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Abstract. Chaotic invariants like the fractal dimensions are used to characterize non-linear
time series. The fractal dimension is an important characteristic of systems, because it contains
information about their geometrical structure at multiple scales. In this work, three algorithms
are applied to non-linear time series: spectral analysis, rescaled range analysis and Higuchi’s
algorithm. The analyzed time series are associated with natural phenomena. The disturbance
storm time (Dst) is a global indicator of the state of the Earth’s geomagnetic activity. The
time series used in this work show a self-similar behavior, which depends on the time scale of
measurements. It is also observed that fractal dimensions, D, calculated with Higuchi’s method
may not be constant over-all time scales. This work shows that during 2001, D reaches its
lowest values in March and November. The possibility that D recovers a change pattern arising
from self-organized critical phenomena is also discussed.

1. Introduction
Solar storms consist of three major components: solar flares, solar proton events and coronal
mass ejections (CMEs). Not all solar storms produce all of these elements, but the largest solar
storms tend to do it. CMEs can interact with Earth’s magnetic field to produce a geomagnetic
storm, this produce a temporary disturbance of the Earth’s magnetosphere and an equatorial
ring of currents, differential gradient and curvature drift of electrons and protons in the near
Earth region [12].

There is a global index, the disturbance storm time (Dst), which was devised as a mean for
characterizing the level of disturbance observed in the equatorial regions. As it has been long
observed, the north-south horizontal component of the geomagnetic field becomes depressed
during major geomagnetic storms, and this is more pronounced in equatorial and low-latitude
regions. Several studies proved that the degree and extent of this depression are useful tools for
characterizing the energy transfer from solar wind into the Earth’s magnetosphere. They also
provide an estimate of the energy density of the energetic particles in the Earth’s ring currents.

The Dst index is computed once per hour, and their measurements are usually expressed in
nano-Tesla (nT). The Dst index has negative values. A severe geomagnetic storm is defined as
any event with a Dst value lower than −500nT . An estimated Dst value for the “1859 Carrington
event” (described later in the paper) was −1760nT [8]. The storm responsible for the Quebec
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Figure 1. Dst time series for
2001. The intense magnetic storms
occurred on March 31st and the
November 6th, with minimum Dst
values of −387nT and −292nT
respectively.

power outage, which occurred in 1989 (also described later in this work), registered a Dst value
of −589nT .

There are several space weather phenomena associated with geomagnetic storms [12]: (i)
shifting of the Van Allen radiation belt and geomagnetically induced currents (GICs), which
can flow through power transmission grids (as well as pipelines and undersea cables) and lead to
power system problems, (ii) ionospheric disturbances which cause radio and radar scintillation,
(iii) disruption of navigation by magnetic compass, and (iv) auroral boreal displayed at much
lower latitudes than normal.

Solar storms vary in size and impact on Earth. One of the largest solar storms occurred in
September of 1859 (Dst = -1,760 nT). This particular solar storm is known as the “Carrington
flare”. In 1989, from August 28th to September 4th, auroral displays, often called as northern
or southern lights, spanned on several continents and were observed around the world. A
British amateur astronomer, Richard Carrington, recorded the solar outburst, a white-light flare.
According to modern experts, the “Carrington flare” were actually two intense geomagnetic
storms. Across the world, telegraph networks experienced disruptions and outages as a result
of the currents generated by the geomagnetic storms. The economic costs associated with a
catastrophic event similar to the Carrington flare could reach several trillion dollars [11].

On March 13th, 1989, a geomagnetic super-storm (Dst = −589nT ) affected Canadian and
U.S. power systems, resulting in a major power outage for nine hours for the majority of the
Quebec region and the northeastern of United States. The Hydro-Quebec grid’s geographic
location and its 1,000 km transmission lines made it susceptible to geomagnetic storm. Central
and southern Sweden also experienced power losses when GICs disrupted six 130kV power lines.
The GICs flowed through the power system, causing severe damages to seven static compensators
on the La Grande network in the Hydro-Quebec grid. The loss of the compensators resulted in
a system disturbance and severe equipment damage. After nine hours, 83 percent of the total
power was restored, but a million customers remained without electric power. The total cost
of the Hydro-Quebec incidents is estimated to be $6 billion. Since the incident, the Canadian
government has set up protective measures at the Hydro-Quebec sit e, such as transmission-line
series capacitors, whose cost was more than $1.2 billion, which prevent the system from being
damaged again by the GICs.

