nonlinear shock wave equation, known as the
Burger equation [16] as,
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where the coefficients are given by,
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The coefficient A is the coefficient of nonlinearity and B represents dissipation. Although, our
model does not include any physical dissipation, the dust-charge fluctuation is manifested as
dissipation in our model, which drives the shock front.

4. Concluding remarks
We note that the natural decay rate of dust charge η plays an important role in determining the
behaviour of the shock front. Taking an asymptotic limit of η, on the dissipation coefficient B,
we get,

B ' v0εzd0

2mdp1

√
ω2
dα
−1 + v2th

, for η ' 0,

B ' 0, for η � 1,

(21)

which reaches a constant value for small η and become zero for large η. This essentially means
that when the natural decay rate of dust charge becomes zero, the shock front still survives
owing to the dust-charge fluctuation whereas when η becomes large, the dust-charge dissipates
very quickly, which destroys the shock front. It is interesting to look at these asymptotic values
when the dust is essentially cold i.e. for small pd0,

B ' ε0v0
2ezd0

√
ω2
d

pη
, for η, pd0 ' 0, (22)
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when B becomes very large for small η.
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