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Abstract. We have derived compact algebraic bounds for the limit behavior of the magnetic
coupling coefficient, κ, for axially aligned multilayer coils. These bounds are validated
experimentally. We have also found an expression based on the coil geometry that captures
its long-range magnetic behavior. In particular, the limit behavior of the magnetic coupling
coefficient is the same for any pair of axially aligned multilayer coils when the separation distance
is normalized by this expression.

1. Introduction
The magnetic coupling coefficient κ is a key parameter that characterizes the performance of
inductive systems. Since the efficiency of inductive power transfer is proportional to the magnetic
coupling coefficient squared for large enough separation distances [1, 2], these expressions bound
the performance of these systems in this range. This also suggests optimal geometric coil designs
that maximize the limit behavior of the magnetic coupling coefficient.

Since the mutual inductance between two filament loops is a transcendental expression that
requires elliptic integrals [3], there are no general closed-form expressions for the self and mutual
inductance of coils. Furthermore, even though several approximations for both self and mutual
inductances of various geometries have been found [4, 5, 8], the magnetic coupling coefficient
is still calculated empirically [2], derived [6], or approximated within a specific context [7, 9].
We present a simple expression that serves as a widely applicable upper bound on the magnetic
coupling coefficient for a broad class of inductive systems. Furthermore, they provide a limit
test for similar design equations in other configurations, such as unaligned coils, or coils with
other cross sectional geometries.

2. Derivation
Figure 1 shows the specific case under consideration, consisting of axially aligned, multi-layer
coils i = 1, 2 with separation s and characterized by their inductance Li, turns density ρNi, outer
radius ri, length `i, and fill factor fi, where 0 < fi < 1. In the limit as the separation between
sender and receiver increases, the magnetic coupling coefficient starts to decrease inversely
proportional to the distance cubed, which determines the performance of mid-range inductive
systems [1, 2, 10]. At this long range, while in the near field, the magnetic coupling coefficient
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can be calculated by combining the mutual inductance, given by
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with Wheeler’s approximation for the self inductance [5],

Li =
µ0(ρNi`irifi)

2πr2
i (2− fi)

3ri + 3.51rifi + 4.51`i
, i = 1, 2.

The mutual inductance calculation is the integral for the cross section of each coil of the field
along the center axis from a single loop multiplied by the area of a single receiving loop. Since
this expression relies on Wheeler’s approximation for the self inductance of a multi-layer coil, it
shares the same limitations, namely, the aspect ratio (a.r.) of the coils, `i/(rifi) must be close
to 1, or 1/2 < `i/(rifi) < 2. However, there are widely known approximations for other aspect
ratios that would result in similar expressions [5].

The resulting expression for the magnetic coupling coefficient κ is
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, `i = {0, `1, `1 + `2, `2}.

The first term of the Taylor series expansion of this expression provides an upper bound, κu,
for the magnetic coupling coefficient as the separation s tends to infinity, where

κu =
1
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as shown in Figure 2. Adding the second term of the Taylor series expansion results in a lower
bound for the magnetic coupling coefficient, κl, where

κl = κu

(
1− 3

2

`1 + `2
s

)
,

also shown in Figure 2. Even though the value of the magnetic coupling coefficient in this range
is on the order of 10−2 to 10−4, large enough quality factors in resonant systems may allow the
transfer of power at high enough magnitude and efficiency for some applications [11].

The upper and lower bounds for the coupling coefficient also let us determine when the upper
bound approximation for κ is an appropriate substitute. The normalized difference between the
bounds is

κu − κl
κu

=
3

2

`1 + `2
s

.

This expression can be solved for s to indicate the range of separations where the magnetic
coupling coefficient is arbitrarily close to its limit κu.
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Figure 1. Cross-section diagram of the
coil geometry. Sender and receiver coils are
multilayer, axially aligned with length `i,
outer radius ri, turns Ni, and thickness rifi,
where 0 < fi < 1 is the fill. The separation
between coils is s. The turns density ρNi is
defined as Ni/(`irifi).

Figure 2. Long-range approximation for the
magnetic coupling coefficient κ and bounds κu
and κl as a function of separation distance s
for identical sender and receiver coils of radii
ri = 1 m, aspect ratio 2, and fill f = 0.4. As
expected, both the approximation for κ and κl
converge to κu as s approaches infinity.

