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Abstract. Functional equations methods are a fundamental part of the theory of Exactly
Solvable Models in Statistical Mechanics and they are intimately connected with Baxter’s
concept of commuting transfer matrices. This concept has culminated in the celebrated Yang-
Baxter equation which plays a fundamental role for the construction of quantum integrable
systems and also for obtaining their exact solution. Here I shall discuss a proposal that has
been put forward in the past years, in which the Yang-Baxter algebra is viewed as a source
of functional equations describing quantities of physical interest. For instance, this method
has been successfully applied for the description of the spectrum of open spin chains, partition
functions of elliptic models with domain wall boundaries and scalar product of Bethe vectors.
Further applications of this method are also discussed.

1. Introduction

Exact solutions have played an important role for the development of physical theories and
assumptions and their contributions can be seen in a variety of contexts. For instance, Onsager’s
solution of the two-dimensional Ising model [1] not only showed that the formalism of Statistical
Mechanics was indeed able to describe phase transitions, but also unveiled that the critical
behavior of the Ising model specific heat was not included in Landau’s theory of critical
exponents [2]. In a different context, the exact solution of the one-dimensional Heisenberg
spin chain [3] was also of fundamental importance for elucidating the value of the spin carried
by a spin wave [4].

Bethe’s celebrated solution of the isotropic Heisenberg chain [3] consists of a fundamental
stone of the modern theory of quantum integrable systems and its influence can be seen in
several areas ranging from Quantum Field Theory [5, 6] to Combinatorics [7]. The hypothesis
employed by Bethe for the model wave function is known nowadays as ‘Bethe ansatz’ and it
became a standard tool in the theory of quantum integrable systems. On the other hand,
Onsager’s solution of the two-dimensional Ising model was based on Kramers and Wannier
transfer matrix technique [8,9] which did not have any previous connection with Bethe ansatz.
Nevertheless, the transfer matrix technique was later on recognized as a fundamental ingredient
for the establishment of integrability in the sense of Baxter [10].

Within this scenario Baxter’s concept of integrability appeared as an analogous of Liouville’s
classical concept where now the transfer matrix was playing the role of generating function
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of quantities in involution [10]. More precisely, in Baxter’s framework a family of mutually
commuting operators is obtained as a consequence of transfer matrices which commute for
different values of their parameters. In their turn, these commutative transfer matrices are
built directly from solutions of the Yang-Baxter equation.

The importance of the Yang-Baxter equation was only better understood with the proposal
of the Quantum Inverse Scattering Method [11, 12]. This method unified the transfer matrix
approach, the Yang-Baxter equation and the Bethe ansatz employed to solve a variety of
one-dimensional quantum many-body systems. Besides that, the Quantum Inverse Scattering
Method, or QISM for short, put in evidence the so called Yang-Baxter algebra which latter on
led to the notion of Quantum Groups [13].

The Yang-Baxter algebra plays a fundamental role within the QISM and it is one of the main
ingredients for the construction of exact eigenvectors of transfer matrices of two-dimensional
lattice systems and hamiltonians of one-dimensional quantum many-body systems. However,
the applications of the Yang-Baxter algebra are not limited to that and alternative ways of
exploring the Yang-Baxter algebra are also known in the literature. For instance, it can be
used to build solutions of the Knizhnik-Zamolodchikov equation [14] in the sense of [15,16].

More recently, the Yang-Baxter algebra was also shown to be capable of rendering functional
equations describing quantities such as the spectrum of spin chains and partition functions of
vertex models [17–22]. Here we aim to discuss this latter possibility.

This article is organized as follows. In Section 2 we introduce definitions which will be
relevant throughout this paper and also present the lattice systems we shall consider by
means of this algebraic-functional approach. In Section 3 we illustrate how the Yang-Baxter
algebra can be converted into functional equations and, in particular, we derive functional
relations describing the partition function of the elliptic Eight-Vertex-SOS model with domain
wall boundaries and scalar products of Bethe vectors. The solutions of the aforementioned
functional equations are also presented in Section 3, and in Section 4 we unveil a family of
partial differential equations underlying our functional relations. Concluding remarks are then
discussed in Section 5.

2. Yang-Baxter relations and lattice systems

Lattice systems of Statistical Mechanics have a long history and remarkable examples share the
property of being exactly solvable [23]. The most prominent examples, such as the Ising model
and Eight-Vertex model, have been solved in two-dimensions and this choice of dimensionality
undoubtedly grants them special properties. For instance, in [24, 25] Smirnov proved that the
scaling limit of the critical site percolation on a two-dimensional triangular lattice is conformally
invariant. The importance of this proof can be seen in two ways: from the mathematical
perspective Smirnov’s proof introduced the concept of ‘discrete’ harmonic functions. On the
other hand, this proof provides a solid ground for the CFT (Conformal Field Theory) methods
employed by Cardy in [26].

The concept of exact solvability seems to be intrinsically dependent on the method we are
employing. However, it is nowadays well accepted that Baxter’s commuting transfer matrices
approach [10] plays a fundamental role for two-dimensional lattice systems within a variety
of methods. For instance, the requirement of commuting transfer matrices leads us to the
Yang-Baxter equation/algebra [11, 12] and also their dynamical counterparts [27, 28]. Those
algebraic relations constitute the foundations of the algebraic Bethe ansatz [12] and, as firstly
demonstrated in [17], they are also able to describe spectral problems in terms of functional
equations.

XXIst International Conference on Integrable Systems and Quantum Symmetries (ISQS21) IOP Publishing
Journal of Physics: Conference Series 474 (2013) 012020 doi:10.1088/1742-6596/474/1/012020

2



Vertex and Solid-on-Solid models are some important examples of exactly solvable lattice
systems and both of them admit an operatorial description in terms of generators of the
Yang-Baxter algebra and its dynamical version. Here we will be mainly interested in the
so called Eight-Vertex-SOS and Six-Vertex models, and for that it is enough to present only
the dynamical Yang-Baxter equation/algebra while the standard Yang-Baxter relations will be
obtained as a particular limit.

