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Poincaré’s theorem

A Yu Pirkovskii

Faculty of Mathematics, National Research University Higher School of Economics,
7 Vavilova, 117312 Moscow, Russia

E-mail: aupirkovskii@hse.ru

Abstract. The classical Poincaré theorem (1907) asserts that the polydisk Dn and the ball
Bn in Cn are not biholomorphically equivalent for n ≥ 2. Equivalently, this means that the
Fréchet algebras O(Dn) and O(Bn) of holomorphic functions are not topologically isomorphic.
Our goal is to prove a noncommutative version of the above result. Given q ∈ C \ {0}, we
define two noncommutative power series algebras Oq(Dn) and Oq(Bn), which can be viewed as
q-analogs of O(Dn) and O(Bn), respectively. Both Oq(Dn) and Oq(Bn) are the completions of
the algebraic quantum affine space Oreg

q (Cn) w.r.t. certain families of seminorms. In the case
where 0 < q < 1, the algebra Oq(Bn) admits an equivalent definition related to L. L. Vaksman’s
algebra Cq(B̄n) of continuous functions on the closed quantum ball. We show that both Oq(Dn)
and Oq(Bn) can be interpreted as Fréchet algebra deformations (in a suitable sense) of O(Dn)
and O(Bn), respectively. Our main result is that Oq(Dn) and Oq(Bn) are not isomorphic if n ≥ 2
and |q| = 1, but are isomorphic if |q| ̸= 1.

1. Introduction
Noncommutative geometry is a vast and rapidly growing subject consisting of a number of
different branches (noncommutative algebraic geometry, noncommutative differential geometry,
noncommutative topology, noncommutative measure theory, etc.). Each of these branches has
its own objects of study and its own methods. Nevertheless, all of them share the common
unifying “philosophy” that some classical constructions and results known from various fields
of geometry and topology can be successfully applied to noncommutative objects, which, at the
first glance, have nothing to do with geometry.

The subject of the present paper can be characterized as “noncommutative complex analysis”,
or “noncommutative complex analytic geometry”. At the moment, this theory is much less
developed than any of the above-mentioned parts of noncommutative geometry. However, a
number of important results have been obtained in this field during the last decade. First of all,
let us mention the tremendous work done by L. L. Vaksman’s school (see, e.g., [63, 68–71] and
references therein), which eventually resulted in the creation of the general theory of quantum
bounded symmetric domains. A more operator-theoretic aspect of the subject is reflected in the
papers by K. R. Davidson, D. R. Pitts, E. G. Katsoulis, C. Ramsey, and O. Shalit [7–12],
F. H. Szafraniec [62], and G. Popescu [42–51]. An algebraic point of view is adopted by
A. Polishchuk and A. Schwarz [38–41], M. Khalkhali, G. Landi, W. D. van Suijlekom, and

A. Moatadelro [19–21], E. Beggs and S. P. Smith [3], R. Ó Buachalla [28, 29]. All this shows
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that noncommutative complex analysis and noncommutative complex geometry will hopefully
reach their bloom period fairly soon.

Our primary goal is to prove a noncommutative version of a classical theorem by Poincaré [37],
which asserts that the polydisk Dn and the ball Bn in Cn are not biholomorphically equivalent
for n ≥ 2. This result is often mentioned in textbooks as one of the first results in function
theory of several complex variables (see, e.g., [27, 54]). To understand how a noncommutative
version of Poincaré’s theorem should look like, let us recall O. Forster’s important result [14]
whose informal meaning is that all essential information about a domain of holomorphy D in Cn

is contained in the algebra O(D) of holomorphic functions on D. To be more precise, Forster’s
theorem states that the functor{

Stein spaces
}
→
{

Fréchet algebras
}
,

(X,OX) 7→ O(X),

is fully faithful. As a consequence, two domains of holomorphy D1 and D2 in Cn are
biholomorphically equivalent if and only if the algebras O(D1) and O(D2) are topologically
isomorphic. Thus Poincaré’s theorem is equivalent to the assertion that the algebras O(Dn) and
O(Bn) are not topologically isomorphic for n ≥ 2.

Now we can explain our plan in more detail. Let C× = C \ {0}. For each q ∈ C× we define
q-analogs of the algebras O(Dn) and O(Bn) to be the completions of the algebraic quantum
affine space Oreg

q (Cn) with respect to certain families of seminorms. Both the resulting algebras
Oq(Dn) and Oq(Bn) were introduced earlier in [35] (see also [36] for a more detailed treatment of
Oq(Dn)), but the definition of Oq(Bn) was given only for 0 < q < 1. Here we propose a different
approach to Oq(Bn) which makes sense for all q ∈ C× and which is equivalent to the approach
of [35] in the case where 0 < q < 1. To justify our definitions, we show that the Fréchet algebra
families {Oq(Dn) : q ∈ C×} and {Oq(Bn) : q ∈ C×} can be arranged into Fréchet algebra bundles
over C×, generalizing thereby our earlier result from [35]. Our main result, i.e., a q-analog of
Poincaré’s theorem, states that Oq(Dn) and Oq(Bn) are not topologically isomorphic if n ≥ 2
and |q| = 1. On the other hand, we show that they are topologically isomorphic if |q| ̸= 1.

This paper is mostly a survey. The proofs are either sketched or omitted. We plan to present
the details elsewhere.

