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Abstract. Recent years have witnessed the development of new quantitative approaches and
theoretical tenets in the biological sciences. The advent of high throughput experiments in
genomics, proteomics and electrophysiology (to cite just a few examples) have provided the
researchers with unprecedented amounts of data to be analyzed. Large datasets, however can not
provide the means to achieve a complete understanding of the underlying biological phenomena,
unless they are supplied with a solid theoretical framework and with proper analytical tools.
It is now widely accepted that by using and extending some of the paradigmatic principles of
what has been called complex systems theory, some degree of advance in this direction can be
attained. We will be presenting ways in which by using data integration techniques (linear,
non-linear, combinatorial, graphical), multidimensional-multilevel descriptions (multifractal
modeling, dimensionality reduction, computational learning), as well as an approach based
in systems theory (interaction maps, probabilistic graphical models, non-equilibrium physics)
have allowed us to better understand some problems in the interface of Statistical Physics and
Computational Biology.

1. Introduction
Living matter is characterized by an entangled web of complex physicochemical processes. The
origin and nature of these phenomena is extremely disparate. There are many space and time
scales involved, but also a multitude of information layers intertwined, sometimes even in re-
cursive ways. In view of this extremely involved conundrum, one is to ask How to disentangle
this plethora of complex processes as to acquire some actual understanding of the mechanisms
underlying biological function?.

Intending to answer this question, contemporary biology -in particular molecular biology,
genomics and proteomics, as well as electrophysiology and imaging- is entering a new era; one
characterized by extremely fast advances in its capacity of generating data in huge amounts;
looking to dig-in deeper into the molecular basis of biological function. Research in biology is
now turning from purely descriptive accounts to process-driven, multi-scale analyses now com-
monly termed systems biology. The rising paradigm is thus the study of biological phenomena
as complex systems. In these analyses, an integrative vision becomes mandatory, since data
alone are insufficient to create a real understanding of the complex processes occurring in living
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matter. It is not completely clear how to accomplish such a task. However, research in complex
biological systems has so far revealed foundational principles such as self-organization, critical-
ity, and robustness, but the biological implications of these phenomena are still to be revealed
to a full extent.

In what follows, we will be presenting different aspects of the application of the methods
of complex systems theory to problems in biological phenomena. We will be doing this on a
case study basis. Section 2 deals with the first case, data integration in cancer genomics. In
Section 3 we analyze the second case related with a system’s approach to the coupling between
metabolism and transcriptional anomalies in the onset of breast cancer. Section 4 is devoted to
the general problem of dimensionality reduction -third case- as exemplified by whole genome gene
expression analysis, a quite common computational biology study. The fourth case is presented
in section 5 and it elaborates on multidimensional models, in particular applied to multichannel
electrophysiology. Finally, Section 6 presents some brief conclusions and perspectives.

2. Case I: Data Integration
Modern high-throughput genomic experiments have paved the way to a large-scale
characterization of living organisms. This usually involves the generation and, more importantly,
the interpretation of data at an unprecedented scale. Computational tools and mathematical
algorithms have been created in order to integrate, organize and also mine the gargantuan wealth
of information generated. Technologies for the detection of several kinds of genomic alterations
have been developed and applied to analyses of almost any living organism, even to cancer
genomes. Cancer research in particular, has proven that studies based on a single technology
platform result extremely limited in scope when compared with the extent of knowledge that
can be acquired when using different platforms all together. For this reason, there is a need for
systematic methodologies to facilitate data management, visualization and integration. The goal
of these methodologies should be to permit a proper analysis of the biological implications for the
findings, without sacrificing mathematical and statistical rigour and computational efficiency.

2.1. Data integration schemes in genomics
With view to the construction of an integral view of genomic alterations, a data driven combi-
natorial approach has been proposed [1]. It is based on the enumeration of all possible genomic
alterations scenarios that may be present in a N-platform integrative analysis relying on a so-
called three-state model applied to the set of statistically significant genes (3-MDI). Each scenario
is represented as a sequence S1, S2, . . . SN of states, where Sk denotes the state of a gene for
platform k. Each state is defined to take values in {-1, 0, 1} -akin to spin-1 models in lattice
ferromagnetism- interpreted as {Down, NoChange, Up}. This list represents the universe of hy-
potheses that describe structural variations in the genome as well as transcription activity in
coding and non-coding regions. Hypotheses can be chosen for their clear biological relevance but
also for their quantitative importance. We may find that a large set of genes follow a particular
scenario or that genes commonly share a set of more specific scenarios leading to other important
questions to be answered.