Dynamical Yang-Baxter equation. Let g be a finite dimensional Lie algebra over C and h ⊂ g
be an abelian Lie subalgebra. Also, let V =

⊕
φ∈h∗ V[φ] with V[φ] = {v ∈ V | hv =

φ(h)v for h ∈ h} be a diagonalizable h-module. Then for λj , γ, θ ∈ C the dynamical Yang-
Baxter equation reads

R12(λ1 − λ2, θ − γh3)R13(λ1 − λ3, θ)R23(λ2 − λ3, θ − γh1) =

R23(λ2 − λ3, θ)R13(λ1 − λ3, θ − γh2)R12(λ1 − λ2, θ) . (2.1)

Eq. (2.1) is a relation for an operator Rij : C × h∗ 7→ End(Vi ⊗ Vj) where Vi
(i = 1, 2, 3) are finite dimensional diagonalizable h-modules. In this way we have (2.1) defined
in End(V1 ⊗ V2 ⊗ V3) with tensor products being understood as

R12(λ, θ − γh3)(v1 ⊗ v2 ⊗ v3) = (R12(λ, θ − γφ)(v1 ⊗ v2))⊗ v3 . (2.2)

The term φ in (2.2) corresponds to the weight of v3 while the remaining elements R13 and R23

are computed by analogy. As far as the solutions of (2.1) are concerned, it is currently well
understood the importance of the elliptic quantum groups Ep,q[g] for their characterization.
Here we shall restrict ourselves to the case g ' sl(2), and in that case we consider h as the sl(2)
Cartan subalgebra while V ∼= C2. Thus h = diag(1,−1) and we have the explicit solution

R(λ, θ) =


a+(λ, θ) 0 0 0

0 b+(λ, θ) c+(λ, θ) 0
0 c−(λ, θ) b−(λ, θ) 0
0 0 0 a−(λ, θ)


a±(λ, θ) = f(λ+ γ)

b±(λ, θ) = f(λ)f(θ∓γ)
f(θ)

c±(λ, θ) = f(γ)f(θ∓λ)
f(θ)

.

(2.3)

The function f in (2.3) is essentially a Jacobi Theta-function. More precisely we have
f(λ) = Θ1(iλ, τ)/2, according to the conventions of [29], and the dependence of f with the
elliptic nome τ is omitted for convenience.

Dynamical Yang-Baxter algebra. Let Va ∼= V, VQ ∼= V⊗L and consider an operator Ta ∈
End(Va ⊗ VQ) for an arbitrary integer L. Then the dynamical Yang-Baxter equation (2.1)
ensures the associativity of the relation

Rab(λ1 − λ2, θ − γH)Ta(λ1, θ)Tb(λ2, θ − γĥa) =

Tb(λ2, θ)Ta(λ1, θ − γĥb)Rab(λ1 − λ2, θ) , (2.4)

for R-matrices satisfying the weight zero condition, i.e. [R, h ⊗ 1 + 1 ⊗ h] = 0. As usual we

define hi ∈ VQ as h acting on the i-th node of the tensor product space VQ while H =
∑L

i=1 hi.
The generator H can be identified with the sl(2) Cartan generator acting on VQ and one can
also show that

Ta(λ, θ) =
−→∏

1≤i≤L
Rai(λ− µi, θ̂i) (2.5)
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is a representation of (2.4) with θ̂i = θ − γ
∑L

k=i+1 hk and arbitrary parameters µi ∈ C.
The operator T is usually denominated dynamical monodromy matrix, or simply monodromy
matrix, and it consists of a matrix in the space Va whose entries are operators in the space
VQ. Thus for the Ep,q[sl(2)] solution (2.3), our monodromy matrix can be recasted as

T (λ, θ) =

(
A(λ, θ) B(λ, θ)
C(λ, θ) D(λ, θ)

)
(2.6)

where A,B, C,D ∈ End((C2)⊗L).

Remark 1. An important limit of (2.3) is the limit p = eiπτ → 0 where the elliptic Theta-
functions degenerate into hyperbolic ones. Furthermore, if we also consider the limit θ → ∞
we are left with the standard R-matrix and Yang-Baxter relations of the six-vertex model [23].

Integrable lattice systems. Exact solvability of two-dimensional lattice systems can be achieved
from certain conditions of integrability in analogy to the theory of integrable differential
equations. This condition is fulfilled by commuting transfer matrices which is assured by local
equivalence transformations satisfied by the model statistical weights [23]. For vertex models
we can encode the statistical weight of a given vertex configuration as the entry of a certain
matrix R. In this way the aforementioned equivalence transformation requires this R-matrix to
satisfy the celebrated Yang-Baxter equation. For Solid-on-Solid models, or SOS for short, the
condition of integrability in the sense of Baxter requires the model statistical weights to satisfy
the so called Hexagon identity [30]. This condition was shown in [27] to be directly related to
the dynamical Yang-Baxter equation (2.1), and in what follows we shall briefly describe some
important examples of integrable SOS and vertex lattice systems.

(i) Eight-Vertex-SOS model with domain wall boundaries: This model consists of a two-
dimensional lattice system defined on a square lattice. It is built from the juxtaposition
of plaquettes where we associate a set of state variables to the corners of each plaquette
in order to characterize its allowed configurations. As far as boundary conditions are
concerned, the case of domain wall boundaries consists of the assumption that the
plaquettes at the border are fixed at a particular configuration. This model has been
previously considered in [31–34] and here we shall adopt the conventions of [20,21]. In this
way the partition function of the Eight-Vertex-SOS model with domain wall boundaries
can be written as

Zθ = 〈0̄|
−→∏

1≤j≤L
B(λj , θ + jγ) |0〉 , (2.7)

where the operators B(λ, θ) are defined through the relations (2.6), (2.3) and (2.5). In
their turn the vectors |0〉 and |0̄〉 are explicitly given by

|0〉 =

(
1
0

)⊗L
|0̄〉 =

(
0
1

)⊗L
. (2.8)

(ii) Scalar product of Bethe vectors: The evaluation of partition functions of lattice systems
such as vertex models with periodic boundary conditions can be conveniently translated
into an eigenvalue problem for an operator usually denominated transfer matrix [8, 9].
The diagonalization of transfer matrices for integrable vertex models can be performed,
for instance, through the Quantum Inverse Scattering Method [12]. Within that
method, Bethe vectors arise as an ansatz capable of determining transfer matrices exact
eigenvectors. In a slightly different context, scalar products of Bethe vectors can also
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be regarded as the partition function of a vertex model with special boundary conditions
[35,36], and this is the interpretation we shall pursue here. As it was stressed out in Remark
1, the standard six-vertex model relations can be obtained from (2.3) in a particular limit.
In that limit we have A(λ, θ) → A(λ), B(λ, θ) → B(λ), C(λ, θ) → C(λ), D(λ, θ) → D(λ)
and the scalar product of Bethe vectors Sn then reads

Sn = 〈0|
←−∏

1≤i≤n
C(λCi )

−→∏
1≤i≤n

B(λBi ) |0〉 . (2.9)

In formulae (2.9) we have considered the description employed in [36] while the vector |0〉
has been defined in (2.8).