2. Preliminaries
We shall work over the field C of complex numbers. All algebras are assumed to be associative
and unital, and all algebra homomorphisms are assumed to be unital (i.e., to preserve identity
elements). By a Fréchet algebra we mean a complete metrizable locally convex algebra (i.e., a
topological algebra whose underlying space is a Fréchet space). A locally m-convex algebra [25] is
a topological algebra A whose topology can be defined by a family of submultiplicative seminorms
(i.e., seminorms ∥ · ∥ satisfying ∥ab∥ ≤ ∥a∥∥b∥ for all a, b ∈ A). A complete locally m-convex
algebra is called an Arens-Michael algebra [17]. The algebra of holomorphic functions on a
complex manifold X will be denoted by O(X). Recall that O(X) is a Fréchet-Arens-Michael
algebra with respect to the topology of uniform convergence on compact subsets of X.

3. Quantum affine space
Let q ∈ C×. Recall that the algebra Oreg

q (Cn) of regular functions on the quantum affine n-space
(see, e.g., [6]) is generated by n elements x1, . . . , xn subject to the relations xixj = qxjxi for all
i < j. If q = 1, then Oreg

q (Cn) is nothing but the polynomial algebra C[x1, . . . , xn] = Oreg(Cn).

Of course, Oreg
q (Cn) is noncommutative unless q = 1, but the monomials xk = xk11 · · ·xknn (k ∈

Zn
+) still form a basis of Oreg

q (Cn). Thus Oreg
q (Cn) may be viewed as a “deformed” polynomial

algebra.

XXIst International Conference on Integrable Systems and Quantum Symmetries (ISQS21) IOP Publishing
Journal of Physics: Conference Series 474 (2013) 012026 doi:10.1088/1742-6596/474/1/012026

2



The algebras Oq(Dn
r ) and Oq(Bn

r ) that we are going to define will be certain completions of
Oreg

q (Cn). There are many nonequivalent ways to complete this algebra, but, among all the

completions, there is a universal one. Recall that the Arens-Michael envelope, Â, of an algebra
A is the completion of A with respect to the family of all submultiplicative seminorms on A.
The Arens-Michael envelope has the universal property that, for each Arens-Michael algebra B,
there is a 1-1 correspondence

HomAlg(A,B) ∼= HomAM(Â, B),

where Alg is the category of algebras and AM is the category of Arens-Michael algebras.
Moreover, the assignment A 7→ Â is a functor from Alg to AM, and this functor is left adjoint
to the forgetful functor AM→ Alg.

Arens-Michael envelopes were introduced by J. L. Taylor [64] under the name of “completed
locally m-convex envelopes”. Now it is customary to call them “Arens-Michael envelopes”,
following the terminology suggested by A. Ya. Helemskii [17]. As was observed in [33], the
Arens-Michael envelope of a finitely generated algebra is a nuclear Fréchet algebra.

Example 3.1 ( [65]). If A = C[x1, . . . , xn] is the polynomial algebra, then Â = O(Cn), the algebra
of entire functions on Cn.

Example 3.2 ( [34]). If (X,Oreg
X ) is an affine scheme of finite type over C, and if A = Oreg(X),

then Â = O(Xh), where (Xh,OXh
) is the complex space associated to (X,Oreg

X ) (cf. [16,
Appendix B]).

Using these examples as a motivation, we defined [34] the algebra Oq(Cn) of holomorphic
functions on the quantum affine n-space to be the Arens-Michael envelope of Oreg

q (Cn). This
algebra can also be described explicitly as follows. Define a function wq : Zn

+ → R+ by

wq(k) =

{
1 if |q| ≥ 1,

|q|
∑

i<j kikj if |q| < 1.

As was shown in [34], we have

Oq(Cn) =
{
a =

∑
k∈Zn

+

ckx
k : ∥a∥ρ =

∑
k∈Zn

+

|ck|wq(k)ρ|k| <∞ ∀ρ > 0
}
, (1)

where |k| = k1 + · · · + kn for k = (k1, . . . , kn) ∈ Zn
+. The topology on Oq(Cn) is given by the

norms ∥ · ∥ρ (ρ > 0). Moreover, each norm ∥ · ∥ρ is submultiplicative.

4. Quantum polydisk and quantum ball
The explicit construction (1) of Oq(Cn) leads naturally to the following definition.

Definition 4.1 ( [35, 36]). Let q ∈ C×, and let r > 0. We define the algebra of holomorphic
functions on the quantum n-polydisk of radius r ∈ (0,+∞] by

Oq(Dn
r ) =

{
a =

∑
k∈Zn

+

ckx
k : ∥a∥ρ =

∑
k∈Zn

+

|ck|wq(k)ρ|k| <∞ ∀ρ ∈ (0, r)
}
. (2)

The multiplication on Oq(Dn
r ) is uniquely determined by xixj = qxjxi (i < j).

It follows from the above discussion that Oq(Dn
r ) is a Fréchet-Arens-Michael algebra with

respect to the topology determined by the submultiplicative norms ∥ · ∥ρ (ρ ∈ (0, r)). It is a
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simple exercise to show that, if q = 1, then Oq(Dn
r ) is topologically isomorphic to the algebra

O(Dn
r ) of holomorphic functions on the polydisk

Dn
r =

{
z = (z1, . . . , zn) ∈ Cn : max

1≤i≤n
|zi| < r

}
.

