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Abstract. We present the solution of the nonlinear Schrödinger equation using the lattice 
Boltzmann method. We show results for two dimensions using a d2q9 lattice velocity scheme. 
To implement the expansion B.G.K. (Bhatnagar-Gross-Krook), we assume the distribution 
function as a complex valued function, whose real and complex components satisfy the 
Boltzmann equation. The strategy followed to obtain the motion equation is to define 
adequately the second moment of the distribution as a symmetric tensor. We obtain stable 
structures for given values of the nonlinear coupling constant. 

1. Introduction 
Nonlinear terms in Physics laws provide an amazing range of new dynamic effects. This is the case of 
the nonlinear Schrödinger equation (NLSEq), which plays a key role in describing the dynamics of 
Bose-Einstein condensation [1,2] In the past Lattice-Boltzmann has been successfully applied to the 
solution of the Schrödinger equation [3], and the Dirac equation its relativistic version of the problem 
[4]. Moreover, the NLSEq has brought a massive investigation into soliton behavior [5,6]. 
This paper proposes, using the lattice Boltzmann method a solution to the NLSEq. In section 2, we 
begin with a review of the lattice-Boltzmann technique and the moment relations of the equilibrium 
distribution functions applied to derivation of the NLSEq. In section 3, we obtain the NLSE equation, 
using a hypothesis in the Π0 tensor. In section 4, we obtain the equilibrium distribution functions that 
we use on a d2q9 lattice velocity scheme for the computational scheme. In section 5, we present 
results and at last, in section 6, we give conclusions. 
 
2. The lattice-Boltzmann model 
It is considered a bi-dimensional model where the velocities of particles are discretized on the grid into 
d direction. The lattice-Boltzmann equation is: 
 

𝑓𝑖,𝑗(𝑥⃗ + 𝑒𝑥𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝑖,𝑗(𝑥⃗, 𝑡) = −1
𝜏

(𝑓𝑖,𝑗(𝑥⃗, 𝑡) − 𝑓𝑒𝑞𝑖,𝑗(𝑥⃗, 𝑡))                     (1) 
 

Where 𝑓𝑖 is the probability density function of finding the group particle i, of the j species, in the 
spatial point 𝑥⃗ and time t and 𝛿𝑡 is the time step. The left hand side of equation (1) is the B.G.K. 
approximation [7], where 𝜏 is the non-dimensional relaxation time that measures the approaching rated 
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to the statistical equilibrium. Expanding the left-hand side of equation (1) up to second order, in a 
Taylor series, we have: 
 

𝑓𝑖,𝑗(𝑥⃗ + 𝑒𝛼𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝑖,𝑗(𝑥⃗, 𝑡) = 𝛿𝑡 � 𝜕
𝜕𝑡

+ 𝑒𝑥
𝜕
𝜕𝑥1

+ 𝑒𝑦
𝜕
𝜕𝑦1

� 𝑓𝑖,𝑗 + 𝛿𝑡2

2
� 𝜕
𝜕𝑡

+ 𝑒𝑥
𝜕
𝜕𝑥1

+ 𝑒𝑦
𝜕
𝜕𝑦1

�
2
𝑓𝑖,𝑗 (2) 

Assuming the spatial and temporal derivatives as: 
 

𝜕
𝜕𝑥

= ℇ 𝜕
𝜕𝑥1

;   𝜕
𝜕𝑦

= ℇ 𝜕
𝜕𝑦1

;   𝜕
𝜕𝑡

= ℇ 𝜕
𝜕𝑡1

+ ℇ2 𝜕
𝜕𝑡2

                                             (3) 
 
The parameter ℇ = Δx/L, where 𝛥𝑥 is the spatial size grid and 𝐿 the spatial system size. Expanding 
the distribution function 𝑓𝑖,𝑗 in a perturbative series:  
 

𝑓𝑖,𝑗 = 𝑓0𝑖,𝑗 + ℇ𝑓1𝑖,𝑗 + ℇ2𝑓2𝑖,𝑗                                                             (4) 
 
We obtain at first order in ℇ: 
 