From (2.7) and (2.9) we can see that the above defined partition functions are given as
the expected value of a product of generators of the Yang-Baxter algebra and its dynamical
counterpart. In what follows we shall demonstrate how the algebraic relations (2.4) can be
explored yielding functional equations determining the aforementioned quantities.

3. Yang-Baxter algebra and functional relations

In order to illustrate how the Yang-Baxter algebra can be employed to derive functional
relations, we shall consider the six-vertex model limit of (2.1), (2.3) and (2.4) for the sake
of simplicity. In particular, the relation (2.4) then encodes a total of sixteen commutation rules
involving the set of generators M(λ) = {A,B,C,D}(λ) evaluated at different values of the
spectral parameter λ.

From the perspective of Quantum Field Theory one can regard the operators A(λ) and D(λ)
as diagonal fields while B(λ) and C(λ) plays the role of creation and annihilation fields. As far
as we are concerned with an eigenvalue problem involving the set of generators M(λ), i.e. the
diagonalization of a transfer matrix [37, 12], the framework of Quantum Field Theory is quite
appealing and it seems natural to build the corresponding eigenvectors as elements of a Fock
space. In particular, this approach is encouraged by the structure of the commutation relations
in (2.4). Those commutation rules constitute one of the corner stones of the algebraic Bethe
ansatz [12] and for instance let us single out the following one

A(λ1)B(λ2) =
a(λ2 − λ1)

b(λ2 − λ1)
B(λ2)A(λ1)− c(λ2 − λ1)

b(λ2 − λ1)
B(λ1)A(λ2) , (3.1)

where a(λ) = sinh (λ+ γ), b(λ) = sinh (λ) and c(λ) = sinh (γ). Within the framework of the
algebraic Bethe ansatz we usually regard (3.1) as a relation between a diagonal field and a
creation field. Nevertheless, this is not the only way one can explore relations of type (3.1),
and in what follows we shall see they can also be projected as a functional relation.

Definition 1. Let π : End(VQ)× End(VQ) 7→ C be a continuous and bi-additive map. Due to
(3.1), or more generally (2.4), it is convenient to specialize the map π to π2 defined as

π2 : M(λ)×M(µ) 7→ C[λ±1, µ±1] . (3.2)

The 2-tuple (ξ1, ξ2) : ξ1 ∈ M(λ), ξ2 ∈ M(µ) originated from the Cartesian product
M(λ) ×M(µ) is then simply understood as the matrix product ξ1ξ2. In other words the map
π2 associates a two-variable complex function to any quadratic form in (2.4).
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The map π2 defined in (3.2) is able to associate a functional relation to any commutation
rule contained in (2.4). For instance, the map (3.2) applied on (3.1) yields the relation

b(λ2 − λ1)f(λ1, λ2) = a(λ2 − λ1)f̄(λ2, λ1)− c(λ2 − λ1)f̄(λ1, λ2) (3.3)

where f(λ1, λ2) = π2(A(λ1)B(λ2)) and f̄(λ1, λ2) = π2(B(λ1)A(λ2)).

The study of functional equations has a long history, see for instance the monograph [38],
and they play a remarkable role in Statistical Mechanics [23] and Conformal Field Theory [39].
Within those contexts they appear intimately related to Baxter’s concept of commuting transfer
matrices [10] and among prominent examples we have Baxter’s T − Q relation [40], inversion
relation [41], analytical Bethe ansatz [42] and Y -system [43,44]. Also, it is worth mentioning the
quantum Knizhnik-Zamolodchikov equation [45] which describes form factors and correlation
functions in integrable field theories [46]. Here we intend to demonstrate that partition
functions of integrable lattice models, such as (2.7) and (2.9), can also be described by functional
equations. Interestingly, the functional equations describing those partition functions follow
directly from the Yang-Baxter algebra within the lines above discussed. In order to show that
we first need to generalize the Definition 1 in the following way.

Definition 2. Let n be an integer. Then we define the n-additive continuous map πn as

πn : M(λ1)×M(λ2)× · · · ×M(λn) 7→ C[λ±1
1 , λ±1

2 , . . . , λ±1
n ] . (3.4)

Similarly to (3.2) the n-tuple (ξ1, ξ2, . . . , ξn) : ξi ∈M(λi) is understood as the non-commutative

product
−→∏

1≤i≤n
ξi. In other words, the map πn associates a n-variable complex function to a

product of n generators of the Yang-Baxter algebra.

Realization of πn. A simple choice of realization of πn is the scalar product with vectors
|ψ〉 , |ψ′〉 ∈ VQ. More precisely, we can readily see that

πn(F) =
〈
ψ′
∣∣F |ψ〉 (3.5)

is a realization of πn for any element F ∈M(λ1)×M(λ2)×· · ·×M(λn). At this stage |ψ〉 and
|ψ′〉 are arbitrary vectors but it will become clear that particular choices can render interesting
functional equations describing quantities such as (2.7) and (2.9).

3.1. Functional equation for Zθ
In this section we aim to show how a functional equation for the partition function Zθ can be
derived within the lines discussed in Section 3. For that the first step is to find appropriate
vectors |ψ〉 and |ψ′〉 in order to employ the realization (3.5). In addition to that it is also
important to consider suitable elements F such that we end up with an equation capable of
determining the desired partition function. Although there is no precise recipe for selecting
|ψ〉, |ψ′〉 and F , we shall see that some properties of the elements entering in the definitions
(2.7) and (2.8) can help us to sort that out.

Highest weight vectors. The vectors |0〉 and |0̄〉 defined in (2.8) are sl(2) highest and lowest
weight vectors. They satisfy the following properties:
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A(λ, θ) |0̄〉 =
f(θ − γ)

f(θ + (L− 1)γ)

L∏
j=1

f(λ− µj) |0̄〉 A(λ, θ) |0〉 =
L∏
j=1

f(λ− µj + γ) |0〉

D(λ, θ) |0〉 =
f(θ + γ)

f(θ − (L− 1)γ)

L∏
j=1

f(λ− µj) |0〉 D(λ, θ) |0̄〉 =

L∏
j=1

f(λ− µj + γ) |0̄〉

C(λ, θ) |0〉 = 0 B(λ, θ) |0̄〉 = 0 (3.6)

〈0̄| A(λ, θ) =
f(θ − γ)

f(θ + (L− 1)γ)

L∏
j=1

f(λ− µj) 〈0̄| 〈0| A(λ, θ) =
L∏
j=1

f(λ− µj + γ) 〈0|

〈0| D(λ, θ) =
f(θ + γ)

f(θ − (L− 1)γ)

L∏
j=1

f(λ− µj) 〈0| 〈0̄| D(λ, θ) =

L∏
j=1

f(λ− µj + γ) 〈0̄|

〈0̄| C(λ, θ) = 0 〈0| B(λ, θ) = 0 (3.7)

The expressions (3.6) and (3.7) follow from the definitions (2.5), (2.3) and the highest/lowest
weight property of |0〉 and |0̄〉.