Under the 3-MDI algorithm [1], every dataset-platform is subjected to an independent
low-level analysis, genes are then classified according to the proper significance levels
for each technology while careful attention is given to the wide spectrum of dynamic
ranges between these different data sources. The platforms P selected in [1] included
{RNA, miRNA, Methylation, NGS, CNV} [Figure 1], from these, a list of highly relevant genes
was generated in each set. Genes in every list were coded according to two of the three states in
the three-state model. In every list of top-mk genes can be either up or down. All k lists
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Figure 1. Multiple platform whole-genome analysis sheds light in Glioblastoma Multiforme via
data integration [1].
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(Pi\Pj) indicates a zero in Pj . The combinatorial analysis can classify all possible scenarios
searching for genes in 2,3,4, or all 5 platforms simultaneously. Under this approach there exist
3k possible scenarios for a k-platform analysis assuming a three-state model. The discretization
scheme proposed in 3-MDI is a finite alphabet classification scheme. This means that all of
the possible states of the system correspond to a realization within the given lexicon (here
the states are labeled -1 meaning subregulated, hypomethylated or deleted, 0 meaning no
change and +1 meaning over-expressed, hypermethylated or duplicated (multiplicated)). Finite
alphabet classification schemes have been shown to be equivalent to a class of machine learning
algorithms called Supervised learning [2], so that that most (in theory, all) of the supervised
machine learning techniques and algorithms could be applied to train our three-state model
with either experimental or simulated data. This will be useful when assessing the findings of
integrative genomics studies by experimental sources or with synthetic data.

2.2. Multidimensional plots
Visualization of large-scale data becomes a key aspect of the analysis, it allows to distinguish
possible biological hypotheses. Important tool in this regard are multidimensional plots.
Circular multilayered plots (a.k.a. Circos plots) for instance, are useful visualization aids in
which a series of concentric rings are used to render the data. The circular layout is ideal
for showing how different positions within our data domain relate to one another. This
relationship can be quantitative, binary or any other classification scheme. Modifying the
rings or ribbons that represent relationships, the progression and orientation of the circular
segments, and so on, allow us to show a large number of connections between data points (or
positions) in a clear cut and intelligible lay out. Circos plot have helps us to identify the most
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mutated chromosomes, identifying genes in each chromosome and hence combine the differential
expression and methylation for the set under study as it can be seen in, for instance in Figure 2
and Figure 3 of reference [1]. The advantage of using tools such as circos plots in managing high
throughput data is that they are able to be easily incorporated into data acquisition, analysis
and reporting pipelines. In the field of high throughput genomics and proteomics, the usual
setting is that a data pipeline is implemented as a multi-step process. On this process, data is
analyzed by multiple independent tools, each passing their output as the input to the next step.
Another, more comprehensive example of the afore-mentioned data acquisition and analysis
pipeline using the multidimensional plot philosophy (and in particular circos plots) is COSMIC
(the Catalogue Of Somatic Mutations In Cancer) [4, 5]. The project page states that ”...There is
a vast amount of information available in the published scientific literature about these changes.
COSMIC is designed to store and display somatic mutation information and related details and
contains information relating to human cancers...”.

2.3. Why, what and how?
• Why?: Because biological systems are intrinsically multidimensional; they are

characterized by many layers of information and many levels and scales of description.
A single reductionist scheme fail to capture the essence of living phenomena.

• What?: Here we propose novel data visualization schemes in order that some hidden
connections (e.g., between trans- gene regulation by microRNAs and cis- DNA methylation
as coordinated mechanisms of expression) could be unraveled.

• How?: In this particular case [1], we used two different and to a certain extent
complementary strategies for data integration. In the one hand we performed a
combinatorial classification based in a three state model for different data classes. In a
way this would function as a discretization scheme akin to, say, a spin-1 lattice study in
ferromagnets. In the other hand, we made use of multidimensional plots to show and reveal
in a geometrical way, some unexpected connections between these discrete states.

2.4. What do we learn?
According to the popular belief in gene regulation theories, the effect of high DNA methylation
levels in a gene region is to diminish the expression of the genes in such region. Hence, a
questionable subset in our whole genome studies of Glioblastoma multiforme was the one with
copy number loss yet marked as hypermethylated and over-expressed (see Table 1 of reference
[1]). In the case of some genes (like RRM2 and CNGA3) that are hyper-methylated their over-
expression could be explained by copy number amplification of the gene. However, in other
cases, the expression level may also be affected by miRNA regulation as it seems to be the
case of CD74 which presents no-significant DNA copy number variations. This result seem to be
counterintuitive, and even controversial according to the current biological understanding of gene
regulation phenomena, but it is present in many samples within the Glioblastoma multiforme
dataset studied (around 500 samples were analyzed), so we can be pretty sure it is not an artifact
of the analysis, but rather a new side of gene regulation yet to be completely understood.

