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Abstract. The computation of the generating function of the joint moments of two non–
commutative gaussiano–poissonian random variables, from the commutators of their quantum
operators, is presented first. An example of such random variables is also included in the paper.

1. Introduction
In this paper we apply the algorithm for recovering the joint moments from the commutators
of the quantum operators, and the first order moments, outlined in [9], to two noncommutative
random variables X and Y . These are not classical random variables, but symmetric operators
densely defined on a Hilbert space. We must also mention the fact that, the algorithm mentioned
above was extended to q–commutators in [4], and the authors of that paper worked out the joint
moments of both commutative and noncommutative random variables.
The multi–dimensional case is much harder than the one–dimensional one, and for this reason
we restrict our attention to the dimension d = 2 in this paper.

The paper is structured as follows. In section 2 we present a little bit of the background
concerning Noncommutative Probability and the joint quantum operators, generated by a
finite family of noncommutative random variables. In section 3 we pose a two–dimensional
commutator problem and apply the algorithm, from [9], to find a recursive formula for the joint
moments of the two random variables involved in that commutator problem. In section 4, we use
the recursive formula, obtained in the previous section, to compute the joint Laplace transform
of the two random variables from section 3. Finally, in section 5, we show the existence of the
operators involved in the commutator problem from section 3.

2. Background
We present in this section a basic background of Noncommutative Probability and joint quantum
operators generated by a family of not necessary commutative random variables. The definition
of a noncommutative probability space is taken from [13], and the facts about the joint quantum
operators from [10].

XXIst International Conference on Integrable Systems and Quantum Symmetries (ISQS21) IOP Publishing
Journal of Physics: Conference Series 474 (2013) 012027 doi:10.1088/1742-6596/474/1/012027

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



Let (H, ⟨·, ·⟩) be a Hilbert space over the field of real numbers R, and let X1, X2, . . . , Xd be d
symmetric densely defined linear operators on H. We denote by A the unital algebra generated
by X1, X2, . . . , Xd. It is clear that A is in fact, the space of all operators of the form f(X1,
X2, . . . , Xd), where f is a polynomial of d noncommutative variables x1, x2, . . . , xd. We make
the assumption that there exists a nonzero element ϕ of H, such that ϕ belongs to the domain
of g, for any g ∈ A. We can normalize ϕ and assume that:

∥ ϕ ∥ = 1, (1)

where ∥ · ∥ denotes the norm of the Hilbert space H. We fix ϕ and call it the vacuum vector.

Definition 2.1 We call the pair (A, ϕ) a probability space supported by H. We call every
element g of A, a random variable, and define its expectation as:

E[g] := ⟨gϕ, ϕ⟩. (2)

We also define the following equivalence relation (see [10]):

Definition 2.2 Let (A, ϕ) and (A′, ϕ′) be two probability spaces supported by two Hilbert spaces
H and H ′, and let E and E′ denote their expectations. Let X1, X2, . . . , Xd be operators from
A, and X ′

1, X
′
2, . . . , X

′
d operators from A′. We say that the random vectors (X1, X2, . . . , Xd)

and (X ′
1, X

′
2, . . . , X

′
d) are moment equal and denote this fact by (X1, X2, . . . , Xd) ≡ (X ′

1, X
′
2,

. . . , X ′
d), if for any polynomial p(x1, x2, . . . , xd) of d noncommutative variables, we have:

E [p (X1, X2, . . . , Xd)] = E′ [p (X ′
1, X

′
2, . . . , X

′
d

)]
. (3)

We define the subspace F , of H, as:

F := {gϕ | g ∈ A}. (4)

For any non–negative integer n, we define the space Fn as the set of all vectors, of H, of the
form f(X1, X2, . . . , Xd)ϕ, where f is a polynomial of total degree less than or equal to n. We
observe that, since Fn is a finite–dimensional subspace of H, Fn is a closed subspace of H, for
all n ≥ 0. We have:

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F ⊂ H (5)

and

F = ∪∞
n=0Fn. (6)

We define G0 := F0, and for all n ≥ 1, Gn := Fn ⊖ Fn−1, that means, Gn is the orthogonal
complement of Fn−1 into Fn. For any n ≥ 0, we call Gn the homogenous chaos space of order n
generated by X1, X2, . . . , Xd. We also define the space:

H := ⊕∞
n=0Gn,

and call H the chaos space generated by X1, X2, . . . , Xd. It is not hard to see that H is the
closure of the space Aϕ := {gϕ | g ∈ A} in H.

We have the following lemma:

Lemma 2.3 For any i ∈ {1, 2, . . . , d} and any non–negative integer n:

XiGn ⊥ Gk, (7)

for all k ̸= n− 1, n, and n+ 1, where ⊥ means “orthogonal to”.
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We present a proof of the above lemma, that follows exactly the proof of the same lemma, in
the commutative case, from [1].

Proof. Let i ∈ {1, 2, . . . , d} be fixed.
If k /∈ {n− 1, n, n+ 1}, then either k ≥ n+ 2 or k ≤ n− 2.

Case 1: If k ≥ n + 2, then let u ∈ Gn and v ∈ Gk. Since u ∈ Gn, there exists f a poly-
nomial of degree at most n, such that:

u = f(X1, X2, . . . , Xd)ϕ. (8)

Since the polynomial xif(x1, x2, . . . , xd) has degree at most n+ 1, we have:

Xiu = Xif(X1, X2, . . . , Xd)ϕ

∈ Fn+1.