If r =∞, then we clearly have Oq(Dn
r ) = Oq(Cn).

The definition of the algebra of holomorphic functions on the quantum ball is less
straightforward. It is based on a theorem by L. A. Aizenberg and B. S. Mityagin [1]. Recall
that a domain D ⊂ Cn is a complete Reinhardt domain if for each z = (z1, . . . , zn) ∈ D and each
(λ1, . . . , λn) ∈ Cn satisfying |λi| ≤ 1 (i = 1, . . . , n) we have (λ1z1, . . . , λnzn) ∈ D. Clearly, the
polydisk Dn

r and the ball

Bn
r =

{
z = (z1, . . . , zn) ∈ Cn :

n∑
i=1

|zi|2 < r2
}

are complete Reinhardt domains.
Given a complete bounded Reinhardt domain D ⊂ Cn, let

bk(D) = sup
z∈D
|zk| (k ∈ Zn

+).

Aizenberg and Mityagin proved that there exists a topological isomorphism

O(D) ∼=
{
f =

∑
k∈Zn

+

ckz
k : ∥f∥s =

∑
k∈Zn

+

|ck|bk(D)s|k| <∞ ∀s ∈ (0, 1)
}
.

Explicitly, the above isomorphism takes each function f ∈ O(D) to its Taylor expansion at 0.
We clearly have bk(Dn

r ) = r|k|. An explicit calculation involving Lagrange’s multipliers shows
that

bk(Bn
r ) =

(
kk

|k||k|

)1/2

r|k|.

Therefore

O(Bn
r ) ∼=

{
f =

∑
k∈Zn

+

ckz
k : ∥f∥ρ =

∑
k∈Zn

+

|ck|
(

kk

|k||k|

)1/2

ρ|k| <∞ ∀ρ ∈ (0, r)

}
. (3)

Now we have to quantize the above algebra. To this end, it will be convenient to represent
O(Bn

r ) in a slightly different way.

Proposition 4.2. There exists a topological isomorphism

O(Bn
r ) ∼=

{
f =

∑
k∈Zn

+

ckz
k : ∥f∥ρ =

∑
k∈Zn

+

|ck|
(

k!

|k|!

)1/2

ρ|k| <∞ ∀ρ ∈ (0, r)

}
. (4)

The proof is a simple application of Stirling’s formula.
The power series representation (4) of O(Bn

r ) is more convenient to us than (3) because there
is a standard way to quantize the factorial. For each k ∈ N, let

[k]q = 1 + q + · · ·+ qk−1; [k]q! = [1]q[2]q · · · [k]q.

It is also convenient to let [0]q! = 1. Finally, given k = (k1, . . . , kn) ∈ Zn
+, we let [k]q! =

[k1]q! · · · [kn]q!.

XXIst International Conference on Integrable Systems and Quantum Symmetries (ISQS21) IOP Publishing
Journal of Physics: Conference Series 474 (2013) 012026 doi:10.1088/1742-6596/474/1/012026

4



Definition 4.3. The space of holomorphic functions on the quantum n-ball of radius r ∈ (0,+∞]
is

Oq(Bn
r ) =

{
a =

∑
k∈Zn

+

ckx
k : ∥a∥ρ =

∑
k∈Zn

+

|ck|

(
[k]|q|−2 ![
|k|
]
|q|−2 !

)1/2
ρ|k| <∞ ∀ρ ∈ (0, r)

}
. (5)

It is immediate from the definition that Oq(Bn
r ) is a Fréchet space with respect to the topology

determined by the norms ∥ · ∥ρ (ρ ∈ (0, r)). However, it is not obvious at all whether it is an
algebra. In fact it is:

Proposition 4.4. The Fréchet space Oq(Bn
r ) is an Arens-Michael algebra with respect to the

multiplication uniquely determined by xixj = qxjxi (i < j). Moreover, each norm ∥ · ∥ρ given
by (5) is submultiplicative.

The proof is based on a q-analog of the Chu-Vandermonde formula (see, e.g., [23, 2.1.2,
Proposition 3]).

If q = 1, then Proposition 4.2 implies that Oq(Bn
r ) ∼= O(Bn

r ). It can also be shown that, if
r =∞, then Oq(Bn

r ) = Oq(Cn) (although this is not that obvious as in the case of the quantum
polydisk algebra).

Proposition 4.5. For each q ∈ C× and each r ∈ (0,+∞] there exist Fréchet algebra
isomorphisms

Oq(Dn
r ) ∼= Oq−1(Dn

r ), xi 7→ xn−i;

Oq(Bn
r ) ∼= Oq−1(Bn

r ), xi 7→ xn−i.

The idea of the proof of Proposition 4.5 is as follows. Clearly, there is an algebra isomorphism
τ : Oreg

q (Cn)→ Oreg
q−1(Cn) taking each xi to xn−i. An explicit calculation shows that τ is isometric

with respect to each norm ∥ · ∥ρ, both on Oq(Dn
r ) and Oq(Bn

r ). The rest is clear.