Yang-Baxter relations of degree n. The relations arising from the dynamical Yang-Baxter
algebra (2.4) involve the set of generators M(λ, θ) = {A,B, C,D}(λ, θ) and H. Although some
entries of (2.4) contain products of the form M(λ1, θ1) × M(λ2, θ2) × f(H), there are still
commutation rules with all terms in M(λ1, θ1)×M(λ2, θ2). Those are the relations that will
be explored here and among them we have the following ones

B(λ1, θ)B(λ2, θ + γ) = B(λ2, θ)B(λ1, θ + γ)

A(λ1, θ + γ)B(λ2, θ) =
f(λ2 − λ1 + γ)

f(λ2 − λ1)

f(θ + γ)

f(θ + 2γ)
B(λ2, θ + γ)A(λ1, θ + 2γ)

− f(θ + γ − λ2 + λ1)

f(λ2 − λ1)

f(γ)

f(θ + 2γ)
B(λ1, θ + γ)A(λ2, θ + 2γ) .

(3.8)

Both expressions in (3.8) are quadratic and their repeated use is able to provide relations of
degree n for a subset of elements F ⊂ Wn = M(λ0, θ0) ×M(λ1, θ1) × · · · × M(λn−1, θn−1).
More precisely, the iteration of (3.8) yields the following relation of degree n+ 1,

A(λ0, θ + γ)Yθ−γ(λ1, . . . , λn) =

f(θ + γ)

f(θ + (n+ 1)γ)

n∏
j=1

f(λj − λ0 + γ)

f(λj − λ0)
Yθ(λ1, . . . , λn)A(λ0, θ + (n+ 1)γ)

−
n∑
i=1

f(θ + γ − λi + λ0)

f(θ + (n+ 1)γ)

f(γ)

f(λi − λ0)

n∏
j=1

j 6=i

f(λj − λi + γ)

f(λj − λi)
×

Yθ(λ0, λ1, . . . , λi−1, λi+1, . . . , λn)A(λi, θ + (n+ 1)γ) , (3.9)

where Yθ(λ1, . . . , λn) =
−→∏

1≤j≤n
B(λj , θ + jγ).
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Building πn for Zθ. The relations (3.6) and (3.7) suggest the prescription |ψ〉 = |0〉 and
|ψ′〉 = |0̄〉. As we shall see this particular choice of πn is able to generate a functional equation
for the partition function Zθ from the algebraic relation (3.9).

Taking into account the discussion of Section 3 we then set n = L in the relation (3.9). Next
we consider the action of the map πL+1 on (3.9) and by doing so we find only terms of the form

πL+1(A(λ0, θ + γ)Yθ−γ(λ1, . . . , λL)) (3.10)

and
πL+1(Yθ(λ0, λ1, . . . , λi−1, λi+1, . . . , λL)A(λi, θ + (L+ 1)γ)) . (3.11)

Interestingly, the relations (3.6) and (3.7) obtained as a consequence of the highest/lowest
weight property of |0〉 and |0̄〉 give rise to a map πL+1 7→ πL. More precisely we have

πL+1(A(λ0, θ + γ)Yθ−γ(λ1, . . . , λL)) =
f(θ)

f(θ + Lγ)

L∏
j=1

f(λ0 − µj) πL(Yθ−γ(λ1, . . . , λL))

(3.12)

and

πL+1(Yθ(λ0, λ1, . . . , λi−1, λi+1, . . . , λL)A(λi, θ + (L+ 1)γ)) =
L∏
j=1

f(λi − µj) πL(Yθ(λ0, λ1, . . . , λi−1, λi+1, . . . , λL)) . (3.13)

The partition function (2.7) can now be promptly identified with πL(Yθ(λ1, . . . , λL)). In this
way the action of πL+1 on (3.9), in addition to the relations (3.12) and (3.13), leaves us with
the following functional equation for Zθ,

M0 Zθ−γ(λ1, . . . , λL) +
L∑
i=0

Ni Zθ(λ0, . . . , λi−1, λi+1, . . . , λL) = 0 . (3.14)

The structure of the coefficients M0 and Ni is a direct consequence of the dynamical Yang-
Baxter algebra relations (2.4) and the highest weight properties (3.6) and (3.7). For convenience
we shall postpone presenting their explicit form. It is also worth remarking that (3.14) made
its first appearance in [21] and due to the fact that the operators B satisfy the relation
B(λ1, θ)B(λ2, θ+ γ) = B(λ2, θ)B(λ1, θ+ γ), as given by (3.8), the ordering of the arguments of
Zθ in (3.14) is indeed arbitrary. This property leads us to the following lemma.

Lemma 1 (Symmetric function). The partition function Zθ is symmetric under the
permutation of its variables, i.e.

Zθ(. . . , λi, . . . , λj , . . . ) = Zθ(. . . , λj , . . . , λi, . . . ) . (3.15)

Proof. This property follows directly from the commutation relation (3.8) or from the functional
equation (3.14) as demonstrated in [21].

Remark 2. Due to (3.15) we can safely employ the notation Zθ(λ1, . . . , λL) = Zθ(X1,L) where
Xi,j = {λk : i ≤ k ≤ j}.
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Taking into account Remark 2, it is also convenient to introduce the set Xi,j
k = Xi,j\{λk}

in such a way that (3.14) can be simply recasted as

M0 Zθ−γ(X1,L) +
L∑
i=0

Ni Zθ(X0,L
i ) = 0 . (3.16)

In their turn the coefficients M0 and Ni explicitly read

M0 =
f(θ)

f(θ + Lγ)

L∏
j=1

f(λ0 − µj)

Ni = −f(θ + γ + λ0 − λi)
f(θ + (L+ 1)γ)

f(γ)

f(λ0 − λi + γ)

L∏
j=1

f(λi − µj + γ)
∏

λ∈X0,L
i

f(λ− λi + γ)

f(λ− λi)
.