Because n+ 1 < k, we have Gk⊥Fn+1, and so:

v ⊥ Xiu.

Case 2: If k ≤ n − 2, then let u ∈ Gn and v ∈ Gk. We can see as before that Xiv ∈ Fk+1.
Using first the fact that Xi is a symmetric operator, and second that Gn⊥Fk+1 since n > k+1,
we obtain:

⟨Xiu, v⟩ = ⟨u,Xiv⟩
= 0.

�
To ease our notation, we write: X = (X1, X2, . . . , Xd) and f(X) = f(X1, X2, . . . , Xd) for
every polynomial f of d variables.
Let n be a fixed nonnegative integer, and f(X)ϕ ∈ Gn. Then, according to the previous lemma,
for any i ∈ {1, 2, . . . , d}:

Xif(X)ϕ ∈ Gn−1 ⊕Gn ⊕Gn+1. (9)

Thus, there exist and are unique fi,n−1(X)ϕ ∈ Gn−1, fi,n(X)ϕ ∈ Gn, and fi,n+1(X)ϕ ∈ Gn+1,
such that:

Xif(X)ϕ = fi,n−1(X)ϕ+ fi,n(X)ϕ+ fi,n+1(X)ϕ. (10)

We define the following three families of operators:

D−
n (i) : Gn → Gn−1, (11)

defined as:

D−
n (i)f(X)ϕ := fi,n−1(X)ϕ. (12)

Since f has degree n, while fi,n−1 has degree n− 1, we see that D−
n (i) decreases the degree of a

homogenous polynomial by 1 unit, and so we call D−
n (i) an annihilation operator.

D0
n(i) : Gn → Gn, (13)
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defined as:

D0
n(i)f(X)ϕ := fi,n(X)ϕ. (14)

Since f has degree n, and fi,n has degree n, too, we see that D0
n(i) preserves the degree of a

homogenous polynomial, and so we call D0
n(i) a preservation operator.

D+
n (i) : Gn → Gn+1, (15)

defined as:

D+
n (i)f(X)ϕ := fi,n+1(X)ϕ. (16)

Since f has degree n, while fi,n+1 has degree n+ 1, we see that D+
n (i) increases the degree of a

homogenous polynomial by 1 unit, and so we call D+
n (i) a creation operator.

If we restrict the domains of the operators X1, X2, . . . , Xd to the space Gn, then we can see
from (10) that, for all i ∈ {1, 2, . . . , d}, we have:

Xi|Gn = D−
n (i) +D0

n(i) +D+
n (i). (17)

We have defined, so far, the annihilation, preservation, and creation operators only separately
on each homogenous chaos space Gn, for n ≥ 0. We can extend this partial definition, in a linear
way, to the whole space F = Aϕ. More precisely, if f is a polynomial of degree k, where k is a
nonnegative integer, then f(X)ϕ ∈ Fk, and we know that:

Fk = G0 ⊕G1 ⊕ · · · ⊕Gk. (18)

Thus, there exist and are unique f0(X)ϕ ∈ G0, f1(X)ϕ ∈ G1, . . . , fk(X)ϕ ∈ Gk, such that:

f(X)ϕ = f0(X)ϕ+ f1(X)ϕ+ · · ·+ fk(X)ϕ. (19)

We define:

a−(i)f(X)ϕ := D−
0 (i)f0(X)ϕ+ · · ·+D−

k (i)fk(X)ϕ, (20)

a0(i)f(X)ϕ := D0
0(i)f0(X)ϕ+ · · ·+D0

k(i)fk(X)ϕ, (21)

and

a+(i)f(X)ϕ := D+
0 (i)f0(X)ϕ+ · · ·+D+

k (i)fk(X)ϕ. (22)

We call a−(i) an annihilation operator, a0(i) a preservation operator, and a+(i) a creation
operator.
We also call the operators {a−(i)}1≤i≤d, {a0(i)}1≤i≤d, and {a+(i)}1≤i≤d, the minimal joint
quantum operators generated by the family {Xi}1≤i≤d. The domain of the minimal joint quantum
operators is understood to be the space F .
Restricting the domain of each Xi, for i ∈ {1, 2, . . . , d}, to the space F , we have now:

Xi = a−(i) + a0(i) + a+(i), (23)

for all i ∈ {1, 2, . . . , d}.
For each 1 ≤ i ≤ d, we call the equality (23), the minimal quantum decomposition of Xi.
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One should not forget that, for any i ∈ {1, 2, . . . , d} and n ≥ 0, a−(i) : Gn → Gn−1,
a0(i) : Gn → Gn, and a+(i) : Gn → Gn+1, where G−1 := {0} is the null space.
If for each n ≥ 0, we denote by Pn the orthogonal projection of H onto its closed subspace Fn,
and restrict the domain of Pn to F , then it is not hard to see that:

a−(i) =

∞∑
n=1

Pn−1XiPn, (24)

a0(i) =

∞∑
n=0

PnXiPn, (25)

a+(i) =

∞∑
n=0

Pn+1XiPn, (26)

for all i ∈ {1, 2, . . . , d}. We can see from these three formulas that, since Xi is symmetric, for
all u and v in F , and all i ∈ {1, 2, . . . , d}, we have:

⟨a+(i)u, v⟩ = ⟨u, a−(i)v⟩, (27)

⟨a0(i)u, v⟩ = ⟨u, a0(i)v⟩. (28)

If U and V are two operators, then we define their commutator [U , V ] as:

