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Abstract. We give a brief summary of the work on partons at small Bjorken x pursued by us
at Gauhati University in recent years. We use both conventional DGLAP method and not so
conventional self-similarity inspired method. In DGLAP approach, we solve the QCD evolution
equations approximately at small x by two methods- Lagrange’s and method of characteristics.
We apply them to both spin dependent and spin independent structure functions. In the
second approach, we use the notion of self-similarity of fractal geometry to construct Transverse
Momentum Dependent Parton Distributions (TMD’s), integrated Parton Densities (PDF’s) and
determine them from HERA collider data. We then use them to compute fractions of momentum
carried by quarks and gluons inside the proton and compare with QCD expectations. In view
of topical importance of multi parton interactions at LHC at TeV scale, we also outline the
construction of Double Parton Distributions (dPDF’s) with self-similarity at small x1, x2.

1. Introduction
In deep inelastic e-p scattering, x denotes the fraction of momentum carried by partons in a
nucleon. Small x (x� 1) partons were coined “wee” partons by Feynman more than forty years
ago in pre QCD era, in late 1960’s and early 1970’s. Since then the subject attracted immense
interest both theoretically and experimentally. Both in the experiments at lepton hadron collider
“HERA” at DESY, Hamburg and the present LHC at CERN, Geneva, the subject has been
attracting keen attention. [1-3]. As noted in the abstract, the paper summaries the specific
aspects of small x partons. In section 2, we summarise the DGLAP based models while the
section 3 is devoted to self-similarity based model of parton at small x.

2. DGLAP based models
In this approach, the Q2 evolution of the parton distribution functions (PDF) or the structure

functions are determined by a set of integro-differential equation in variable t = log Q2

Λ2 known
as DGLAP equation [4-6] named after the authors. In more recent years, several alternative
evolution equations have also been suggested like BFKL [7], GLR [8], BK [9], and JIMWLK
[10]. Each of them has varied degree of theoretical refinement compared to DGLAP. But at
phenomenological level, DGLAP appears to be the most popular one both at HERA and LHC
regimes.

As early as 1987 [11], a programme of obtaining approximate analytical solutions of these
equations was initiated, focussing on small x in later years [12].

Neglecting the quark part and assuming factorization of x and Q2, as

G(x,Q2) = g(x).h(Q2) (1)
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Sometimes back we obtained [13] the following gluon distributions:

G(x, t) = G(x, t0)

(
t

t0

)p(x)

(2)

with

p(x) =
36

25

{(
11

12
− nf

18

)
+ ln(1− x) + Ig(x)

}
(3)

where the integral Ig(x) is explicit function of x.
Using the standard approximate relation between the gluon and the longitudinal structure

function FL(x,Q2) [14], we also computed FL(x,Q2) and results came close to data.
A new relation between the gluon and the slope of the structure function [15] derived by us

∂F2(x,Q2)

∂ logQ2
=

5αs

3π
G

(
4

3
x

)
(4)

was an improvement over the similar relation by Prytz [16] earlier.

DGLAP equations are differential equations in variable t = log Q2

Λ2 . Using a Taylor series
approximation at small x, it was later shown [17] that these equations can be re-expressed as
differential equations in two variables x and t of the form :

Q(x, t)
∂F2(x, t)

∂t
+ P (x, t)

∂F2(x, t)

∂x
= R(x, t) (5)

where Q(x, t), P (x, t) and R(x, t) are calculable.
There are two standard methods of solutions of such equations: (a) Lagrange’s method [18]

and (b) method of characteristics. [19] Our analysis with the Lagrange’s method indicates that
the solutions are not unique. While earlier study suggests [17,20],

FNS
2 (x, t) = FNS

2 (x, t0)

(
t

t0

)
, (6)

a general analysis in later years [21] indicates that equation(6) is a particular case of the most
general solution at small x.

FNS
2 (x, t) = FNS

2 (x, t0)

(
t

t0

)n(x,t)

, n > 0 (7)

Our results achieved by the method of characteristics, on the other hand, suggests that the gluon
density at small x [22] is given by

G(x, t) = G(x)

(
t

t0

)l(x,t)

(8)

where, l(x, t) is explicitly calculable. More recently, tensor structure function bd1(x,Q2) of the
deuteron has been computed [23] using the method of characteristics and considering both NLO
and NNLO effects using the relation

bd1(x,Q2) = −3

2
Ad

zzF
d
1 (x,Q2) (9)

where the asymmetry factor Ad
zz is taken from HERMES data [24]. The results in ref [23]

indicates that the predicted behaviour of bd1 is in good agreement with experiment within the
limits of uncertainty. A comparative analysis of the polarised structure function gNS