5. Quantum ball à la Vaksman
In the special case where 0 < q < 1, Oq(Bn

r ) is closely related to L. L. Vaksman’s q-analog of
A(B̄n), the algebra of functions holomorphic on the open unit ball Bn = Bn

1 and continuous on
the closed ball B̄n [70]. Let us recall how Vaksman’s algebra is defined. Assume that 0 < q < 1,
and let Polq(Cn) denote the ∗-algebra generated (as a ∗-algebra) by n elements x1, . . . , xn subject
to the relations

xixj = qxjxi (i < j);

x∗ixj = qxjx
∗
i (i ̸= j);

x∗ixi = q2xix
∗
i + (1− q2)

(
1−

∑
k>i

xkx
∗
k

)
.

(6)

Clearly, for q = 1 we have Polq(Cn) = Pol(Cn), where Pol(Cn) is the algebra of polynomials in
the complex coordinates z1, . . . , zn on Cn and their complex conjugates z̄1, . . . , z̄n. Observe that
the subalgebra of Polq(Cn) generated (as an algebra) by x1, . . . , xn is exactly Oreg

q (Cn). The
algebra Polq(Cn) was introduced by W. Pusz and S. L. Woronowicz [53], although they used

different ∗-generators a1, . . . , an given by ai = (1 − q2)−1/2x∗i . Relations (6) divided by 1 − q2

and written in terms of the ai’s are called the “twisted canonical commutation relations”, and
the algebra Aq = Polq(Cn) defined in terms of the ai’s is sometimes called the “quantum Weyl
algebra” (see, e.g., [2, 18, 23, 72]). Note that, while Polq(Cn) becomes Pol(Cn) for q = 1, Aq

becomes the Weyl algebra. The idea to use the generators xi instead of the ai’s and to consider
Polq(Cn) as a q-analog of Pol(Cn) is probably due to Vaksman [67]; the one-dimensional case
was considered in [22]. The algebra Polq(Cn) serves as a basic example in the general theory of
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quantum bounded symmetric domains developed by Vaksman and his collaborators (see [69,71]
and references therein).

Now let H be a Hilbert space with an orthonormal basis {ek : k ∈ Zn
+}. The algebra

of bounded linear operators on H will be denoted by B(H). Following [53], for each k =
(k1, . . . , kn) ∈ Zn

+ we will write |k1, . . . , kn⟩ for ek. As was proved by Pusz and Woronowicz [53],
there exists a faithful irreducible ∗-representation π : Polq(Cn) → B(H) uniquely determined
by

π(xj)ek =
√

1− q2
√

[kj + 1]q2 q
∑

i>j ki |k1, . . . , kj + 1, . . . , kn⟩

(j = 1, . . . , n, k = (k1, . . . , kn) ∈ Zn
+).

The completion of Polq(Cn) with respect to the operator norm ∥a∥op = ∥π(a)∥ is denoted by
Cq(B̄n) and is called the algebra of continuous functions on the closed quantum ball [70]; see
also [52, 53]. The closure of Oreg

q (Cn) in Cq(B̄n) is denoted by Aq(B̄n) [70]; this is a natural
q-analog of the algebra A(B̄n), which consists of those continuous functions on B̄n that are
holomorphic on Bn.

For each ρ > 0, let γρ be the automorphism of Oreg
q (Cn) uniquely determined by γρ(xi) =

ρxi (i = 1, . . . , n). Define a norm ∥ · ∥∞ρ on Oreg
q (Cn) by

∥a∥∞ρ = ∥γρ(a)∥op (a ∈ Oreg
q (Cn)).

According to Vaksman’s point of view, ∥ · ∥op is a natural q-analog of the supremum norm over
B̄n. Therefore our ∥ · ∥∞ρ is a q-analog of the supremum norm over B̄n

ρ . It is well known that
Oreg(Cn) = C[z1, . . . , zn] is dense in O(Dn

r ); in other words, the completion of Oreg(Cn) with
respect to the family {∥ · ∥∞ρ : 0 < ρ < r} of norms is topologically isomorphic to O(Bn

r ). This
result has the following q-analog.

Theorem 5.1. For each q ∈ (0, 1) and each r ∈ (0,+∞], the completion of Oreg
q (Cn) with

respect to the family {∥ · ∥∞ρ : 0 < ρ < r} of norms is topologically isomorphic to Oq(Bn
r ).

Thus we see that our definition of Oq(Bn
r ) is consistent with the definition given in [35].

6. Free polydisk and free ball
Let Fn = C⟨ζ1, . . . , ζn⟩ denote the free algebra on n generators ζ1, . . . , ζn. Clearly, Oreg

q (Cn)
is nothing but the quotient of Fn modulo the two-sided ideal generated by the elements
ζiζj − qζjζi (i < j). Our next goal is to represent the algebras Oq(Dn

r ) and Oq(Bn
r ) in a similar

way, i.e., as quotients of certain “analytic analogs” of Fn. This will enable us to interpret Oq(Dn
r )

and Oq(Bn
r ) as “deformations” (in a suitable sense) of O(Dn

r ) and O(Bn
r ), respectively.

Let us introduce some notation. For each d ∈ Z+, let Wn,d = {1, . . . , n}d, and let
Wn =

⊔
d∈Z+

Wn,d. Thus a typical element of Wn is a d-tuple α = (α1, . . . , αd) of arbitrary

length d ∈ Z+, where αj ∈ {1, . . . , n} for all j. Given α ∈ Wn,d ⊂ Wn, we let |α| = d. The
only element of Wn,0 will be denoted by ∗. For each α = (α1, . . . , αd) ∈ Wn with d > 0, let
ζα = ζα1 · · · ζαd

∈ Fn. It is also convenient to set ζ∗ = 1 ∈ Fn. The family {ζα : α ∈ Wn} of all
words in ζ1, . . . , ζn is the standard vector space basis of Fn.