[U, V ] := UV − V U. (29)

It was proven in [1], [2], and [10], that X1, X2, . . . , Xd commute among themselves if and only
if the following conditions hold, for any i, j ∈ {1, 2, . . . , d}:[

a−(i), a−(j)
]

= 0, (30)[
a−(i), a0(j)

]
=

[
a−(j), a0(i)

]
, (31)[

a−(i), a+(j)
]
−

[
a−(j), a+(i)

]
=

[
a0(j), a0(i)

]
. (32)

Example 2.4 Let X1, X2, . . . , Xd be classic random variables defined on the same probability
space (Ω, F , P ), having finite moments of any order. Let H := L2(Ω, F , P ) and ϕ = 1,
i.e., the constant random variable equal to 1. We can view X1, X2, . . . , Xd as multiplication
operators on the space A1 ⊂ H, where A is the algebra of the random variables of the form
f(X1, X2, . . . , Xd), where f is a polynomial of d variables. It is obvious that XiXj = XjXi,
for all 1 ≤ i < j ≤ d.

The following definition is taken from [10].

Definition 2.5 Let H be a Hilbert space, (A, ϕ) a probability space supported by H, and
{Xi}1≤i≤d elements of A, that are symmetric operators. Let {a−xi

}1≤i≤d, {a0xi
}1≤i≤d, and

{a+xi
}1≤i≤d be three families of linear operators, defined on subspaces of H, such that, ϕ belongs

to the domain of aϵ1xi1
aϵ2xi2

· · · aϵnxin
, for all n ≥ 1, (i1, i2, . . . , in) ∈ {1, 2, . . . , d}n, and (ϵ1, ϵ2, . . . ,

ϵn) ∈ {−, 0, +}n. We say that these families of operators form a joint quantum decomposition
of {Xi}1≤i≤d relative to A, if the following conditions hold:

Xi = a−xi
+ a0xi

+ a+xi
, (33)(

a+xi

)∗ |Aϕ = a−xi
|Aϕ, (34)

a−xi
Hn ⊂ Hn−1, (35)

a0xi
Hn ⊂ Hn, (36)
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for all 1 ≤ i ≤ d and n ≥ 0, where H−1 := {0}, H0 := Rϕ, and Hk is the vector space spanned
by all vectors of the form a+xi1

a+xi2
· · · a+xik

ϕ, where i1, i2, . . . , ik ∈ {1, 2, . . . , d}, for all k ≥ 1.

We call a−xi
an annihilation operator, a0xi

a preservation operator, and a+xi
a creation operator,

for all 1 ≤ i ≤ d.

For all 1 ≤ i ≤ d, the fact that
(
a+xi

)∗ |Aϕ = a−xi
|Aϕ is understood as:

⟨a+xi
u, v⟩ = ⟨u, a−xi

v⟩,

for all u and v in Aϕ, where ⟨·, ·⟩ denotes the inner product of H. Because, for all i ∈ {1, 2,
. . . , d}, Xi is a symmetric operator, it follows from (34), that:(

a0xi

)∗ |Aϕ = a0xi
|Aϕ. (37)

The following lemma from [10] refers to the uniqueness of the joint quantum decomposition
of a finite family of symmetric random variables.

Lemma 2.6 Let {Xi}1≤i≤d be a family of symmetric random variables in a noncommutative
probability space (A, ϕ), and {a−xi

}1≤i≤d, {a0xi
}1≤i≤d, and {a+xi

}1≤i≤d a joint quantum
decomposition of {Xi}1≤i≤d relative to A. Let A′ be the algebra generated by {Xi}1≤i≤d, and
{a−(i)}1≤i≤d, {a0(i)}1≤i≤d, and {a+(i)}1≤i≤d be the minimal joint quantum decomposition of
{Xi}1≤i≤d. Then for any i ∈ {1, 2, . . . , d} and any ϵ ∈ {−, 0, +}, we have:

aϵxi
|A′ϕ = aϵ(i)|A′ϕ. (38)

Moreover, if A′′ denotes the algebra generated by ∪d
i=1{a−xi

, a0xi
, a+xi

}, then

A′′ϕ = A′ϕ, (39)

and {a−xi
}1≤i≤d, {a0xi

}1≤i≤d, and {a+xi
}1≤i≤d is a joint quantum decomposition of {Xi}1≤i≤n

relative to A′′.

3. A commutator problem
Let us consider two symmetric “random variables” X and Y , whose joint quantum operators
satisfy the following commutation relationships:[

a−x , a
−
y

]
= 0, (1)[

a−x , a
+
x

]
= I, (2)[

a−x , a
+
y

]
= bI, (3)[

a−y , a
+
y

]
= I, (4)[

a−x , a
0
x

]
= pa−x + p′a−y , (5)[

a−x , a
0
y

]
= 0, (6)[

a−y , a
0
x

]
= 0, (7)[

a−y , a
0
y

]
= q′a−x + qa−y . (8)

We assume that E[X] = E[Y ] = 0.
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Taking the adjoint in both sides of each of the relations (1), (3), (5), and (8), we obtain the
following commutation relationships:[

a+y , a
+
x

]
= 0, (9)[

a−y , a
+
x

]
= bI, (10)[

a0x, a
+
x

]
= pa+x + p′a+y , (11)[

a0y, a
+
y

]
= q′a+x + qa+y . (12)

From the Jacobi commutation identity:[
a−y ,

[
a0x, a

+
x

]]
+
[
a0x,

[
a+x , a

−
y

]]
+

[
a+x ,

[
a−y , a

0
x

]]
= 0,

we conclude that p′ = −pb. Similarly, we can see that q′ = −qb. Thus the commutation
relationships (5) and (8) can be written as:[

a−x , a
0
x

]
= p

(
a−x − ba−y

)
, (13)[

a−y , a
0
y

]
= q

(
a−y − ba−x

)
. (14)

We assume that |b| ̸= 1, b ̸= 0, p ̸= 0, and q ̸= 0. It follows that XY ̸= Y X, since if
XY = Y X, then we would have:

0 = [X,Y ]

=
[
a−x + a0x + a+x , a

−
y + a0y + a+y

]
=

∑
(ϵ1,ϵ2)∈{−,0,+}2

[
aϵ1x , aϵ2y

]
.