(3.17)

Some further remarks are important at this stage. The reader familiar with the theory
of Knizhnik-Zamolodchikov (KZ) equations can notice that (3.16) exhibits a structure which
resembles that of the classical KZ equation [14]. For instance, the first term of (3.16) consists of
the partition function with shifted variable θ which could be thought of as an analogous of the
derivative. The second term of (3.16) consists of a linear combination of partition functions with
a given variable λi in the argument being replaced by a variable λ0. This variable replacement
can be regarded as the action of an operator which can be considered as a sort of ‘hamiltonian’.
Although KZ equations are vector equations while here we are dealing with a scalar equation,
we can see that both terms of (3.16) have a counterpart in the KZ theory. Furthermore, we
shall find that the solution of (3.16) also resembles solutions of KZ-like equations [47].

Solution. The functional relation (3.16) consists of an equation for the partition function
Zθ(X1,L) over the set of variables X0,L. Thus we have one more variable than is required
to describe the partition function itself. This feature is typical of functional equations such
as the d’Alembert equation [38], but had not appeared previously in the functional relations
describing Exactly Solvable Models to the best of our knowledge. This extra variable can be
set at will in order to help us with the resolution of (3.16), and this approach is the basis of the
method considered in [20] and [21]. Moreover, Eq. (3.16) also exhibits some special properties
providing some guidance through the steps required to obtain its solution. These properties
are as follows:

• Scale invariance: Eq. (3.16) is invariant under the symmetry transformation Zθ(X1,L) 7→
αZθ(X1,L) where α ∈ C is independent of θ and λj . This property tells us that (3.16) is only
able to determine the partition function up to an overall multiplicative factor independent
of the variables θ and λj . In this way the full determination of the partition function
will require we know the precise value of Zθ for a particular choice of the aforementioned
variables.

• Linearity: Eq. (3.16) is linear and as usual this implies that if Z(1)
θ and Z(2)

θ are solutions,

then the linear combination Zθ = Z(1)
θ +Z(2)

θ is also a solution. As far as the determination
of (2.7) is concerned, this property is telling us we need to establish an uniqueness criterium
in order to characterize the desired partition function.
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Here we do not intend to give a detailed description of the method developed to solve (3.16).
Nevertheless, we can still comment on how the properties of scale invariance and linearity have
been employed. In [21] we have shown that the partition function (2.7) can be explicitly
computed in the limit (θ, λj)→∞. This result can then be used to completely fix the overall
multiplicative factor which is not constrained by (3.16). Concerning the issue raised by the
linearity of (3.16), we have also shown in [21] that the desired solution consists of a higher
order Theta-function [48]. As such, it is uniquely characterized by its zeroes up to an overall
factor.

As a matter of fact, unveiling special zeroes of Zθ plays an important role for the resolution
of (3.16) and we have found the following solution in [21],

Zθ(X1,L) = [f ′(0)f(γ)]L∮
. . .

∮ L∏
j=1

dwj
2iπ

∏L
j>i f(wj − wi + γ)f(wj − wi)∏L

i,j=1 f(wi − λj)

L∏
j=1

f(θ + jγ − wj + µj)

f(θ + jγ)

×
L∏
j<i

f(µj − wi)
L∏
j>i

f(wi − µj + γ) . (3.18)

Formulae (3.18) is given in terms of a multiple contour integral whose integration contour for
each variable wj encloses all variables in the set X1,L. It is also worth remarking that similar
multiple contour integrals also emerge as solutions of the KZ equation [47] and its q-deformed
version [49].

3.2. Functional equation for Sn

The partition function (2.7) is not the only quantity which satisfy a functional equation such
as the one described in Section 3.1. Similar equations can also be derived for scalar products of
Bethe vectors as we shall demonstrate. Although the case of domain wall boundary conditions
was introduced in [35] as a building block of scalar products, here we shall not follow that
approach but instead consider scalar products defined by (2.9) as an independent quantity.

The derivation of (3.14) required two main ingredients: the construction of a suitable
realization of πn and the derivation of appropriate Yang-Baxter relations of degree n. In
order to apply the same methodology for scalar products Sn we then first need to consider the
commutation relations from (2.4) in the six-vertex model limit as discussed in Remark 1. In
what follows we present the ones that will be required,

A(λ1)B(λ2) =
a(λ2 − λ1)

b(λ2 − λ1)
B(λ2)A(λ1)− c(λ2 − λ1)

b(λ2 − λ1)
B(λ1)A(λ2)

C(λ1)A(λ2) =
a(λ1 − λ2)

b(λ1 − λ2)
A(λ2)C(λ1)− c(λ1 − λ2)

b(λ1 − λ2)
A(λ1)C(λ2) (3.19)

D(λ1)B(λ2) =
a(λ1 − λ2)

b(λ1 − λ2)
B(λ2)D(λ1)− c(λ1 − λ2)

b(λ1 − λ2)
B(λ1)D(λ2)

C(λ1)D(λ2) =
a(λ2 − λ1)

b(λ2 − λ1)
D(λ2)C(λ1)− c(λ2 − λ1)

b(λ2 − λ1)
D(λ1)C(λ2) (3.20)

B(λ)B(µ) = B(µ)B(λ)

C(λ)C(µ) = C(µ)C(λ) . (3.21)
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Yang-Baxter relation of degree n. The relations (3.19), (3.20) and (3.21) are a subset of the
commutation rules contained in (2.4) in the six-vertex model limit and, as such, they are
relations of degree 2 according to the discussion of Section 3.1. In order to describe the scalar
product Sn we need an appropriate relation of degree n which can be obtained by the repeated
use of (3.19)-(3.21). The direct inspection of the commutation relations (3.19)-(3.21) suggests
us to consider the quantity

TA =
←−∏

1≤i≤n
C(λCi ) A(λ0)

−→∏
1≤i≤n

B(λBi ) , (3.22)

which can be analyzed in at least two different ways through the relations (3.19) and (3.21).
Here we shall restrict our discussion to the following ways of evaluating TA. Firstly, we can
move the operator A(λ0) in (3.22) all the way to the right through all the string of operators
B with the help of the first relation in (3.19). Alternatively, we can also move the operator
A(λ0) to the left by making use of the second relation in (3.19). These two different ways of
evaluating the same quantity yields the following Yang-Baxter relation of order 2n+ 1,

n∏
i=1

a(λCi − λ0)

b(λCi − λ0)
A(λ0)

←−∏
1≤i≤n

C(λCi )
−→∏

1≤i≤n
B(λBi )

−
n∑
i=1

c(λCi − λ0)

b(λCi − λ0)

n∏
j=1

j 6=i

a(λCj − λCi )

b(λCj − λCi )
A(λCi )

←−∏
0≤j≤n

j 6=i

C(λCj )
−→∏

1≤j≤n
B(λBj ) =

n∏
i=1

a(λBi − λ0)

b(λBi − λ0)

←−∏
1≤i≤n

C(λCi )
−→∏

1≤i≤n
B(λBi ) A(λ0)