3. Case II: Systems Approach
3.1. An archetypal example: Cancer Genomics and Metabolism
Thermodynamic studies at the transcriptional, epigenetic, and metabolic levels have pointed
out to energetics as playing a non-trivial role in the onset and development of malignancy. We
will focus on the relationship between transcriptional de-regulation of a set of genes that present
both transcription factor (TF) and metabolic activity while at the same time have been associ-
ated with the presence of breast cancer. In order to unveil its regulatory and thermodynamical
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Figure 2. A System’s approach considering both the mesoscopic thermodynamics and
the molecular transcriptional regulation interactions, provide a deeper understanding of the
relationship between cancer and metabolism [6].

behavior by means of gene expression data obtained from genome-wide analysis experiments in
RNA from biopsy-captured tissue of both primary breast cancer and normal breast.

The role of gene interaction networks have also been extensively mentioned in relation to
cancer phenomenology, it has been claimed that these network effects are, in fact much more
important than individual gene contributions. Some of these networks are indeed related to
energetic and metabolic processes, tyrosine-related deregulation, and immunity weakening. One
usually think of tumor cells as having successful mechanisms to evade normal control and
cell regulation of proliferation and apoptosis. Alterations in gene expression have become a
better (but far from completely) understood component of normal development and disease
progression. TFs have become a promising target for therapy. In brief, gross alterations in
TF regulation would result in cascade triggering affecting both the whole cell cycle and the
metabolic activity thus resulting in possible development of cancer. Many people have come to
conclude that cancer is a transcriptional disorder disease, while, as we have mentioned other
authors have recently turned their attention to the metabolic and energetic component, hence a
possible connection between these two approaches could be found in the energetic deregulation
→ transcriptional disorder leading both to cascade triggering and metabolic disorders related to
neoplasm formation and development. For these reasons it will result fruitful to model the role
of TFs at both the energetics (thermodynamic) level and the network approach [6] [for more
details of the whole system’s approach taken refer to Figure 2].

3.2. How does the coupling occurs?
The complex dynamics behind even relatively simple models of transcription [16] demonstrate
the necessity for a non-equilibrium thermodynamical characterization that includes the
possibility to deal with fluctuations in small systems [15]. Systems outside the realms of the
thermodynamic limit are characterized by large fluctuations, hence stochastic effects are to
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Figure 3. The coupling between energy influx and transcriptional bursting is shown to occur
at low relaxation times [7].

be considered [7]. One particular instance in which stochastic effects take importance is the
so-called transcriptional burst scenario [see Figure 3].

3.3. Why, what and how?
• Why?: Because, although it has been known for decades that energetic deregulation occurs

in cancer cells and that it is responsible to a certain extent for neoplastic transformation
and metastasis, no detailed physicochemical study was performed at the molecular and
subcellular level to a whole genome extent, in order to understand the thermodynamic
basis of transcriptional anomalies.

• What?: We develop a non-equilibrium thermodynamic formalism to study transcriptional
regulation [15, 16] then we show how specific details of the energy influx may be taken into
account [7]. We are applying such ideas to a specific network-based whole genome study of
gene expression profiles in breast cancer samples [6] .

• How?: By taking into account, on one side, non-equilibrium coupling between subcellular
metabolism and transcription via the related chemical potentials. We also considered the
role that transcription factors and in particular master regulator genes have in the complex
energetic landscape behind such couplings.

3.4. What do we learn?
Most of it is still work in progress. However, a core of four genes (MNDA, POU2AF1, SMAD3
and specially MEF2C) seem to be revealing as novel master regulators in transcriptional bursting
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associated with breast cancer. It is specailly encouraging since homologues of these genes (in
particular of MEF2C, a family called the MADS genes) have been proven to be playing a key
role in regulation between proliferation and differentiation in plants via processes akin to those
correspondent in animal cells.

4. Case III: Dimensionality Reduction
Gene expression analysis is probably one of the most fertile fields to develop new biological
physics theories and techniques from the theory of complex systems. The complex mechanisms
behind whole genome transcriptional regulation has attracted many physicists, for the subtleties
of the associated physicochemical mechanisms, for the intricacy of the implicit stochastic dy-
namics and also for the challenges presented in the analysis and inference of regulatory networks,
both from the mathematical and computational standpoints. We have gained great insight into
different aspects of such phenomena [8, 9, 10, 11, 12, 13, 14, 15, 16]. In order to do so, however
researchers need to possess strong computational and mathematical skills, such as those de-
veloped in computational physics, statistical mechanics and high energy physics to successfully
manage such enormous amounts of data.

