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Abstract. We propose a new method to estimate the output power from piezoelectric energy 
harvesters using flexure mode of the cantilever. In the energy harvester, displacement 
amplitude is too large for Bernoulli-Euler hypothesis to hold true. Hence, it is not easy to 
derive a theoretical solution of output power. In this study, applying the correction coefficient 
which is a function of flexure rigidity to a conventional theoretical solution, simple equation to 
estimate the output power was derived. This equation was applied to design a practical 
(K,Na)NbO3 based energy harvester. Measured output from the harvester was in good 
agreement with the calculated value. 

1.  Introduction 
Recently, cantilever type micro generators using piezoelectric material are actively researched to 
harvest the energy from environmental vibrations [1], and spotlighted as a power source for various 
applications, such as tire pressure monitoring systems [2] or implantable medical devices [3]. For 
these applications, it is required for the harvester to simultaneously meet many specifications, which 
are size, height, resonant frequency and output power. However, a theoretical solution to relate these 
specifications is not established well. In the micro energy harvester, since amplitude of vibration is 
too large to apply Bernoulli-Euler hypothesis, deriving the solution from the strain in the piezoelectric 
film becomes complicated. Therefore we have to spend much time for numerical calculation to design 
such harvester.  

In this study, applying the correction coefficient which is a function of flexure rigidity to a 
conventional theoretical solution, simple equation to estimate the output power was derived. Then, the 
derived equation was applied to design a practical (K,Na)NbO3 based energy harvester as a 
verification.  

2.  Theoretical solution of output power 
Figure 1 shows a schematic illustration of the cantilever based piezoelectric harvester. In the harvester, 
induced charge in the piezoelectric film can be calculated from a following equation,  
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where, Sx is strain in x-direction, Ez is electric field in z-direction, and F is a mode function of 
cantilever. Assuming a fundamental mode, the mode function F is as below: 
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correction coefficient which is a function of flexure rigidity to the conventional theoretical solution, 
simple equation to estimate the output power was derived.  

Then, this equation was applied to design a practical (K,Na)NbO3 (KNN) based energy harvester. 
The designed harvester was fully fabricated with bulk micromachining. The harvester had the 
cantilever size of 210 m × 28 m × 1000 m, the proof mass size of 1000 m × 500 m × 600 m, 
and the thickness of KNN film of 2 m. As an evaluation result, maximum output power of 730 nW 
was achieved when the load resistance, applied vibration frequency and the vibration acceleration 
were 90 , 1.5 kHz and 9.8 m/s2. And, the obtained output power was in good agreement with the 
design value.  
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