−
n∑
i=1

c(λBi − λ0)

b(λBi − λ0)

n∏
j=1

j 6=i

a(λBj − λBi )

b(λBj − λBi )

←−∏
1≤j≤n

C(λCj )
−→∏

0≤j≤n

j 6=i

B(λBj ) A(λBi ) . (3.23)

It is important to stress here that the derivation of (3.23) also makes explicit use of the relations
(3.21). The expression (3.23) will be left at rest for a while and we shall focus on another
quantity. For instance, instead of (3.22) we could have performed the same analysis starting
with

TD =
←−∏

1≤i≤n
C(λCi ) D(λ0)

−→∏
1≤i≤n

B(λBi ) . (3.24)

In that case we need to consider the relations (3.20) and (3.21), and we end up with the
following identity,

n∏
i=1

a(λ0 − λCi )

b(λ0 − λCi )
D(λ0)

←−∏
1≤i≤n

C(λCi )
−→∏

1≤i≤n
B(λBi )

−
n∑
i=1

c(λ0 − λCi )

b(λ0 − λCi )

n∏
j=1

j 6=i

a(λCi − λCj )

b(λCi − λCj )
D(λCi )

←−∏
0≤j≤n

j 6=i

C(λCj )
−→∏

1≤j≤n
B(λBj ) =

n∏
i=1

a(λ0 − λBi )

b(λ0 − λBi )

←−∏
1≤i≤n

C(λCi )
−→∏

1≤i≤n
B(λBi ) D(λ0)

−
n∑
i=1

c(λ0 − λBi )

b(λ0 − λBi )

n∏
j=1

j 6=i

a(λBi − λBj )

b(λBi − λBj )

←−∏
1≤j≤n

C(λCj )
−→∏

0≤j≤n

j 6=i

B(λBj ) D(λBi ) . (3.25)
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Both expressions (3.23) and (3.25) consist of Yang-Baxter relations of order 2n + 1 and they
can be converted into functional equations for Sn with a proper choice of π2n+1.

The map πm for Sn. Taking into account the relations (3.6), (3.7), (3.23) and (3.25) we can
readily see that the choice |ψ〉 = |ψ′〉 = |0〉 for the realization (3.5) gives rise to functional
relations for the scalar product Sn. In order to see that we apply the map π2n+1 on (3.23) and
(3.25). By doing so we only find terms of the form

π2n+1(A(vA0 )
←−∏

1≤i≤n
C(vCi )

−→∏
1≤i≤n

B(vBi )) , π2n+1(
←−∏

1≤i≤n
C(vCi )

−→∏
1≤i≤n

B(vBi ) A(v̄A0 ))

π2n+1(D(vD0 )
←−∏

1≤i≤n
C(vCi )

−→∏
1≤i≤n

B(vBi )) , π2n+1(
←−∏

1≤i≤n
C(vCi )

−→∏
1≤i≤n

B(vBi ) D(v̄D0 )) (3.26)

with parameters vA0 , v
D
0 , v

C
i ∈ {λ0, λ

C
1 , . . . , λ

C
n } and v̄A0 , v̄

D
0 , v

B
i ∈ {λ0, λ

B
1 , . . . , λ

B
n }.

Similarly to the case discussed in Section 3.1, here we also have a map π2n+1 7→ π2n induced
by the highest weight property of |0〉. More precisely, from (3.6) we obtain

π2n+1(
←−∏

1≤i≤n
C(vCi )

−→∏
1≤i≤n

B(vBi ) A(v̄A0 )) =

L∏
j=1

a(v̄A0 − µj) π2n(
←−∏

1≤i≤n
C(vCi )

−→∏
1≤i≤n

B(vBi ))

π2n+1(
←−∏

1≤i≤n
C(vCi )

−→∏
1≤i≤n

B(vBi ) D(v̄A0 )) =

L∏
j=1

b(v̄A0 − µj) π2n(
←−∏

1≤i≤n
C(vCi )

−→∏
1≤i≤n

B(vBi )) .

(3.27)

On the other hand, the property (3.7) yields

π2n+1(A(vA0 )
←−∏

1≤i≤n
C(vCi )

−→∏
1≤i≤n

B(vBi )) =

L∏
j=1

a(vA0 − µj) π2n(
←−∏

1≤i≤n
C(vCi )

−→∏
1≤i≤n

B(vBi ))

π2n+1(D(vD0 )
←−∏

1≤i≤n
C(vCi )

−→∏
1≤i≤n

B(vBi )) =

L∏
j=1

b(vD0 − µj) π2n(
←−∏

1≤i≤n
C(vCi )

−→∏
1≤i≤n

B(vBi )) .

(3.28)

The terms π2n(
←−∏

1≤i≤n
C(vCi )

−→∏
1≤i≤n

B(vBi )) can now be identified with the scalar products Sn as

defined in (2.9). In this way the map πm above discussed, together with the relations (3.23),
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(3.25), (3.27) and (3.28), leaves us with the following functional equations,

J0Sn(X1,n|Y 1,n) +

n∑
i=1

K
(B)
i Sn(X0,n

i |Y
1,n) +

n∑
i=1

K
(C)
i Sn(X1,n|Y 0,n

i ) = 0

J̃0Sn(X1,n|Y 1,n) +

n∑
i=1

K̃
(B)
i Sn(X0,n

i |Y
1,n) +

n∑
i=1

K̃
(C)
i Sn(X1,n|Y 0,n

i ) = 0 . (3.29)

In their turn the coefficients appearing in (3.29) can be conveniently written as

J0 =
L∏
j=1

a(λ0 − µj)

[
n∏
i=1

a(λCi − λ0)

b(λCi − λ0)
−

n∏
i=1

a(λBi − λ0)

b(λBi − λ0)

]

K
(B,C)
i = αB,C

c(λB,Ci − λ0)

b(λB,Ci − λ0)

L∏
j=1

a(λB,Ci − µj)
n∏

j=1

j 6=i

a(λB,Cj − λB,Ci )

b(λB,Cj − λB,Ci )
, (3.30)

and

J̃0 =
L∏
j=1

b(λ0 − µj)

[
n∏
i=1

a(λ0 − λCi )

b(λ0 − λCi )
−

n∏
i=1

a(λ0 − λBi )

b(λ0 − λBi )

]

K̃
(B,C)
i = αB,C

c(λ0 − λB,Ci )

b(λ0 − λB,Ci )

L∏
j=1

b(λB,Ci − µj)
n∏

j=1

j 6=i

a(λB,Ci − λB,Cj )

b(λB,Ci − λB,Cj )
. (3.31)

where αB = 1 and αC = −1.