With regards to the dimensionality problem, the question is that whole genome expression
experiments for higher species comprise several tens of thousands of variables (namely, the
mRNA concentration or gene expression for each gene) and for technical, economic, and logistical
reasons, the number of experimental samples runs on the order of a few hundreds at most. As a
result, it is not feasible to use classical statistical approaches. Instead, some tools developed and
used in statistical physics have been applied to this end, ranging from information theoretical
approaches [8, 9, 17] to maximum entropy techniques [10, 19].

4.1. The Compressive sampling scenario
The basic aspects of the mathematical theory and the computational implications of a recently
developed technique called Compressive Sampling, as well as some possible applications within
the scope of Computational Genomics, and Computational Biology in general are considered.
The central idea is that most of the information sampled from the experiments turns out to
be discarded (for being non-useful) in the final stages of biological analysis, hence it would be
better if we could find an algorithm to remove selectively such information in order to get rid of
the computational burden associated with processing and analyzing such huge amounts of data.
Here we show that a possible algorithm for doing so it is precisely Compressive Sampling [20].

4.2. Why, what and how?
• Why?: Because current (and even more future) datasets in genomics -and also in other

instances, such as proteomics, electrophysiology, high energy physics, etc.- are huge (several
Gigabytes in length often, even some Terabytes now and very likely in the Petabyte range
in the near future) and at the same time they are extremely noisy and redundant, so that
most of this wealth of data is NOT recovered as usual information in the final stages of
analysis. So, as of today its data management is a burden and they constitute in important
challenges in the analysis stages.

• What?: We propose as a proof-of-concept the implementation of non-linear data
compression techniques at the acquisition stage in the case of whole genome gene expression
experiments for a thousand-plus sample dataset. The outlined implementation is based in
the algorithm known as Compressive Sampling.

• How?: Compressive sampling is an algorithm able to cope and defeat with usual limitations
in data management and information recovery as given by Shannon-Nyquist sampling
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Figure 4. Memory allocation reduction in a 1191-sample whole genome gene expression analysis
as depicted in [20]. Notice the logarithmic scale on y-axis.

theorem. It does so by using the fact that many large datasets that we a priori know that
are compressible (i.e. redundant) possess a sparse matrix representation in some basis -in
general orthonormal- so that l0-norm and l1-norm based minimizations are computationally
tractable optimization problems yielding a singular value decomposition (SVD) submatrix
much smaller than the original. Compressive sampling can be used even in random matrices
so we can be dealing with noisy datasets.

4.3. What do we learn?
In principle, we are answering the question: how to get all the relevant information contained
in a huge analysis dataset, say a 21 Gb raw gene expression experimental database [20] by just
analyzing much smaller objects, in the mentioned case a 1.4 Mb matrix [see Figure 4]? This
could be done after applying compressive sampling optimization and SVD of the original dataset.
Sparsity of the original dataset matriz representation then plays a fundamental role in how well
we can estimate signals in the presence of noise (i.e. how well we deal with shrinkage, and
soft-thresholding), but also in compressibility by means of transform coding and in the ultimate
case in how well we solve inverse problems (say gene network reconstruction [8, 9, 17, 19]). This
si so because dimensionality reduction facilitates modeling via simple models/algorithms.
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In brief, due to noise-uncertainty we can use the l1 norm as a proxy for sparsity and hence use
nonlinear sampling by convex programming instead of traditional (linear) Shannon sampling,
thus largely reducing the need for individual samples. This is a very good deal if we recall
that getting, processing and analyzing, a large number of good quality samples is a common
burdensome challenge in biomedical research.

5. Case IV: Multidimensional models
5.1. Synchronization of spontaneous spinal cord potentials
The analysis of the interaction and synchronization of relatively large ensembles of neurons is
fundamental for the understanding of complex functions of the nervous system. It is known
that the temporal synchronization of neural ensembles is involved in the generation of specific
motor, sensory or cognitive processes. Also, the intersegmental coherence of spinal spontaneous
activity may indicate the existence of synaptic neural pathways between different pairs of lumbar
segments. In this study we present a multichannel version of the detrended fluctuation analysis
method (mDFA) to analyze the correlation dynamics of spontaneous spinal activity (SSA) from
time series analysis. This method together with the classical detrended fluctuation analysis
(DFA) were used to find out whether the SSA recorded in one or several segments in the spinal
cord of the anesthetized cat occurs either in a random or in an organized manner [22].