−1
𝜏
�ℇ𝑓1𝑖,𝑗� = 𝛿𝑡(ℇ 𝜕

𝜕𝑡1
+ ℇ𝑒𝑥

𝜕
𝜕𝑥1

+ ℇ𝑒𝑦
𝜕
𝜕𝑦1

)𝑓0𝑖,𝑗                                           (5) 
 
And at second order in ε: 
 

−1
𝜏
ℇ2𝑓2𝑖,𝑗 = ℇ2𝛿𝑡( 𝜕

𝜕𝑡2
𝑓0𝑖,𝑗 + 𝛿𝑡

2
� 𝜕
𝜕𝑡1

+ 𝑒𝑥
𝜕
𝜕𝑥1

+ ℇ𝑒𝑦
𝜕
𝜕𝑦1

�
2
𝑓0𝑖,𝑗 + � 𝜕

𝜕𝑡1
+ 𝑒𝑥

𝜕
𝜕𝑥1

+ 𝑒𝑦
𝜕
𝜕𝑦1

� 𝑓1𝑖,𝑗)    (6) 
 
Also it is assumed   

𝑓0𝑖,𝑗 = 𝑓𝑒𝑞𝑖,𝑗                                                                (7) 
 
Inserting equation (5) in equation (6), we obtain: 
 

−1
𝜏
�𝑓2𝑖,𝑗� = 𝛿𝑡 � 𝜕

𝜕𝑡1
+ 𝑒𝑥

𝜕
𝜕𝑥1

+ 𝑒𝑦
𝜕
𝜕𝑦1

� 𝑓1𝑖,𝑗 �1 − 1
2𝜏
� + 𝛿𝑡 �

𝜕𝑓0𝑖,𝑗
𝜕𝑡2

�            (8) 
 
The moments of the distribution function are defined as: 
 

𝜌𝑗 = ∑ 𝑓0𝑖,𝑗𝑖 ;   𝑢�⃗ 𝑗 = ∑ 𝑒𝑖𝑓0𝑖,𝑗;   𝛱0
𝑗 = ∑ 𝑒𝑖 ∙ 𝑒𝑖𝑓0𝑖,𝑗𝑖  𝑖                             (9) 

 
Also we assume the distribution functions 𝑓𝑖,𝑗 satisfy the probability conservation condition with the 
equilibrium distribution 𝑓𝑒𝑞𝑖 such that: 
 

∑ 𝑓𝑒𝑞𝑖
𝑁
𝑖=0 = ∑ 𝑓0𝑖

𝑁
𝑖=0                                                         (10) 

 
3. The Schrödinger Equation 
Doing algebra in equations (5) and (8) with the help of equations (10), we get:  
 

𝜕𝜌𝑗
𝜕𝑡

+ 𝛻 ∙ 𝑢�⃗ 𝑗 = 0                                                                 (11) 
 

And 
𝜕𝑢��⃗ 𝑗
𝜕𝑡

+ 𝛻 ∙ 𝛱0
𝑗 = 0                                                               (12) 

21st Latin American Symposium on Solid State Physics (SLAFES XXI) IOP Publishing
Journal of Physics: Conference Series 480 (2014) 012037 doi:10.1088/1742-6596/480/1/012037

2



We assume Π0𝑗 as a symmetric tensor given by: 
 

𝛱0
1,𝜇𝜈 = 𝛿𝜇𝜈

𝜕𝜌2
𝜕𝑡

+ (1 − 𝛿𝜇𝜈)𝜆(𝜌12 + 𝜌22)𝜌2                                         (13) 
 

𝛱0
2,𝜇𝜈 = 𝛿𝜇𝜈

𝜕𝜌1
𝜕𝑡

+ (1 − 𝛿𝜇𝜈)𝜆(𝜌12 + 𝜌22)𝜌1                                         (14) 
 
Defining the complex function 
 

𝜌 = 𝜌1 + 𝑖𝜌2                                                                      (15) 
 
Where i is the complex number, and assuming zero the off diagonal components of Π0𝑗, and doing 
some algebra, we have the NLSEq: 
 