The Remark 2 of Section 3.1 can be immediately extended to the case of scalar products,
and in (3.29) we have employed the notation

Sn(λB1 , . . . , λ
B
n |λC1 , . . . , λCn ) = Sn(X1,n|Y 1,n) (3.32)

where Xi,j = {λBk : i ≤ k ≤ j} and Y i,j = {λCk : i ≤ k ≤ j}. Moreover, we have also

considered the definitions Xi,j
k = Xi,j\{λBk } and Y i,j

k = Y i,j\{λCk }. This possibility is granted
by the following lemma.

Lemma 2 (Doubly symmetric function). The scalar product Sn(λB1 , . . . , λ
B
n |λC1 , . . . , λCn ) is

symmetric under the permutation of variables λBi ↔ λBj and λCi ↔ λCj performed independently.
More precisely we have

Sn(. . . , λBi , . . . , λ
B
j , . . . |λC1 , . . . , λCn ) = Sn(. . . , λBj , . . . , λ

B
i , . . . |λC1 , . . . , λCn ) (3.33)

and

Sn(λC1 , . . . , λ
C
n | . . . , λBi , . . . , λBj , . . . ) = Sn(λC1 , . . . , λ

C
n | . . . , λBj , . . . , λBi , . . . ) . (3.34)

Proof. The proof follows directly from the commutation rules (3.21). Alternatively, one can
demonstrate it from the analysis of (3.29) as performed in [22].

XXIst International Conference on Integrable Systems and Quantum Symmetries (ISQS21) IOP Publishing
Journal of Physics: Conference Series 474 (2013) 012020 doi:10.1088/1742-6596/474/1/012020

13



Solution. The same discussion of Section 3.1 concerning the resolution of the functional
equation (3.14) is also valid for the set of equations (3.29). For instance, we can readily see that
each equation in (3.29) is scale invariant and linear. Nevertheless, there is one main difference
concerning (3.29) which is the fact that here we have two equations instead of only one. This
might suggest that one of the equations is redundant but the direct inspection of our system
of equations reveals that this is not the case. In fact, the scalar products we are interested
consist of certain polynomials and the use of a polynomial ansatz for solving (3.29) shows that
only one equation is not able to fix all the coefficients. On the other hand, the simultaneous
resolution of both equations indeed fix the coefficients up to an overall multiplicative factor.

Although the process of solving the system of equations (3.29) is more involving than that
for the single equation (3.14), the same methodology still applies. The solution of (3.29) was
firstly obtained in [22] and here we restrict ourselves to presenting only the final expression.
The scalar product Sn is then given by,

Sn(X1,n|Y 1,n) =

∮
. . .

∮ n∏
i=1

dwi
2iπ

dw̄i
2iπ

H(w1, . . . , wn|w̄1, . . . , w̄n)∏n
i,j=1 b(wi − λCj )b(w̄i − λBj )

, (3.35)

where the function H explicitly reads,

H(w1, . . . , wn|w̄1, . . . , w̄n) =

(−1)Ln+
n(n+1)

2 c2n

n∏
j>i

b(wi − wj)2b(w̄i − w̄j)2a(wj − µi)a(w̄j − µi)∏n
i=1 b(wi − µi)b(w̄i − µi)

n∏
i=1

R−1
i Λi ,

(3.36)

with functions Ri and Λi given by

Ri =
n∏
k=i

a(wk − µi)
b(wk − µi)

−
n∏
k=i

a(w̄k − µi)
b(w̄k − µi)

Λi =
L∏
k=i

a(w̄i − µk)b(µk − wi)
n∏

k=i+1

a(wi − wk)
b(wi − wk)

a(w̄k − w̄i)
b(w̄k − w̄i)

−
L∏
k=i

a(wi − µk)b(µk − w̄i)
n∏

k=i+1

a(wk − wi)
b(wk − wi)

a(w̄i − w̄k)
b(w̄i − w̄k)

. (3.37)

Formulae (3.35) is commonly denominated off-shell scalar product as it is valid for arbitrary
complex parameters λBi and λCi . In its turn, when the variables λBi are constrained by Bethe
ansatz equations, see [37] for instance, the function Sn receives the name on-shell scalar product
and the analysis of (3.29) in that case has also been performed in [22].

4. Partial differential equations

The functional equations (3.14) and (3.29) contain a very rich structure which is not apparent
at first sight. In order to illustrate how these hidden structures emerge let us consider Eq.
(3.14) in the standard six-vertex model limit. In that case we have Zθ → Z and are left with
the following equation,

M̄0 Z(X1,L) +

L∑
i=1

N̄i Z(X0,L
i ) = 0 , (4.1)
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with coefficients M̄0 and N̄i given by

M̄0 =

L∏
j=1

b(λ0 − µj)−
L∏
j=1

a(λ0 − µj)
L∏
j=1

a(λj − λ0)

b(λj − λ0)

N̄i =
c(λi − λ0)

b(λi − λ0)

L∏
j=1

a(λi − µj)
L∏

j=1

j 6=i

a(λj − λi)
b(λj − λi)

. (4.2)

In what follows we intend to demonstrate that (4.1) encodes a family of partial differential
equations and for that we need to introduce some extra definitions and lemmas.

Definition 3. Let f be a complex valued function f(z) ∈ C[z] and z = (z1, . . . , zn) ∈ Cn. Then
for α /∈ {1, 2, . . . , n} we define the operator Dα

i as

Dα
i : f(z1, . . . , zi, . . . , zn) 7→ f(z1, . . . , zα, . . . , zn) . (4.3)

The operator Dα
i essentially replaces the variable zi by zα. It is worth mentioning that Dα

i had
been previously introduced in [19].

Lemma 3 (Differential realization). The operator Dα
i admits the realization

Dα
i =

m∑
k=0

(zα − zi)k

k!

∂k

∂zki
(4.4)

when its action is restricted to the ring of multivariate polynomials of degree m.

Proof. Let f = f(z1, z2, . . . , zn) and Km[z1, z2, . . . , zn] be the ring of polynomials in z1, . . . , zn
with degree m. The ring Km[z1, z2, . . . , zn] shall be simply denoted as Km[z] and the condition
f ∈ Km[z] implies

∂kf

∂zki
= 0 if k > m . (4.5)

Next we consider the Taylor expansion of f in the variable zi around the point zα. Due to (4.5)
the expansion is truncated and convergent. Thus we have,

f = f(. . . , zi−1, zα, zi+1, . . . ) +
∂f

∂zi

∣∣∣∣
i=α

(zi − zα)

+
1

2

∂2f

∂z2
i

∣∣∣∣
i=α

(zi − zα)2 + · · ·+ 1

m!