In the above sum of commutators, we have [aϵ1x , aϵ2y ] + [aϵ2x , aϵ1y ] = 0, for all ϵ1 ̸= ϵ2. Moreover,

[a−x , a
−
y ] = [a+x , a

+
y ] = 0. Thus we obtain:[

a0x, a
0
y

]
= [X,Y ]

= 0.

Using now the Jacobi identity:[
a−x ,

[
a0x, a

0
y

]]
+

[
a0x,

[
a0y, a

−
x

]]
+

[
a0y,

[
a−x , a

0
x

]]
= 0,

and the fact that bpq ̸= 0, we conclude that a−y = ba−x . Taking the adjoint in both sides of this

equality we get a+y = ba+x . It follows now from (2) and (4) that b2 = 1, which is not possible
since |b| ̸= 1. Therefore we are dealing with non–commutative random variables.

We will show at the end of the paper that, for each b ∈ (−1, 1), p ̸= 0, and q ̸= 0, there is a
model in which these commutation relationships are realized. The necessary condition |b| ≤ 1
follows from the Schwarz inequality, as it will be explained below. We exclude the case b = ±1
from our discussion.

Since both X and Y are symmetric, using Schwarz inequality, we obtain:

|E[XY ]| = |⟨XY ϕ, ϕ⟩|
= |⟨Y ϕ,Xϕ⟩|
≤ (⟨Y ϕ, Y ϕ⟩)1/2 (⟨Xϕ,Xϕ⟩)1/2

=
(
⟨X2ϕ, ϕ⟩

)1/2 (⟨Y 2, ϕ⟩
)1/2

=
(
E
[
X2

])1/2 (
E
[
Y 2

])1/2
. (15)
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Because E[X] = E[Y ] = 0, we have a0xϕ = a0yϕ = 0. Since a−x ϕ = a−y ϕ = 0, we have:

E[XY ] = ⟨(a−x + a0x + a+x )(a
−
y + a0y + a+y )ϕ, ϕ⟩

= ⟨(a−x + a0x + a+x )a
+
y ϕ, ϕ⟩

= ⟨a+y ϕ, (a+x + a0x + a−x )ϕ⟩
= ⟨a+y ϕ, a+x ϕ⟩
= ⟨a−x a+y ϕ, ϕ⟩
= ⟨(a−x a+y − a+y a

−
x )ϕ, ϕ⟩

= ⟨[a−x , a+y ]ϕ, ϕ⟩
= ⟨bIϕ, ϕ⟩
= b. (16)

Similarly, we have:

E[X2] = 1 (17)

and

E[Y 2] = 1. (18)

It follows now from (15), (16), (17), and (18) that:

|b| ≤ 1. (19)

Inside the algebra A, we can consider the bi–module M(X, Y ) (left module over the ring
P(X) of all polynomials of X, and right module over the ring P(Y ) of all polynomials of Y )
generated by the identity operator I. That means, M(X, Y ) is the vector space spanned by the
monomials of the form {XmY n}m≥0,n≥0, in which all factors of X are to the left of all factors of
Y . We show below a method for computing the expectation of all monomials from M(X, Y ).

Lemma 3.1 If X and Y satisfy the commutation relationships (1)–(8), then for any m and n
non–negative integers, with m ≥ 1, we have:

E[XmY n] = (m− 1)E[Xm−2Y n] + nbE[Xm−1Y n−1]

+(1− b2)

(
m− 1

2

)
pE[Xm−3Y n]

+p2
∑

0≤j<i≤m−2

⟨Xm−3−j(a−x − ba−y )X
jY nϕ, ϕ⟩

−(m− 1)bpqR2,

where

R2 :=
∑

0≤k≤n−1

⟨Xm−2Y n−1−k(a−y − ba−x )Y
kϕ, ϕ⟩.

Proof. Let m and n be two fixed non–negative integers, such that m ≥ 1. We apply the
commutator method from [9]. According to that method:

E[XmY n] = ⟨XmY nϕ, ϕ⟩
= ⟨(a+x + a0x + a−x )X

m−1Y nϕ, ϕ⟩
= ⟨Xm−1Y nϕ, a−x ϕ⟩+ ⟨Xm−1Y nϕ, a0xϕ⟩+ ⟨a−xXm−1Y nϕ, ϕ⟩
= 0 + ⟨Xm−1Y nϕ,E[X]ϕ⟩+ ⟨a−xXm−1Y nϕ, ϕ⟩
= ⟨a−xXm−1Y nϕ, ϕ⟩,
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since E[X] = 0. We swap now a−x and Xm−1Y n, using the product rule for commutators:

[A,B1 · · ·Bk] =
k∑

i=1

B1 · · ·Bi−1 [A,Bi]Bi+1 · · ·Bk,

for all operators A, B1, . . . , Bk, and the fact that a−x ϕ = 0, and obtain:

E[XmY n] = ⟨a−xXm−1Y nϕ, ϕ⟩
= ⟨Xm−1Y na−x ϕ, ϕ⟩+ ⟨[a−x , Xm−1Y n]ϕ, ϕ⟩
=

∑
0≤i≤m−2

⟨Xm−2−i[a−x , X]XiY nϕ, ϕ⟩

+
∑

0≤j≤n−1

⟨Xm−1Y n−1−j [a−x , Y ]Y jϕ, ϕ⟩.