Because our civilization has evolved into a technology dependent society, today a solar storm
of this magnitude or greater could produce a global catastrophe.
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2. Scaling law and invariants quantities
This section presents a brief discussion about certain quantities, invariant under smooth
coordinate transformations. The theory of nonlinear dynamical systems provides new tools
and quantities for the characterization of irregular time-series data through universal scaling
laws, such as the spectral analysis, rescaled range analysis and Higuchi’s algorithm.

2.1. Spectral exponent β
The time evolution of a dynamic system is represented by the time variation X(t) or (when
sampled at regular intervals) time series of its dynamic variables. Any function X(t) may be
usually represented as the superposition of periodic components. The determination of their
relative strengths is called spectral analysis.

If a time series X(t) is specified over a time interval T , the mean signal X̄(t) is given by

X̄(t) =
1

T

∫ 1

0
X(t)dt (1)

The variance σ2, of the signal X(t), is defined by

σ2(X(t)) = Var(X(t)) =
1

T

∫ 1

0
[X(t)− X̄(t)]2dt (2)

and the standard deviation σ is the square root of the variance.
The mean and the variance are the first two moments of the time series. The time series X(t)

can be represented in the frequency domain f , in terms of the amplitude A(f, T ), which is the
Fourier transform of X(t):

A(f, T ) =

∫ ∞
−∞

X(t)e2πiftdt (3)

The inverse Fourier transform is

X(t) =

∫ ∞
−∞

A(f, T )e−2πiftdf (4)

The quantity | A(f, T ) |2 is the contribution to the total energy of X(t) from components
with frequencies in [f, f + df ]. In real time series, the samples are picked up in a finite interval
0 < t < T , in such a way that the effect of finite time series shall be taken into account. The
FFT method (Fast Fourier Transform) is the appropriate tool to analyze this kind of systems
[3]. The power spectral density of X(t) is defined by:

s(f) = lim
T→∞

1

T
| A(f, T ) |2 (5)

The quantity s(f)df is the power in the time series associated with the frequency in the
interval [f, f + df ]. If a time series is fractal, then it satisfies the following power law relation:

s(f) ∝ f−β (6)

Where β is a constant that defines the kind of dynamic behavior of the time series X(t). For
example, β = 0 for white noise-like systems, which are uncorrelated and have a power spectrum
that is independent of the frequency. Another relevant case is β = 1, the so-called flicker or 1/f
noise systems, which are moderately correlated. For Brownian noise-like systems, β = 2, which
are strongly correlated.
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2.2. Hurst exponent H
The Hurst exponent is commonly used as a measure of the geometric fractal scaling in a data
series [10]. If the series X(t) is a self-affine fractal, then X(bt) is statistically equivalent to
bHX(t), where H is the Hurst exponent. Many methods for estimating Hurst’s exponent have
been proposed and used in the literature. Each of these methods has specific advantages and
disadvantages. In our research, we focus on classical methods of rescaled range analysis [7].

The rescaled range R/S statistics for discrete time series (Xt) is defined as follows:

Y (t, τ) =
t−1∑
i=0

[Xi − 〈X〉τ ] (7)

R(τ) = max
0≤t≤τ−1

Y (t, τ)− min
0≤t≤τ−1

Y (t, τ) (8)

S(τ) =

(
1

τ

τ−1∑
t=0

(Xt − 〈X〉τ )2
) 1

2

(9)

R/S(τ) =
R(τ)

S(τ)
(10)

We can now apply

R

S
∝ τH (11)

The values of the Hurst exponent vary between 0 and 1. A Hurst exponent value of H = 0.5
indicates a random walk process (a Brownian motion). In a random walk, there is no correlation,
this is uncorrelated time series. If 0 ≤ H ≤ 0.5, the process is said to be antipersistent. The
system is covering smaller distances than a random walk process. This means that an increase
will tend to be followed by decrease (or decrease will be followed by an increase). This behavior
is sometimes called mean reversion. For 0.5 < H ≤ 1, the time series belongs to a persistent
process. This series covers more distance than a random walk process. Thus, if the system
increases in one period, it is more likely to keep increasing in the next period.