Recall from [36] (see also [35]) that each family (Ai)i∈I of Arens-Michael algebras has a
coproduct ∗̂i∈I Ai in the category AM of Arens-Michael algebras. The algebra ∗̂i∈I Ai is called
the Arens-Michael free product of the Ai’s. By definition [35, 36], the algebra of holomorphic
functions on the free n-polydisk of radius r ∈ (0,+∞] is

F (Dn
r ) = O(Dr) ∗̂ · · · ∗̂O(Dr).
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The algebra F (Dn
r ) can also be described more explicitly as follows. Let Fn denote the algebra

of all free formal series a =
∑

α∈Wn
cαζα (where cα ∈ C) with the obvious multiplication. In

other words, Fn = lim←−d
Fn/I

d, where I is the ideal of Fn generated by ζ1, . . . , ζn. Given d ≥ 2

and α = (α1, . . . , αd) ∈Wn,d, let s(α) denote the cardinality of the set{
i ∈ {1, . . . , d− 1} : αi ̸= αi+1

}
.

If d ∈ {0, 1}, we let s(α) = d− 1. By [36, Proposition 7.8], we have

F (Dn
r ) =

{
a =

∑
α∈Wn

cαζα ∈ Fn : ∥a∥ρ,τ =
∑

α∈Wn

|cα|ρ|α|τ s(α)+1 <∞ ∀ρ ∈ (0, r), ∀τ ≥ 1
}
. (7)

The topology on F (Dn
r ) is given by the norms ∥ · ∥ρ,τ (ρ ∈ (0, r), τ ≥ 1), and the multiplication

is given by concatenation. Moreover, each norm ∥ · ∥ρ,τ is submultiplicative.
Another natural candidate for the algebra of holomorphic functions on the free polydisk was

introduced by J. L. Taylor [65,66]. By definition,

F T (Dn
r ) =

{
a =

∑
α∈Wn

cαζα ∈ Fn : ∥a∥ρ =
∑

α∈Wn

|cα|ρ|α| <∞ ∀ρ ∈ (0, r)
}
. (8)

It is easy to see that F (Dn
r ) ⊂ F T (Dn

r ), and that the inclusion of F (Dn
r ) into F T (Dn

r ) is
continuous. On the other hand, F (Dn

r ) ̸= F T (Dn
r ) unless n = 1 or r = ∞. Note also that,

if r = ∞, then both F (Dn
r ) and F T (Dn

r ) are topologically isomorphic to F (Cn), the Arens-
Michael envelope of Fn.

Theorem 6.1. Let q ∈ C×, n ∈ N, and r ∈ (0,+∞].
(i) The algebra Oq(Dn

r ) is topologically isomorphic to the quotient of F (Dn
r ) modulo the closed

two-sided ideal generated by the elements ζiζj − qζjζi (i < j). Moreover, for each ρ ∈ (0, r)
and each τ ≥ 1 the norm ∥ · ∥ρ on Oq(Dn

r ) given by (2) is equal to the quotient of the norm
∥ · ∥ρ,τ on F (Dn

r ) given by (7).
(ii) The algebra Oq(Dn

r ) is topologically isomorphic to the quotient of F T (Dn
r ) modulo the closed

two-sided ideal generated by the elements ζiζj − qζjζi (i < j). Moreover, for each ρ ∈ (0, r)
the norm ∥·∥ρ on Oq(Dn

r ) given by (2) is equal to the quotient of the norm ∥·∥ρ on F T (Dn
r )

given by (8).

Part (i) of Theorem 6.1, except for the equality of the norms, was proved in [36, Theorem
7.13] in the more general multiparameter case. Part (ii) is new.

To formulate a similar result for Oq(Bn
r ), we need G. Popescu’s algebra of “holomorphic

functions on the free ball” [44]. Let H be a Hilbert space, and let T = (T1, . . . , Tn) be an n-
tuple of bounded linear operators on H. Following [44], we identify T with the “row” operator
acting from the Hilbert direct sum Hn = H⊕· · ·⊕H to H. Thus we have ∥T∥ = ∥

∑n
i=1 TiT

∗
i ∥1/2.

For each a =
∑

α cαζα ∈ Fn, the radius of convergence R(a) ∈ [0,+∞] is given by the Cauchy-
Hadamard-type formula

1

R(a)
= lim sup

d→∞

(∑
|α|=d

|cα|2
) 1

2d
.

By [44, Theorem 1.1], for each T ∈ B(H)n such that ∥T∥ < R(a), the series

∞∑
d=0

(∑
|α|=d

cαTα

)
(9)
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converges in B(H) and, moreover,
∑

d ∥
∑

|α|=d cαTα∥ <∞. On the other hand, if H is infinite-

dimensional, then for each R′ > R(a) there exists T ∈ B(H)n with ∥T∥ = R′ such that the
series (9) diverges. This “free operator analog” of the classical Hadamard lemma explains why
the radius of convergence is so called.