Let us observe now that:

[a−x , X] = [a−x , a
+
x + a0x + a−x ]

= [a−x , a
+
x ] + [a−x , a

0
x]

= I + p(a−x − ba−y )

and

[a−x , Y ] = [a−x , a
+
y ] + [a−x , a

0
y] + [a−x , a

−
y ]

= bI + 0 + 0

= bI.

Therefore, we have:

E[XmY n] =
∑

0≤i≤m−2

⟨Xm−2−i{I + p(a−x − ba−y )}XiY nϕ, ϕ⟩

+
∑

0≤j≤n−1

⟨Xm−1Y n−1−jbIY jϕ, ϕ⟩

= (m− 1)E[Xm−2Y n] + nbE[Xm−1Y n−1]

+p
∑

0≤i≤m−2

⟨Xm−2−i(a−x − ba−y )X
iY nϕ, ϕ⟩.

Let us swap now the operators a−x −ba−y andXiY n, using again the product rule for commutators,

and the fact that (a−x − ba−y )ϕ = 0. We obtain:

E[XmY n] = (m− 1)E[Xm−2Y n] + nbE[Xm−1Y n−1]

+p
∑

0≤i≤m−2

⟨Xm−2−i(a−x − ba−y )X
iY nϕ, ϕ⟩

= (m− 1)E[Xm−2Y n] + nbE[Xm−1Y n−1]

+p
∑

0≤i≤m−2

⟨Xm−2−i[a−x − ba−y , X
iY n]ϕ, ϕ⟩

= (m− 1)E[Xm−2Y n] + nbE[Xm−1Y n−1]

+p
∑

0≤j<i≤m−2

⟨Xm−2−iXi−1−j [a−x − ba−y , X]XjY nϕ, ϕ⟩

+p
∑

0≤i≤m−2

∑
0≤k≤n−1

⟨Xm−2−iXiY n−1−k[a−x − ba−y , Y ]Y kϕ, ϕ⟩.
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Using the simple facts that Xm−2−iXi−1−j = Xm−3−j and Xm−2−iXi = Xm−2, we obtain:

E[XmY n] = (m− 1)E[Xm−2Y n] + nbE[Xm−1Y n−1]

+p
∑

0≤j<i≤m−2

⟨Xm−3−j [a−x − ba−y , X]XjY nϕ, ϕ⟩

+(m− 1)p
∑

0≤k≤n−1

⟨Xm−2Y n−1−k[a−x − ba−y , Y ]Y kϕ, ϕ⟩.

Let us observe that:

[a−x − ba−y , X] = [a−x , X]− b[a−y , X]

= I + p(a−x − ba−y )− b2I

= (1− b2)I + p(a−x − ba−y )

and

[a−x − ba−y , Y ] = [a−x , Y ]− b[a−y , Y ]

= bI − b{I + q(a−y − ba−x )}
= −bq(a−y − ba−x ).

Thus, we obtain:

E[XmY n] = (m− 1)E[Xm−2Y n] + nbE[Xm−1Y n−1]

+p
∑

0≤j<i≤m−2

⟨Xm−3−j{(1− b2)I + p(a−x − ba−y )}XjY nϕ, ϕ⟩

−(m− 1)bpq
∑

0≤k≤n−1

⟨Xm−2Y n−1−k(a−y − ba−x )Y
kϕ, ϕ⟩

= (m− 1)E[Xm−2Y n] + nbE[Xm−1Y n−1]

+(1− b2)

(
m− 1

2

)
pE[Xm−3Y n]

+p2
∑

0≤j<i≤m−2

⟨Xm−3−j(a−x − ba−y )X
jY nϕ, ϕ⟩

−(m− 1)bpqR2,

where

R2 :=
∑

0≤k≤n−1

⟨Xm−2Y n−1−k(a−y − ba−x )Y
kϕ, ϕ⟩.

�
Lemma 3.2 Using the notations from the Lemma 3.1, we have:

R2 =
1− b2

q2
E
[
Xm−2

{
(Y + qI)n − Y n − nqY n−1

}]
.
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Proof. Swapping a−y − ba−x and Y k, we get:

R2 =
∑

0≤k≤n−1

⟨Xm−2Y n−1−k[a−y − ba−x , Y
k]ϕ, ϕ⟩

=
∑

0≤l<k≤n−1

⟨Xm−2Y n−1−kY k−1−l[a−y − ba−x , Y ]Y lϕ, ϕ⟩

=
∑

0≤l<k≤n−1

⟨Xm−2Y n−2−l{(1− b2)I + q(a−y − ba−x )}Y lϕ, ϕ⟩

= (1− b2)

(
n

2

)
E[Xm−2Y n−2]

+q
∑

0≤l<k≤n−1

⟨Xm−2Y n−2−l(a−y − ba−x )Y
lϕ, ϕ⟩.