5.2. Why, what and how?
• Why?: Within biological physics, we are often confronted with the non-linear analysis

of the correlation structure for multidimensional time series with fractal or multi-fractal
support. Most biosignals possess a complex and subtle arrangement of patters, most of
them hidden behind a noisy and apparently random envelope. In some cases, for instance,
synchronization phenomena are disguised within the multifractal spectrum and it is almost
impossible to find them and analyze them properly.

• What?: In order to cope with this problem to a certain extent we are generalizing the well
known detrended fluctuations analysis (DFA) of time series to deal with multidimensional
signals arranged in the form of a time series vector. In this way, instead of analyzing a
vector arrangement of Hurst exponents we only have single spectrum to analyze. However
this spectrum contains the entire correlation structure of the multidimensional time series
[see Figure 5].

• How?: Since, in our particular case [22] we were studying the central nervous system
as an intrinsically synchronized dynamic system, as well as the role of synchronization of
multiple neuronal areas in information processing, it was evident the need for a nonlinear
correlation analysis that involves time series of several inputs. That is, to assess the
long range correlation structure of multichannel data as a single entity. To that end
we developed an inner product-based metric to consider the relation between the Hurst
exponent and the singularity spectrum as a dual transformation. As consequence we now
have a componentwise self-similar process whose vector 2-norm is taken as a time series
metric and then the Hurst spectrum is calculated as in classic DFA [22].

5.3. What do we learn?
By using mDFA we found a significant synchronicity between potentials recorded from pairs
of segments either rostrally (up-stream) or caudally (down-stream) to a spinal lesion. This
may represent evidence for the hypothesis that left and right groups of neurons in different
segments are both interconnected by pathways running in the same as well as in the opposite
sides, an important recent paradigm in neurophysiology. Changes of the fractal correlation
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Figure 5. Synchronicity in the Spontaneous Spinal Activity can be accounted for by means of
a multidimensional non-linear correlation analysis [22].

structure are believed to have a functional origin since it has been proposed that the segmental
synchronizations of dorsal root reflexes and dorsal root potentials are mediated by the spinal
cord connections through the lateral funiculi. In brief, it seems that not only brain neurons are
connected in a complex network fashion but also spine neurons present network-like behavior in
their correlation structure. mDFA also revealed an already envisioned temporal synchronization
in the activity of multiple segmental signals, thus revealing spinal communication as a complex
coupled phenomenon. We could also study how the intact neuroaxis and spinal damage caused
both decorrelation and desynchronization of SSA signals.

6. Conclusions and perspectives
Data integration, multilevel analysis and other methods of complex system’s theory and
statistical physics have proved to be useful tools in the analysis of complex biological phenomena
and are a means to acquire deeper understanding of the underlying phenomena. The role that
such disciplines have acquired in the biological sciences is growing in importance [24], as is
evident, in numerous research efforts in biology (see for instance reference [25]) and in the
creation of the Office of Physical Sciences Oncology in the National Cancer Institutes in the
U.S. [26] among a myriad other projects involving methods of statistical physics on one side and
biology on the other. This mini-review presents the application of some of these ideas in our own
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research, namely in the case of data integration in cancer ’omics [1], system’s biology approach to
the metabolic-transcriptional coupling in breast cancer [6, 7], high throughput data management
and compression in computational biology [20] and multidimensional correlation analysis in
computational neuroscience [22]. The presentation here is by no means exhaustive. Further,
deeper understanding may be obtained by consulting the original sources in [1, 6, 7, 20, 22] and
references therein.
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[1] Baca-López, K, Correa-Rodŕıguez, M D, Flores-Espinosa, R, Garcia-Herrera, R, Hernández-Armenta C

I, Hidalgo-Miranda A, Huerta-Verde A J, Imaz-Rosshandler I, Mart́ınez-Rubio A V, Medina-Escareño
A, Mendoza-Smith R, Rodriguez-Dorantes M, Salido-Guadarrama I, Hernández-Lemus E and Rangel-
Escareño C 2011 A three-state model for multidimensional genomic data integration Proceedings of the
ninth international conference for the Critical Assessment of Massive Data Analysis CAMDA

[2] Vapnik V N 2000 The Nature of Statistical Learning Theory 2nd ed. (Springer Verlag)
[3] http://circos.ca
[4] http://www.sanger.ac.uk/genetics/CGP/cosmic/
[5] Forbes S A, Bhamra G, Bamford S, Dawson E, Kok C, Clements J, Menzies A, Teague J W, Futreal P A

and Stratton M R 2008 The Catalogue of Somatic Mutations in Cancer (COSMIC) Current Protocols in
Human Genetics 57:10.11.110.11.26.
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