𝑖 𝜕𝜌
𝜕𝑡

+ 𝛻2𝜌 + 𝜆|𝜌|2𝜌 = 0                                                        (16) 
 

4. The equilibrium distribution function 
 
We use the d2q9 velocity scheme. For the directions 𝑒𝑖  and weights 𝑤𝑖 on each cell, we have: 
 

𝑤𝑖 = �4
9
→ 𝑖 = 0;  1

9
→ 𝑖 = 1,2,3,4;  1

36
→ 𝑖 = 5,6,7,8�                                         (17) 

 
∑ 𝑤𝑖𝑖 𝑒𝑖,𝛼 = 0;  ∑ 𝑤𝑖𝑖 𝑒𝑖,𝛼𝑒𝑖,𝛽 = 1

3
𝛿𝛼,𝛽;     ∑ 𝑤𝑖𝑖 𝑒𝑖,𝛼𝑒𝑖,𝛽𝑒𝑖,𝛾 = 0                            (18) 

 
We use the equilibrium function as: 
 

𝑓𝑒𝑞𝑖,𝑗 = �𝑤𝑖(𝐴 + 𝐵𝑒𝑖 ∙ 𝑢�⃗ ) 𝑖 > 0
𝑤0𝐶 𝑖 = 0�                                                   (19) 

 
Using equations (10), (18) and (19) we can determine 𝐴,𝐵 and 𝐶. Then, the equilibrium distribution 
functions that satisfies the NLSEq is: 
 

𝑓𝑒𝑞𝑖,1 = �
3𝑤𝑖 �𝑒𝑖 ∙ 𝑢�⃗ + 𝜕𝜌2

𝜕𝑡
− 𝜆(𝜌12 + 𝜌22)𝜌2� 𝑖 > 0

𝑤0 �
9
4
𝜌1 −

5
4
�𝜕𝜌2
𝜕𝑡

− 𝜆(𝜌12 + 𝜌22)𝜌2�� 𝑖 = 0
�                                   (20) 

 

𝑓𝑒𝑞𝑖,2 = �
3𝑤𝑖 �𝑒𝑖 ∙ 𝑢�⃗ + 𝜕𝜌1

𝜕𝑡
− 𝜆(𝜌12 + 𝜌22)𝜌1� 𝑖 > 0

𝑤0 �
9
4
𝜌2 −

5
4
�𝜕𝜌1
𝜕𝑡

− 𝜆(𝜌12 + 𝜌22)𝜌1�� 𝑖 = 0
�                                   (21) 

 
 

5. Results 
 
The derivative operator of 𝜌(𝑥, 𝑡) used in the distribution functions is discretized as: 
 

𝜕𝜌
𝜕𝑡

= 𝜌(𝑥,𝑦,𝑡+𝛿𝑡)− 𝜌(𝑥,𝑦,𝑡)
𝛿𝑡

                                                            (22) 
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The system is initialized with the function:  
 

 𝑓𝑖,𝑗(𝑥,𝑦, 0) = 𝐴1𝑐𝑜𝑠(𝐷(𝑥 + 2)2 + 𝐷(𝑦 + 2)2)                                    (23) 
 

The simulation starts at 𝑡0 = 0, with the Equation (22) in all the points of the system, and for the two 
components. Figure (1) presents the simulation results using d2q9 velocity scheme for grid size of 
120x120 and λ=0.7. The two panels show the solution from different perspectives. In left panel, we 
have a top view colormap. A three-dimensional shaded surface is presented in the right panel.  
 

 
Figure 1. The numerical result of the d2q9 lattice Boltzmann model. The two panels are the 
numerical results at times t = 100, lattice size L=120, λ=0.7, Δx =Δy = 1/L. 

 
6. Conclusions 
 
We have solved the nonlinear Schrödinger equation using a definition of the tensor 𝚷𝟎 defined in the Chapman-
Enskog expansion. As a future work, the method can be extended to 3d, employing d3q15 and d3q19 lattice 
schemes and using cubic-quintic nonlinear terms in the Schrödinger equation. 
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