∂mf

∂zmi

∣∣∣∣
i=α

(zi − zα)m . (4.6)

The expression (4.6) holds for indexes i ∈ {1, 2, . . . , n}, and as long as α /∈ {1, 2, . . . , n} we can
write

∂kf

∂zki

∣∣∣∣
i=α

=
∂k

∂zkα
f(. . . , zi−1, zα, zi+1, . . . ) . (4.7)

In this way formulas (4.6) and (4.7) yields the relation

f(. . . , zi−1, zi, zi+1, . . . ) =

[
m∑
k=0

(zi − zα)k

k!

∂k

∂zkα

]
f(. . . , zi−1, zα, zi+1, . . . ) . (4.8)

The term inside the brackets in (4.8) performs the operation (4.3) and we thus obtain the
differential realization (4.4).
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Next we notice the functional equation (4.1) can be written in terms of operators Dα
i . For

that we only need to consider n = L and zi = λi. By doing so (4.1) becomes L(λ0)Z(X1,L) = 0
where

L(λ0) = M̄0 +

L∑
i=1

N̄i D
0
i . (4.9)

Some remarks are required at this stage. For instance, although the functional equation (4.1)
depends on the set of variables X0,L, the use of Definition 3 localizes the whole dependence
with the variable λ0 in the operator L. It is also important to stress here that we can not
immediately use the differential realization (4.4) in (4.9) since it is valid only for functions in
Km[z]. Nevertheless, in what follows we shall discuss how (4.4) can be adjusted for Z(X1,L).

Lemma 4 (Polynomial structure). In terms of variables xi = e2λi the partition function
Z(X1,L) is of the form

Z(X1,L) =

L∏
j=1

x
1−L
2

j Z̄(x1, . . . , xL) , (4.10)

where Z̄(x1, . . . , xL) is a polynomial of degree L− 1 in each variable xi separately.

Proof. A detailed proof can be found in [35] and [18].

Lemma 4 is telling us that Z(X1,L) consists of a multivariate polynomial up to an overall
multiplicative factor when the appropriate variable is considered. As a matter of fact we have
Z̄(x1, . . . , xL) ∈ KL−1[x] and therefore the realization (4.4) can be employed for Z̄. Due to
that it is convenient to define the functions

M̌0 = M̄0

L∏
j=1

x
1−L
2

j and Ňi = N̄i

L∏
j=0

j 6=i

x
1−L
2

j (4.11)

in such a way that (4.1) becomes L̄(x0)Z̄(x1, . . . , xL) = 0 with

L̄(x0) = M̌0 +
L∑
i=1

Ňi D
0
i . (4.12)

Now the formulae (4.4) can be substituted into (4.12) 1 leaving us with the expression

L̄(x0) =
L−2∑
k=0

xk0 Ωk . (4.13)

The coefficients Ωk are differential operators whilst L̄(x0) is a polynomial of degree L − 2 in
the variable x0. In this way the equation L̄(x0)Z̄(x1, . . . , xL) = 0 needs to be independently
satisfied for each power in x0 which leaves us with the following family of partial differential
equations,

Ωk Z̄(x1, . . . , xL) = 0 0 ≤ k ≤ L− 2 . (4.14)

Although the explicit form of the operators Ωk can be written down for any length L, it is
usually given by cumbersome expressions for most of the indexes k. Fortunately the situation

1 Here we need to set zi = xi due to the change of variables discussed in Lemma 4.
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is different for k = L− 2 and the leading term coefficient ΩL−2 exhibits a compact expression
given by

ΩL−2 =
L∑
i=1

ā(xi, yi)−
q2(1−L)

(L− 1)!

L∑
i=1

L∏
j=1

ā(xi, yj)
L∏

j=1

j 6=i

ā(xj , xi)

b̄(xj , xi)

∂L−1

∂xL−1
i

. (4.15)

The expression (4.15) takes into account the further conventions q = eγ , yi = e2µi and the
remaining functions are then defined as ā(x, y) = xq2 − y and b̄(x, y) = x− y.

From (4.15) we can see that the operator ΩL−2 exhibits some very interesting characteristics.
For instance, it naturally decomposes into two kinds of terms and it is tempting to interpret it
as the hamiltonian of a many-body system. Although ΩL−2 contains higher order derivatives,
the first term in the RHS of (4.15) could be thought of as ‘potential energy’ while the second
term can be regarded as ‘kinetic energy’. The most obvious problem with this interpretation

is that the interaction factor
∏L
j 6=i

ā(xj ,xi)

b̄(xj ,xi)
appears in the ‘kinetic energy’ term and it is not

clear if a change of variables could have this issue properly fixed. Nevertheless, taking into
account this analogy it is sensible to consider the eigenvalue problem for the operator (4.15),
i.e. ΩL−2Ψ = ΛΨ . In this way the partition function Z̄ can be regarded as the null eigenvalue
wave function associated with ΩL−2.

5. Concluding remarks

In this article we have described a mechanism allowing to extract functional equations satisfied
by certain partition functions of two-dimensional lattice models directly from the Yang-Baxter
algebra. More precisely, we have applied this method for the elliptic Eight-Vertex-SOS model
with domain wall boundaries [21] and for scalar products of Bethe vectors [22]. For those
systems we have obtained functional relations satisfied by their partition functions whose
solution are then given in terms of multiple contour integrals.

The class of functional equations we describe here share some similarities, as far as their
structure is concerned, with the classical Knizhnik-Zamolodchikov equation [14] as discussed
in Section 3.1. This similarity seems to extend to their solutions as multiple contour integrals
are also convenient to describe solutions of KZ equations [47].

Although classical KZ equations consist of a system of partial differential equations, whilst
here we are dealing with functional equations, in Section 4 we have also demonstrated that there
is a family of partial differential equations underlying our functional relations originated from
the Yang-Baxter algebra. Interestingly, one member of this family exhibits a structure which
resembles that of a generalized Schrödinger equation for a quantum many-body hamiltonian.

Concerning this algebraic-functional approach, it is fair to say that this method is still
under development as there are still many opened questions. For instance, motivated by the
similarities shared with the classical KZ equation, one could ask if there is an analogous of the
whole theory of KZ equations [47, 49] for the functional equations presented here. Moreover,
as far as the computation of physical quantities are concerned, one important problem is the
evaluation of the model free-energy per site in the thermodynamical limit from the multiple
contour integrals we have obtained. This analysis would not only give us access to the model
physical properties but also help us to understand the influence of boundary conditions for
vertex and SOS models [50,51].
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