By [44, Theorem 1.4], the collection of all a ∈ Fn such that R(a) ≥ r is a subalgebra of Fn.
We denote this algebra by F (Bn

r ) (Popescu uses the notation Hol(B(H)nr )), and we call it the
algebra of holomorphic functions on the free n-ball of radius r [35]. For each a ∈ F (Bn

r ), each
Hilbert space H, and each T ∈ B(H)n with ∥T∥ < r, the sum of the series (9) is denoted by
a(T ). The map

F (Bn
r )→ B(H), a 7→ a(T ),

is an algebra homomorphism.
Fix an infinite-dimensional Hilbert space H, and, for each ρ ∈ (0, r), define a seminorm ∥ · ∥Pρ

on F (Bn
r ) by

∥a∥Pρ = sup{∥a(T )∥ : T ∈ B(H)n, ∥T∥ ≤ ρ}.

As was observed in [44], ∥ · ∥Pρ is in fact a norm on F (Bn
r ). This norm can be viewed as a “free

operator analog” of the supremum norm over B̄n
ρ . By [44, Theorem 5.6], F (Bn

r ) is a Fréchet

algebra with respect to the topology determined by the family {∥ · ∥Pρ : ρ ∈ (0, r)} of norms.
For our purposes, a slightly different definition of F (Bn

r ) is needed. Consider the projection
p : Wn → Zn

+ given by

p(α) = (p1(α), . . . , pn(α)), pj(α) = |α−1(j)|.

Proposition 6.2. There exists a topological isomorphism

F (Bn
r ) ∼=

{
a =

∑
α∈Wn

cαζα ∈ Fn : ∥a∥ρ =
∑
k∈Zn

+

( ∑
α∈p−1(k)

|cα|2
)1/2

ρ|k| <∞ ∀ρ ∈ (0, r)

}
. (10)

Moreover, each norm ∥ · ∥ρ given by (10) is submultiplicative.

Using Proposition 6.2, we obtain the following theorem, which extends our earlier result
from [35].

Theorem 6.3. For each q ∈ C×, the algebra Oq(Bn
r ) is topologically isomorphic to the quotient

of F (Bn
r ) modulo the closed two-sided ideal generated by the elements ζiζj − qζjζi (i < j).

Moreover, for each ρ ∈ (0, r) the norm ∥ · ∥ρ on Oq(Bn
r ) given by (5) is equal to the quotient of

the norm ∥ · ∥ρ on F (Bn
r ) given by (10).

7. Fréchet algebra bundles
Now we can explain in which sense the algebras Oq(Dn

r ) and Oq(Bn
r ) are “deformations” of O(Dn

r )
and O(Bn

r ), respectively. Let us recall some definitions from [15] (in a slightly modified form).
Suppose that X is a locally compact, Hausdorff topological space. By a family of vector spaces
over X we mean a pair (E, p), where E is a set and p : E → X is a surjective map, together
with a vector space structure on each fiber Ex = p−1(x) (x ∈ X). As usual, we let

E ×X E = {(u, v) ∈ E ×E : p(u) = p(v)}.

By a prebundle of topological vector spaces over X we mean a family (E, p) of vector spaces over
X together with a topology on E such that p is continuous and open, the zero section 0: X → E
is continuous, and the operations

E ×X E → E, (u, v) 7→ u + v,

C×E → E, (λ, u) 7→ λu,
(11)
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are also continuous.
Let (E, p) be a family of vector spaces over X. By definition, a function ∥ · ∥ : E → [0,+∞)

is a seminorm if the restriction of ∥ · ∥ to each fiber is a seminorm in the usual sense. A family
N = {∥ · ∥λ : λ ∈ Λ} of seminorms on E is said to be directed if for each λ, µ ∈ Λ there exist
C > 0 and ν ∈ Λ such that ∥ · ∥λ ≤ C∥ · ∥ν and ∥ · ∥µ ≤ C∥ · ∥ν . If N = {∥ · ∥λ : λ ∈ Λ} and
N ′ = {∥ · ∥µ : µ ∈ Λ′} are two directed families of seminorms on E, then we say that N is
dominated by N ′ (and write N ≺ N ′) if for each λ ∈ Λ there exist C > 0 and µ ∈ Λ′ such
that ∥ · ∥λ ≤ C∥ · ∥µ. If N ≺ N ′ and N ′ ≺ N , then we say that N and N ′ are equivalent
and write N ∼ N ′.

Remark 7.1. A directed family N = {∥ · ∥λ : λ ∈ Λ} of seminorms on E determines a uniform
structure U (N ) on E whose basis consists of all sets of the form{

(u, v) ∈ E ×X E : ∥u− v∥λ < ε
}

(λ ∈ Λ, ε > 0).

It is easy to see that N ≺ N ′ if and only if U (N ) ⊂ U (N ′), and consequently N ∼ N ′ if
and only if U (N ) = U (N ′).

The following definition is essentially a locally convex version of the notion of a Banach
bundle in the sense of J. M. G. Fell (see, e.g., [13]).