We repeat this procedure, swapping now a−y − ba−x and Y l, and so on, and obtain in the end
that:

R2 = (1− b2)

{(
n

2

)
E[Xm−2Y n−2] +

(
n

3

)
qE[Xm−2Y n−3] + · · ·

· · ·+
(
n

n

)
qn−2E[Xm−2Y 0]

}
=

1− b2

q2
E
[
Xm−2

{
(Y + qI)n − Y n − nqY n−1

}]
.

�
Lemma 3.3 If X and Y satisfy the commutation relationships (1)–(8), then for any m and n
non–negative integers, with m ≥ 1, we have:

E[XmY n] (20)

= (m− 1)E[Xm−2Y n] + nbE[Xm−1Y n−1]

+
1− b2

p
E
[{

(X + pI)m−1 −Xm−1 − (m− 1)pXm−2
}
Y n

]
−b(1− b2)

q
E
[{
(X + pI)m−1 −Xm−1

}{
(Y + qI)n − Y n − nqY n−1

}]
.

Proof. Using Lemmas 3.1 and 3.2, we get:

E[XmY n]

= (m− 1)E[Xm−2Y n] + nbE[Xm−1Y n−1]

+(1− b2)

(
m− 1

2

)
pE[Xm−3Y n]

+p2
∑

0≤j<i≤m−2

⟨Xm−3−j(a−x − ba−y )X
jY nϕ, ϕ⟩

−b(1− b2)

q
E
[
(m− 1)pXm−2

{
(Y + qI)n − Y n − nqY n−1

}]
.

We do now a similar procedure as in the proof of Lemma 3.1, by swapping first (a−x − ba−y ) and

XjY n. In this way we arrive at a new sum R3 which is similar to R2. We compute R3 in the
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same way that we calculated R2 in the proof of Lemma 3.2, and so on, obtaining in the end
that:

E[XmY n]

= (m− 1)E[Xm−2Y n] + nbE[Xm−1Y n−1]

+(1− b2)

{(
m− 1

2

)
pE[Xm−3Y n] +

(
m− 1

3

)
p2E[Xm−4Y n] + · · ·

· · ·+
(
m− 1

m− 1

)
pm−2E[X0Y n]

}
−b(1− b2)

q
E

[(
m− 1

1

)
pXm−2

{
(Y + qI)n − Y n − nqY n−1

}]
−b(1− b2)

q
E

[(
m− 1

2

)
p2Xm−3

{
(Y + qI)n − Y n − nqY n−1

}]
· · ·

−b(1− b2)

q
E

[(
m− 1

m− 1

)
pm−1X0

{
(Y + qI)n − Y n − nqY n−1

}]
= (m− 1)E[Xm−2Y n] + nbE[Xm−1Y n−1]

+
1− b2

p
E
[{

(X + pI)m−1 −Xm−1 − (m− 1)pXm−2
}
Y n

]
−b(1− b2)

q
E
[{
(X + pI)m−1 −Xm−1

}{
(Y + qI)n − Y n − nqY n−1

}]
.

�

4. Joint left X – right Y Laplace transform of X and Y
In this section, we compute the joint Laplace transform of the random variables X and Y from
the previous section. We start first by presenting some important bounds for the joint moments
of X and Y .

Lemma 4.1 Let X = a−x + a0x + a+x and Y = a0y + a0y + a+y be joint quantum decompositions
of two random variables, whose terms satisfy the commutation relationships (1)–(8), where b,
p, p′, q, and q′ are real numbers, such that |b| < 1, p′ = −pb, and q′ = −qb. We assume
that E[X] = E[Y ] = 0. Then there exists a positive constant C, such that, for any m and n
non–negative integers, we have:

|E[XmY n]| ≤ Cm!n!. (21)

Proof. Indeed, if we define, for all non–negative integers m and n,

Cm,n := max{|E[XiY j ]|/(i!j!) | 0 ≤ i ≤ m, 0 ≤ j ≤ n}, (22)

then the sequence {Cm,n}m≥0,n≥0 is left and right increasing, in the sense that if we fix n, then
it is increasing with respect to m, and vice–versa. We have:∣∣E [{

(X + pI)m−1 −Xm−1 − (m− 1)pXm−2
}
Y n

]∣∣
≤ (m− 1)!n!

m−1∑
i=2

|E[Xm−1−iY n]|
(m− 1− i)!n!

· p
i

i!

≤ (m− 1)!n!Cm−3,n

m−1∑
i=2

pi

i!

≤ (ep − 1− p)Cm−3,n(m− 1)!n!.
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Similarly, we have: ∣∣E [{
(X + pI)m−1 −Xm−1

}{
(Y + qI)n − Y n − nqY n−1

}]∣∣
≤ (ep − 1) (eq − 1− q)Cm−2,n−2(m− 1)!n!.

It follows now from our recursive formula (20) that:

|E[XmY n]|
≤ (m− 1)Cm−2,n(m− 2)!n! + nbCm−1,n−1(m− 1)!(n− 1)!

+
1− b2

|p|
(ep − 1− p)Cm−3,n(m− 1)!n!

+
|b|(1− b2)

|q|
(ep − 1) (eq − 1− q)Cm−2,n−2(m− 1)!n!.

Since the sequence {Cm,n}m≥0,n≥0 is left and right increasing, we conclude now that there is a
constant K depending on b, p, and q, such that:

|E[XmY n]| ≤ KCm−1,n(m− 1)!n!,

for all m ≥ 1, n ≥ 0. Dividing both sides of this inequality by m!n!, we obtain:

|E[XmY n]|
m!n!