2.3. Higuchi’s algorithm
In this section, we briefly discuss the Higuchi’s algorithm. This is a technique for calculating
the fractal dimension D, of a time series. The power spectrum analysis has been used as a
useful and efficient method to analyze irregular time series, especially if the Power Spectrum
follows the Power Law (6). The exponent β in (6) is considered to be the index (invariant) for
representing the irregularity of a time series. We have demonstrated in [5] that in many cases,
the usage of the Higuchi’s fractal dimension D, is more appropriate than the spectral exponent
β.

In order to obtain the fractal dimension D, Higuchi [6] considered a finite set of observations,
taken at a regular interval:

X(1), X(2), X(3), . . . , X(N). (12)

From this series, a new one Xm
k , must be constructed, which is defined as follows:

Xm
k ; X(m), X(m+ k), X(m+ 2k), . . ., X

(
m+

[
N −m
k

]
k

)
, (13)

with (m = 1, 2,. . . , k); and where [·] denotes the Gauss notation, that is the bigger integer, and
both k and m are integers. m and k indicate the initial time and the interval time, respectively.

4th National Meeting in Chaos, Complex System and Time Series IOP Publishing
Journal of Physics: Conference Series 475 (2013) 012002 doi:10.1088/1742-6596/475/1/012002

4



For a time interval equal to k, one gets k sets of new time series. For example, for k = 4 and
N = 100, four new time series are obtained

X1
4 : X (1) , X (5) , X (9) , . . . , X (97)

X2
4 : X (2) , X (6) , X (10) , . . . , X (98)

X3
4 : X (3) , X (7) , X (11) , . . . , X (99)

X4
4 : X (4) , X (8) , X (12) , . . . , X (100)

(14)

Higuchi [6], defines the length of the curve associated to each time series, Xm
k as follows:

Lm (k) =
1

k

[N−m
k ]∑
i=1

(X(m+ ik)−X(m+ (i− 1)k))


 N − 1[

N−m
k

]
k

 (15)

where the term
N − 1[
N−m
k

]
k
, (16)

represents a normalization factor. Higuchi takes the average value 〈L (k)〉 of the lengths
associated to the time series given by Equation (15).

If the average value follows a power law:

〈L (k)〉 ∝ k−D, (17)

then the curve is fractal with dimension D. Higuchi’s algorithm can be applied even over time
series that are not stationary. This fact represents an advantage over spectral analysis [5] and
Hurst’s algorithm.

The spectral exponent β is related with the fractal dimension D of the time series, and with
exponent H, know as the Hausdorff measure, by means of the following relation [4, 10]:

β = 2H + 1 = 5− 2D (18)

Higuchi [6] showed that if 1 ≤ β ≤ 3, then D = (5− β)/2. He also shows that the following
limits are held:

if β → 0 then D → 2 (19)

which corresponds to uncorrelated white noise. The second limit is:

if β → 3 then D → 1 (20)

Since the values of the fractal dimension D for Dst index time series are in the interval [1, 2],
equations (18), (19) and (20) can be used for analyzing it.

3. Time evolution of the index Dst
We study the evolution of the Dst index along the 2001 year. In this year, two intense magnetic
storms were registered. One of them occurred on March 31st, and the other one was on November
6th (see Figure 1). The minimum Dst values were −387nT and −292nT , respectively.

Through the power laws (6), (11) and (17), we calculated the fractals exponents β, H and
D.

The analysis of data belonging the months of March, April and November, is shown in Figures
2, 4 and 6, respectively. The upper panel on each of these figures shows the time evolution of
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Figure 2. Analysis of data for March month. Dst time series (upper panel). Power laws of the
spectral analysis (middle panel). Rescaled range analysis (bottom panel).

Figure 3. Analysis of data
for March month trough Higuchi’s
algorithm.

the Dst index. The middle panel displays the results of the spectral analysis. The bottom panel
shows the rescaled range and the Hurst’s algorithm analysis for the corresponding month. The
analysis of the Dst index time series through Higuchi’s algorithm for the months of March, April
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Figure 4. Analysis of data for April month. Dst time series (upper panel). Power laws of the
spectral analysis (middle panel). Rescaled range analysis (bottom panel).