Definition 7.2. Let (E, p) be a prebundle of topological vector spaces over X, and let
N = {∥ · ∥λ : λ ∈ Λ} be a directed family of seminorms on E. We say that N is admissible if
for each x ∈ X the sets

{u ∈ E : p(u) ∈ U, ∥u∥λ < ε} (λ ∈ Λ, ε > 0, U ⊆ X is an open neighborhood of x)

form a base of open neighborhoods of 0 ∈ Ex. By a locally convex uniform structure on (E, p)
we mean the equivalence class of an admissible directed family of seminorms on E. By a locally
convex bundle over X we mean a prebundle of topological vector spaces over X together with
a locally convex uniform structure. A locally convex algebra bundle over X is a locally convex
bundle (E, p) over X together with an algebra structure on each fiber Ex such that the map

mE : E ×X E → E, (u, v) 7→ uv,

is continuous. A Fréchet algebra bundle over X is a locally convex algebra bundle (E, p) over X
such that each fiber Ex is a Fréchet algebra.

The following result is an improvement of [35, Theorem 6.1].

Theorem 7.3. Let n ∈ N, and let r ∈ (0,+∞].
(i) There exists a Fréchet algebra bundle (D, p) over C× such that for each q ∈ C× we have

Dq
∼= Oq(Dn

r ).
(ii) There exists a Fréchet algebra bundle (B, p) over C× such that for each q ∈ C× we have

Bq
∼= Oq(Bn

r ).

In fact, we constructed the bundles (D, p) and (B, p) already in [35, Theorem 6.1], but
we did not know how the fibers of (B, p) look like unless q ∈ (0, 1]. The construction is as
follows. Let z denote the complex coordinate on C×, and let Odef(Dn

r ) denote the quotient of
O(C×,F (Dn

r )) modulo the closed two-sided ideal generated by the elements xixj−zxjxi (i < j).
The algebra Odef(Dn

r ) is a Fréchet O(C×)-algebra in a canonical way (i.e., we have a continuous
homomorphism from O(C×) to the center of Odef(Dn

r )). Given a Fréchet O(C×)-algebra R, we
define the fiber of R over q ∈ C× to be Rq = R/MqR, where Mq = {f ∈ O(C×) : f(q) = 0}.
Let now E =

⊔
q∈C× Rq, and let p : E → C× take each Rq to q. There is a canonical way to

topologize E in such a way that (E, p) becomes a Fréchet algebra bundle over C×. Applying
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this construction to R = Odef(Dn
r ), we obtain a Fréchet algebra bundle (D, p) over C× whose

fibers are equal to those of Odef(Dn
r ). On the other hand, Theorem 6.1 (i) implies that the fiber

of Odef(Dn
r ) over q ∈ C× is isomorphic to Oq(Dn

r ). We can also use F T (Dn
r ) instead of F (Dn

r )
in the above construction; the deformation algebra Odef(Dn

r ) and hence the bundle (D, p) will
then be the same. By replacing F (Dn

r ) with F (Bn
r ) is the above construction, and by using

Theorem 6.3 instead of Theorem 6.1, we obtain a Fréchet O(C×)-algebra Odef(Bn
r ) and a Fréchet

algebra bundle (B, p) whose fiber over q ∈ C× is isomorphic to Oq(Bn
r ).

Remark 7.4. We hope that Theorem 7.3 may be of interest from the viewpoint of “analytic”
deformation theory of associative algebras. Recall that most papers and monographs on algebraic
deformation theory deal with formal deformations. Roughly, this means that the deformed
product of two elements of an algebra A is no longer an element of A, but is a formal power
series with coefficients in A. To some extent, such an approach to deformation theory is dictated
by convenience considerations. However, formal deformations are not entirely satisfactory from
the point of view of physics. Indeed, only those deformations are physically interesting that are
represented by convergent power series [4]. In other words, one should be able to substitute
concrete values of Planck’s constant into the deformed product. The first successful attempt to
develop a theory satisfying this requirement was made by M. Rieffel [55–58]. In his approach,
a deformation is a continuous field (or a bundle) of C∗-algebras endowed with an additional
structure. See [59] for a recent survey.

For a number of reasons, it is natural to expect that there should be an approach intermediate
between the formal and continuous (i.e., C∗-algebraic) deformation theories. Specifically, it is
desirable to have a “differentiable” or “complex analytic” deformation theory. Perhaps the
first attempt to develop such a theory was made by M. J. Pflaum and M. Schottenloher [32].
Important special cases of convergent deformed products were studied by H. Omori, Y. Maeda,
N. Miyazaki, and A. Yoshioka [30, 31], and by S. Beiser, H. Römer, and S. Waldmann [4].
Quite recently, very interesting preprints by S. Beiser, G. Lechner, and S. Waldmann [5, 24]
have appeared, in which a rather general approach to analytic deformation theory has been
presented. On the other hand, so far nothing is known about deformations of algebras of
holomorphic functions on classical domains. We do not try to give a general definition of a
Fréchet algebra deformation here, but we believe that such a definition should be similar to
that given by Rieffel in the C∗-algebra case. Also, we would like to note that our deformation
algebras Odef(Dn

r ) and Odef(Bn
r ) are not topologically free (moreover, they are not topologically

projective) over O(C×), so they do not fit into the framework suggested in [32].

8. A q-analog of Poincaré’s theorem
We now turn to our main question of whether Oq(Dn

r ) and Oq(Bn
r ) are topologically isomorphic.

The answer is as follows.

Theorem 8.1. Let n ∈ N and r ∈ (0,+∞].
(i) If n ≥ 2, r <∞, and |q| = 1, then Oq(Dn

r ) and Oq(Bn
r ) are not topologically isomorphic.