≤ K

m
Cm−1,n,

for all m ≥ 1 and n ≥ 0. Thus, we have:

Cm,n = max
{
Cm−1,n,

∣∣E[XmY 0]
∣∣ /(m!0!), . . . , |E[XmY n]| /(m!n!)

}
≤ max

{
Cm−1,n,

K

m
Cm−1,0, . . . ,

K

m
Cm−1,n

}
= max

{
Cm−1,n,

K

m
Cm−1,n

}
= Cm−1,n,

for all m ≥ ⌊K⌋ + 1 and n ≥ 0. On the other hand we have Cm,n ≥ Cm−1,n, for all m ≥ 1
and all n ≥ 0. Thus, the sequences {Cm,0}m≥1, {Cm,1}m≥1, . . . are uniformly stationary,
in the sense that there is natural number m0, that is the same for all n ≥ 0, such that
Cm0,n = Cm0+1,n = Cm0+2,n = · · · .

On the other hand, since X and Y are symmetric operators, we have:

E[Y nXm] = ⟨Y nXmϕ, ϕ⟩
= ⟨ϕ,XmY nϕ⟩
= E[XmY n].

Thus a similar argument will imply now that there exists an n0 ≥ 1, such that for all m ≥ 0,
Cm,n0 = Cm,n0+1 = Cm,n0+2 = · · · . Since the sequence {Cm,n}m≥0,n≥0 is left and right increas-
ing, we conclude now that, for all m ≥ 0 and all n ≥ 0, we have Cm,n ≤ Cm0,n0 . Thus, for all
m ≥ 0 and n ≥ 0, |E[XmY n]| ≤ Cm0,n0m!n!. �

We are now ready to compute the joint Laplace transform of X and Y .
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Theorem 4.2 Let X = a−x + a0x + a+x and Y = a0y + a0y + a+y be joint quantum decompositions
of two random variables, whose terms satisfy the commutation relationships (1)–(8), where b,
p, p′, q, and q′ are real numbers, such that |b| < 1, p′ = −pb, and q′ = −qb. We assume that
E[X] = E[Y ] = 0. Then, for all (s, t) ∈ (−1, 1)2, the series:

E
[
esXetY

]
:=

∑
m≥0

∑
n≥0

smtnE[XmY n]

m!n!
(23)

is absolutely convergent, and the joint left X–right Y Laplace transform is:

E
[
esXetY

]
= e

s2+2bst+t2

2

×e
1−b2

p2
(eps−1−ps− 1

2
p2s2)

e
1−b2

q2
(eqt−1−qt− 1

2
q2t2)

×e
− b(1−b2)

pq
(eps−1−ps)(eqt−1−qt)

. (24)

If p = 0 or q = 0, then formula (24) makes sense by taking the limit as p → 0 or q → 0 in its
right–hand side. Moreover, there exist two commuting random variables U and V , such that (X,
Y ) ≡ (U , V ), if and only if bpq = 0. If bpq = 0, then there exist an invertible 2 × 2 matrix T ,
a vector (u, v) in R2, and two independent classic random variables X ′ and Y ′, that are either
Gaussian or Poisson, such that (X, Y ) ≡ (X ′, Y ′)T + (u, v).

Proof. It follows from Lemma 4.1 that the series
∑

m≥0,n≥0 s
mtnE[XmY n]/m!n! is absolutely

convergent for all s and t complex numbers, such that |s| < 1 and |t| < 1. We denote this series
by E[esXetY ], to be in agreement with the classic commutative case. Let φ(s, t) := E[esXetY ].
It follows from Weierstrass M–test that the double series, from the definition of φ(s, t), can be
differentiated term by term, with respect to both s and t, for |s| < 1 and |t| < 1. If we multiply
both sides of the recursive relation (20) by sm−1t!/[(m−1)!n!] and sum up the resulting relations
from m = 1 to ∞, and from n = 0 to ∞, then we obtain:

∂φ

∂s
(s, t) = sφ(s, t) + btφ(s, t) (25)

+
1− b2

p
(eps − 1− ps)φ(s, t)

−b(1− b2)

q
(eps − 1)(eqt − 1− qt)φ(s, t).

In particular, for t = 0, we conclude that the function g(s) := E[esX ] satisfies the differential
equation:

dg

ds
(s) = sg(s) +

1− b2

p
(eps − 1− ps) g(s).

Since g(0) = 1, we must have:

g(s) = e
s2

2
+ 1−b2

p2

(
eps−1−ps− p2s2

2

)
.

Similarly, we can see that:

E[etY ] = e
t2

2
+ 1−b2

q2

(
eqt−1−qt− q2t2

2

)
.
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Solving now the differential equation, in the variable s, (25), we obtain:

φ(s, t) = K(t)e
s2

2 ebste
1−b2

p2

(
eps−1−ps− p2s2

2

)

×e
− b(1−b2)

pq
(eps−1−ps)(eqt−1−qt).

Setting s = 0 in this equation and using the fact that φ(0, t) = E[etY ], we conclude that:

K(t) = e
t2

2
+ 1−b2

q2

(
eqt−1−qt− q2t2

2

)
.