1 (x,Q2) and
the unpolarised one FNS

2 (x,Q2) with the two methods have also been recently reported [25,26]
besides a similar one by a new method: the method of successive approximation [27].
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Table 1. Values of Q2 for different values of allowed lower and upper bounds of quark and
gluon momentum fractions [38]

Lower bounds of Upper bounds of Q2 in GeV2

〈x̂〉q 〈x̂〉g a = 1 a = 3.1418

9
25

16
25 5.97× 107 4.48× 101

3
7

4
7 3.077× 109 1.57× 102

15
31

16
31 7.37× 1010 4.32× 102

1
2

1
2 1.86× 1011 5.80× 102

9
17

8
17 1.01× 1012 9.94× 102

9
13

4
13 1.17× 1016 1.95× 104

3
4

1
4 3.22× 1017 5.62× 104

15
19

4
19 3.11× 1018 1.16× 105

9
11

1
11 1.62× 1019 1.95× 105

1 0 5.58× 1023 5.43× 106

3. Self-similarity based models
Self-similarity is an inherent property of fractals [28]. Since 1980’s, the notion of fractals has
found its application in high energy physics through the self-similar nature of hadron multi-
particle distribution [29,30]. Relevance of these ideas in deep-inelastic scattering was first noted
by Dremin and Levtchenko [31]. Later, Lastovicka [32] suggested how fractality can be used to
construct PDF’s and structure function at small x. Choosing the relevant scaling variables as 1

x
and

(
1 +Q2/Q2

0

)
, following form of PDF was obtained :

qi(x,Q
2) =

eD
i
0 Q2

0 x
−D2

1 +D3 +D1ln
1
x

(1

x

)D1ln

(
1+Q2

Q2
0

) (
1 +

Q2

Q2
0

)D3+1

− 1

 (10)

where the parameters Di
0, Q

2
0, D1, D2, D3 are model parameters fitted from HERA data [33].

Later, an alternative parameters of the PDF was suggested [34] and applied to Ultra High
Energy Neutrino-Nucleon collision [35].

The model of equation(10) can be used to calculate the fraction of momentum carried by
quarks and gluons using the momentum sum rule [36] and assuming its validity for 0 < x < 1.
A recent analysis [37] indicates that in such a model, fraction of momentum of quarks 〈x〉q
increases with Q2 while that of gluons 〈x〉g decreases. At Q2 = 45 GeV 2, on the other hand

〈x〉q ∼ 1 suggests the saturation of the momentum sum rule. In a more recent work [38] 〈x〉q
and 〈x〉g were re-estimated for partons within the limited x -range 6.2 × 10−7 ≤ x ≤ 10−2 [32].

It leads to lower bounds 〈x〉q and upper bounds 〈x〉g in the model [Table1]. In the table1, a = 1
and a = 3.1418 corresponds to integrally and fractionally charged partons. In this case, the
momentum sum rule saturates at an energy scale beyond the reach of even ultra high energy
neutrinos.

Let us now discuss the implication of the models at LHC. At hadron collider like LHC, each
hadron is described as a collection of essentially free elementary constituents. The interactions
between constituents belonging to different colliding hadrons are the seeds of multi-partonic
interaction (MPI). Due to the composite nature of each hadron, it is possible to have multiple
parton hard scattering: i.e. events in which two or more distinct hard parton scattering occur
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simultaneously in a single hadron-hadron collision. In such a case, double parton scattering
(DPS) plays an important role. Experimentally, such DPS leads to four jet events at hadron
colliders. CMS collaboration and ATLAS collaboration are already studying such processes [39].

In QCD, to study such DPS, one needs double PDFs (dPDFs) of each hadron and their
evolution. Unlike conventional PDFs, DGLAP equations are generalised to double DGLAP [40]
equations to study evolution of dPDFs.

Recently, we have suggested a model of dPDFs based on self-similarity at small x1 and x2

[41]. The model contains total thirteen parameters to be fitted from the data at LHC. It is also
shown that the constructed dPDF does not factorise into the single PDFs in conformation with
QCD expectation. It also satisfies the condition that at the kinematic boundary x1 + x2 = 1
(where x1 and x2 are the longitudinal fractional momentum of two interacting partons), the
dPDF vanishes and its simplest form under plausible assumptions is

Dij(x1, x2) ∼
(

1

x1

)D1 log 1
x2

(
1− (x1 + x2)

x1 + x2

)D2

(11)

where D1 and D2 are the model parameters to be fitted. Further work is under progress [42]
to make the self-similarity based models compatible with DGLAP evolution as well as Froissart
saturation.
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