(ii) If |q| ̸= 1, then Oq(Dn
r ) and Oq(Bn

r ) are topologically isomorphic (in fact, they are equal as
power series algebras).

The proof of part (ii) is elementary in the case where |q| > 1. The case where |q| < 1 is
reduced to the previous one via Proposition 4.5.

The proof of part (i) is more involved and is based on an Arens-Michael algebra version
of the joint spectral radius (see, e.g., [26]). Let A be an Arens-Michael algebra, and let
{∥ · ∥λ : λ ∈ Λ} be a directed defining family of submultiplicative seminorms on A. Given
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an n-tuple a = (a1, . . . , an) ∈ An, we define the joint ℓp-spectral radius rAp (a) by

rAp (a) = sup
λ∈Λ

lim
d→∞

( ∑
α∈Wn,d

∥aα∥pλ
)1/pd

for 1 ≤ p <∞;

rA∞(a) = sup
λ∈Λ

lim
d→∞

(
sup

α∈Wn,d

∥aα∥λ
)1/d

.

(12)

In the case of Banach algebras, the joint ℓ∞-spectral radius was introduced by G.-C. Rota and
W. G. Strang [60]. The case p <∞ was studied by A. So ltysiak [61] for commuting n-tuples in
a Banach algebra. The observation that a similar definition makes sense in the noncommutative
case is probably due to V. Müller [26, C.32.2].

It is easy to show that rAp (a) does not depend on the choice of a directed defining family
of submultiplicative seminorms on A. Moreover, if φ : A → B is a continuous homomorphism
of Arens-Michael algebras, then for each a = (a1, . . . , an) ∈ An we have rBp (φ(a)) ≤ rAp (a),
where φ(a) = (φ(a1), . . . , φ(an)). In particular, if φ : A→ B is a topological isomorphism, then
rBp (φ(a)) = rAp (a). In contrast to the Banach algebra case, it may happen that rAp (a) = +∞.
For example, if A = O(C) and z ∈ A is the complex coordinate, then an easy computation
shows that rAp (z) = +∞ for all p.

The following example is crucial for our purposes. Let |q| = 1, and let x = (x1, . . . , xn) denote
the system of canonical generators of Oq(Dn

r ) or Oq(Bn
r ). Then we have

r
Oq(Bn

r )
2 (x) = r and r

Oq(Dn
r )

2 (x) = r
√
n. (13)

Now we can explain the idea of the proof of Theorem 8.1 (i). Fix q ∈ C×, q ̸= 1, with |q| = 1.
Let A = Oq(Dn

r ) and B = Oq(Bn
r ), and assume that φ : B → A is a topological isomorphism.

For each i = 1, . . . , n, let fi = φ(xi). A tedious but elementary algebraic argument shows that
there exists a permutation σ ∈ Sn such that

fi = λixσ(i) + terms of higher degree,

where |λi| = 1. Hence for each α = (α1, . . . , αd) ∈Wn we have

fα = λαxσ(α) + terms of higher degree,

where σ(α) = (σ(α1), . . . , σ(αd)) and λα = λα1 · · ·λαd
. This implies that for each ρ ∈ (0, r)

we have ∥fα∥ρ ≥ ∥xσ(α)∥ρ = ∥xα∥ρ, where ∥ · ∥ρ is the norm on Oq(Dn
r ) given by (2). Hence

rA2 (f) ≥ rA2 (x). On the other hand, rA2 (f) = rB2 (x), because φ is a topological isomorphism.
Taking into account (13), we conclude that r = rB2 (x) ≥ rA2 (x) = r

√
n, whence n = 1.

9. Open problems
We conclude the paper with a couple of open problems. The first problem was already mentioned
in Section 5 and is inspired by the fact that the algebra Oq(Bn

r ) is defined for all q ∈ C×.

Problem 9.1. Is it possible to define Vaksman’s algebras Cq(B̄n) and Aq(B̄n) in the case where
q /∈ (0, 1]? If yes, then can Theorem 5.1 be extended to this case?

The second problem is related to the notion of an HFG algebra introduced in [35, 36]. Let
F (Cn) denote the Arens-Michael envelope of the free algebra Fn (see Section 6). A Fréchet
algebra A is said to be holomorphically finitely generated (HFG for short) if A is isomorphic
to a quotient of F (Cn) for some n. There is also an “internal” definition given in terms of
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J. L. Taylor’s free functional calculus [65]. By [36, Theorem 3.22], a commutative Fréchet-
Arens-Michael algebra is holomorphically finitely generated if and only if it is topologically
isomorphic to O(X) for some Stein space (X,OX) of finite embedding dimension. Together
with Forster’s theorem (see Section 1), this implies that the category of commutative HFG
algebras is anti-equivalent to the category of Stein spaces of finite embedding dimension. There
are many natural examples of noncommutative HFG algebras; see [36, Section 7]. For instance,
Oq(Dn

r ) and F (Dn
r ) are HFG algebras. By Theorem 8.1 (ii), Oq(Bn

r ) is an HFG algebra provided
that |q| ̸= 1.

Problem 9.2. Is Oq(Bn
r ) an HFG algebra in the case where |q| = 1, q ̸= 1?
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[28] Ó Buachalla R 2012 Quantum bundle description of quantum projective spaces Comm Math Phys 316 no 2

345–373
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