Thus, we have:

E[esXetY ] = e
t2

2
+ 1−b2

q2
(eqt−1−qt− q2t2

2
)

×e
s2

2 ebste
1−b2

p2
(eps−1−ps− p2s2

2
)

×e
− b(1−b2)

pq
(eps−1−ps)(eqt−1−qt)

= e
s2+2bst+t2

2

×e
1−b2

p2
(eps−1−ps− p2s2

2
)

×e
1−b2

q2
(eqt−1−qt− q2t2

2
)

×e
− b(1−b2)

pq
(eps−1−ps)(eqt−1−qt)

.

�

5. The existence of the operators X and Y
We close the paper by showing that, for any |b| < 1, and any real numbers p and q, we can
construct two random variables satisfying the commutation relationships from the previous
theorem. Let b, p, and q be fixed, such that |b| < 1. Let U and V be two jointly Gaussian
classic (commutative) random variables, with mean 0, variance 1, and covariance b, defined on
the same probability space (Ω, F , P ). We have U = a−u + a+u and V = a−v + a+v , [a

−
u , a

+
u ] = [a−v ,

a+v ] = I and [a−u , a
+
v ] = [a−v , a

+
u ] = E[UV ]I = bI. See [5], [6], and [8]. Let A be the unital

algebra generated by a−u , a+u , a−v , and a+v . This is an algebra of operators that are densely
defined on the Hilbert space H := L2(Ω, σ(U , V ), P ), where σ(U , V ) represents the smallest
sub–sigma–algebra of F , with respect to which both U and V are measurable functions. Inside
the algebra A, let us consider the following operators:

X := a−u +
[
α1a

+
u a

−
u + β1(a

+
u a

−
v + a+v a

−
u ) + γ1a

+
v a

−
v

]
+ a+u (26)

and

Y := a−v +
[
α2a

+
v a

−
v + β2(a

+
v a

−
u + a+u a

−
v ) + γ2a

+
u a

−
u

]
+ a+v , (27)

where αi, βi, and γi, 1 ≤ i ≤ 2, are real constants that will be determined such that X and
Y satisfy the commutation relationships (1)–(8). The coefficients of a+x a

−
y and a+y a

−
x are the

same in the definitions of X and Y , β1 and β2, respectively, to ensure that X and Y are
both symmetric operators. Let ϕ := 1 ∈ H, be the unit vector with respect to which the
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noncommutative expectation will be computed. The terms of a joint quantum decomposition of
X and Y (relative to A), are:

a−x = a−u ,

a0x = α1a
+
u a

−
u + β1(a

+
u a

−
v + a+v a

−
u ) + γ1a

+
v a

−
v ,

a+x = a+u ,

a−y = a−v ,

a0y = α2a
+
v a

−
v + β2(a

+
v a

−
u + a+u a

−
v ) + γ2a

+
u a

−
u ,

a+y = a+v .

It is now clear that (1), (2), (3), (4) hold. Also, because in the formulas of a0x and a0y, the

annihilation operators a−u and a−v are always to the right of the creation operators a+u and a+v ,
we conclude that the conditions E[X] = 0 and E[Y ] = 0 hold. To compute the commutators
[a−x , a

0
x], [a

−
x , a

0
y], [a

−
y , a

0
x], and [a−y , a

0
y], we apply again the product rule for commutators. For

example, one commutator involved in the computation of [a−x , a
0
x] is [a−u , a

+
v a

−
u ], which can be

computed as follows:

[a−u , a
+
v a

−
u ] = [a−u , a

+
v ]a

−
u + a+v [a

−
u , a

−
u ]

= bIa−u + 0

= ba−x .

Doing all these types of commutators, we obtain:[
a−x , a

0
x

]
= (α1 + bβ1)a

−
x + (β1 + bγ1)a

−
y ,[

a−x , a
0
y

]
= (γ2 + bβ2)a

−
x + (β2 + bα2)a

−
y ,[

a−y , a
0
x

]
= (β1 + bα1)a

−
x + (γ1 + bβ1)a

−
y ,[

a−y , a
0
y

]
= (β2 + bγ2)a

−
x + (α2 + bβ2)a

−
y .

If we want the commutation relationships (5), (6), (7), and (8) to hold, then identifying the
coefficients of a−x and a−y , we should have:

α1 + bβ1 = p,

β1 + bγ1 = −pb,

γ2 + bβ2 = 0,

β2 + bα2 = 0,

β1 + bα1 = 0,

γ1 + bβ1 = 0,

β2 + bγ2 = −qb,

α2 + bβ2 = q.

This is a system of eight equations and six unknowns, that can be split up into two sub–systems
of four equations and three unknowns each. Each of these two sub–systems is consistent and
has a unique solution:

(α1, β1, γ1) =
p

1− b2
(1,−b, b2)
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and

(α2, β2, γ2) =
q

1− b2
(1,−b, b2).

Thus we have proven the existence of two noncommutative random variables X and Y , for which
the commutation relationships (1)–(8) and the condition E[X] = E[Y ] = 0 hold.

The left X–right Y Laplace transform E[esXetY ] is a generating function only for the
joint moments of the form E[XmY n], m ≥ 0, n ≥ 0. Because X and Y do not
commute, we also need to compute other Laplace transforms like E[es1Xet1Y es2Xet2Y ],
E[es1Xet1Y es2Xet2Y es3Xet3Y ] and so on, to generate the other joint moments like
E[Xm1Y n1Xm2Y n2 ], E[Xm1Y n1Xm2Y n2Xm3Y n3 ], . . . . Our commutator method can be applied
to compute these other Laplace transforms, but the calculations are more complicated.
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