Figure 5. Analysis of data
for April month trough Higuchi’s
algorithm.

and November, is shown in Figures 3, 5 and 7, respectively.
The best least-squares fit for the spectral analysis are reported in Table 1.
The values of the correlation coefficient show very poor results. In Figures 2, 4 and 6, the
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Figure 6. Analysis of data for November month. Dst time series (upper panel). Power laws of
the spectral analysis (middle panel). Rescaled range analysis (bottom panel).

Figure 7. Analysis of data for
November month trough Higuchi’s
algorithm.

power spectra obtained by the FFT-method show noisy fluctuations superposed on the power
law spectrum. Thus, the unambiguous determination of the exponent β is difficult.
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Table 1. Spectral Analysis

Month Fractal exponent

March β = 0.9221 ± 0.07666 R2 = 0.1232
April β = 0.7648 ± 0.06314 R2 = 0.1247

November β = 0.8552 ± 0.06858 R2 = 0.1312

Table 2. Rescaled range analysis

Month Fractal exponent

March H = 0.9417 ± 0.004806 R2 = 0.9981
April H = 0.9718 ± 0.004336 R2 = 0.9985

November H = 0.9828 ± 0.004573 R2 = 0.9984

Table 3. Higuchi’s algorithm

Month Fractal exponent

March D1 = 1.4693 ± 0.009344 R2 = 0.99891
D2 = 1.8843 ± 0.005491 R2 = 0.99770

April D1 = 1.4395 ± 0.007237 R2 = 0.99937
D2 = 1.9975 ± 0.009496 R2 = 0.99387

D1 = 1.3558 ± 0.005275 R2 = 0.99953
November D2 = 1.6284 ± 0.005694 R2 = 0.99933

D3 = 2.0189 ± 0.023000 R2 = 0.97719

The best least-squares fit for the rescaled range and the Hurst’s algorithm are reported in
Table 2.

The results of the Higuchi’s algorithm applied to Dst time series for the months of March,
April and November are reported in Table 3.

Although the statistical results of the rescaled range analysis are good, Higuchi’s algorithm
apparently contains more information about the dynamics of the time series. We found that
when Higuchi’s algorithm is applied to Dst index time series, a crossover behavior is revealed.
For March and April months, we found that 〈L(k)〉 exhibits a crossover between two distinct
fractal dimension D. The analysis applied to November data revealed three values for D.

Several values of D are contained in the interval (1.3, 1.7), whereas there are other values ofD
too close to 2, which correspond to a uncorrelated, white noise like signal. Changes in the fractal
dimension D can be associated with changes in the dynamics of the Dst index time series.

The D values of Dst for 2001 year between 1.3 and 1.7, corresponds to values of the spectral
exponent β, between 1.6 and 2.4; that is, some values in the range of Fractional Brownian
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Motion [10]. If β is in the interval (1.6, 2.4), then the exponent H, is in the interval (0.3, 0.7)
(see equation 2), indicating that some process has long range autocorrelations or antipersistence
[9]. That is, the signal has a behavior such that an increasing trend in the past implies a
decreasing trend in the future and vice versa. For Brownian noise, H = 0.5, D = 1.5 and β = 2.
These results agree with those obtained by Balasis et al. [2].

4. Concluding remarks
In this work, we compared three analysis techniques, the spectral exponent β, calculated by
means of the FFT algorithm, the Hurst exponent H, calculated by rescaled range analysis, and
the fractal dimension D, calculated by using the Higuchi’s algorithm.

We show that the FFT-methods leads to very poor correlation coefficients. Despite the Hurst
exponent H has good statistical properties, the existence of different dynamics in the time series
is not shown in detail.

On the other hand, the usage of the Higuchi’s method leads to very precise values of the fractal
dimension D, associated with the Dst time series. This algorithm also shows the complexity
(crossover existence) of the time series studied.

For the case studied in this work, we found that D corresponds to representative values of
Fractional Brownian noise. A possible explanation of these results is related with the concept
of self-organized criticality (SOC) [1]. The SOC concept was developed for complex systems,
which are reminiscent of typical geological structures. The notion of SOC was proposed by Bak
et al. [1] as a general principle governing the behavior of a spatially extended dynamical system
with both, temporal and spatial degree of freedom. According to this principle, composite open
systems having many interacting elements organize themselves into a stationary critical state
with no length or time scales others than those imposed by the finite size of the system. The
critical state is characterized by spatial and temporal power laws.
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