3. Normalization
The upper bound for the magnetic coupling coefficient, κu, suggests a normalized separation
distance δ, where

δ = s
/√

(Veff,1)1/3 · (Veff,2)1/3

and

Veff,i =
[
3 + 3.51fi + 4.51`i/ri

][f2
i /3− fi + 1

2− fi

]2

r3
i , i = 1, 2.

Since the quantity Veff has units of volume, we call it the effective magnetic volume. As shown
in Figure 3, this normalization simplifies the limit behavior of any pair of coils to

κu = 1/2δ3.

Figure 3. Long-range approximation for the magnetic coupling coefficient κ and upper bound
κu as a function of separation distance s and normalized separation distance δ for two sets of
identical sender and receiver coils. The first set has radii ri = 1 m, aspect ratio 2, and fill
f = 0.4. The second set has radii ri = 1 m, aspect ratio 1/2, and fill f = 0.9. As expected, the
limit κu is identical for both sets when plotted against the normalized separation distance δ.
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4. Validation
The expressions derived for the magnetic coupling coefficient and its bounds were validated
experimentally by measuring the voltage induced by a sender coil on an axially aligned receiver
coil as shown in Figure 4. The experiment was repeated using three different coil pairs. The
circuit model of the experimental system ignores the load presented by the measuring probes
and assumes no current in the receiver coil. The sender coil was driven with a sinusoidal voltage
vS of 1.64 Vrms. The frequency was adjusted until the phase difference between the voltages
across the sender vS and receiver v2 was 45 degrees, such that∣∣∣∣ v2

vS

∣∣∣∣ =
κ√
2

√
L2

L1
,

where v2 is the voltage across the receiver coil, L2 is the inductance of the receiver coil, L1 is
the inductance of the sender coil, and vS is the voltage across the sender coil.
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Figure 4. Experimental system for measuring the magnetic coupling coefficient between to
axially aligned coils and circuit model. A sender coil of inductance L1 is driven using a voltage
source vS . The induced voltage v2 is measured across an axially aligned receiver coil of inductance
L2. The source coil is driven at the frequency RS1/(2πL1) such that the measurement is
independent of RS1.

In two experiments, shown in red and blue in Figure 5, the sender coil had an outer radius
r1 = 5 cm, inner radius of 4.5 cm (for a resulting fill factor f1 = 0.1), length `1 = 2.5 cm and
a measured inductance of L1 = 0.74 H. The first experiment, shown in red in Figure 5, had
a receiving coil with dimensions and inductance identical to the transmitting coil. The second
experiment, shown in blue in Figure 5, had a receiver coil with an outer radius r2 = 7 cm,
inner radius of 6.5 cm (for a resulting fill factor f2 = 0.07), length `2 = 2.5 cm and a measured
inductance of L2 = 2.76 H.

In the third experiment, shown in purple in Figure 5, the sender coil was the receiver coil
from the second experiment with a measured inductance of L1 = 2.76 H. The receiver coil had
an outer radius r2 = 6.5 cm, inner radius of 4.5 cm (for a resulting fill factor f2 = 0.31), length
`2 = 8.9 cm and a measured inductance of L2 = 2.5 H.

5. Conclusion
The universal behavior resulting from the normalized separation δ can be used to maintain the
same limit behavior of the magnetic coupling coefficient while changing the dimensions of either
coil. In particular, the limit behavior will be the same as long as the geometric mean of effective
magnetic volumes of the coils remains constant. Alternatively, the effective magnetic volume
can be used to maximize the limit behavior of the magnetic coupling coefficient by optimizing
the geometry of coils given any set of constraints.
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Figure 5. Magnetic coupling coefficient κ as a function of separation s and normalized
separation δ for three different coil pairs. The solid lines are the long-range approximation
for the magnetic coupling coefficient κ, the dashed lines are the upper bounds κu, the dotted
lines are the lower bounds κl, and the circles are empirical results derived from measurements
of the voltage induced in the receiver coil. The bottom graphs shown the largest measured
separation to show the convergence when the separation distance is normalized.
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