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Abstract. The paper deals with the tensor product decomposition problem. Tensor product
decompositions are of great importance in the quantum physics. A short outline of the state of
the art for the of semisimple Lie groups is mentioned. The generality of generating functions is
used to solve tensor products. The corresponding generating function is rational. The feature
of this technique lies in the fact that the decompositions of all tensor products of all irreducible
representations are solved simultaneously. Obtaining the generating function is a difficult task
in general. We propose some changes to an algorithm using Patera-Sharp character generators
to find this generating function, which simplifies the whole problem to simple operations over
rational functions.

1. Introduction
Generating functions have been usefully applied in many areas of mathematics and mathematical
physics as powerful and general tools. In the representation theory of continuous and discrete
groups, they provide techniques superior to other existing ones. The distinguishing feature is
that they solve an infinity of problems of a given type at the same time.

One important application of generating functions is computation of restricted representations
of a group. Restriction forms a representation of a subgroup from a representation of the whole
group. Often, the restricted representation is simpler to understand. Rules for decomposing the
restriction of an irreducible representation of the group into irreducible representations of the
subgroup are of great importance in physics. For example, in the case of explicit symmetry
breaking, the symmetry group of the problem is reduced from the whole group to one of
its subgroups. In quantum mechanics, this reduction in symmetry appears as a splitting of
degenerate states into multiplets, as in the Stark or Zeeman effect.

Branching rules for classical groups are well known. Generating functions have been used
to decompose characters of semisimple Lie groups obtained by restriction from overgroups or
by tensor products of irreducible representations. [6, 1] In the paper of A. Cohen and G. M.
Ruitenburg [2] is proved that these generating functions are always rational, and an example
of derivation of the generating function for restricted representations of G2 to A2 is provided.
Nevertheless, the proposed algorithm, which is efficient to compute branching rules, turns out
to be rather ponderous to decompose tensor products of representations.
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We propose some change to a more suitable algorithm to compute tensor products
decompositions. The algorithm is based on character generators [7]

X(A) =
∑
λ∈Λ+

chV (λ) ·Aλ, (1)

the generating functions of characters of representations. The distinguishing feature of our
algorithm lies in the fact that we do not use generating functions only to solve some recurrence,
but we propose an operation over character generators to obtain a generating function for tensor
products decompositions. This “generatingfunctionologist”[8] approach turns out to be simple
and straightforward.

The paper is divided into three sections. In the first section, basics of semisimple Lie groups
and their representations are summarized; general properties of tensor product decompositions
are mentioned. In the second section, a generating function for tensor product decompositions
is outlined. In the last section, the method to obtain the generating function is demonstrated
on the example of SU(3).

2. Tensor product decomposition
Let G be a semisimple connected complex Lie group with the Lie algebra g of rank n. Let
T ⊂ B is a maximal torus of G with the Lie algebra t, where B is a fixed Borel subgroup of
G. Let W = WG be the associated Weyl group. Let Λ = Λ(T ) denote the character group of
T , i.e., the group of all the algebraic group morphisms T 7→ C. The Weyl group W acts on
Λ. There is a straightforward identification between elements of Λ and weights λ ∈ t∗, which
make a lattice in t∗. Therefore, we will identify Λ and the lattice of the weights in t∗. Let
R = Rg ⊂ t∗ be the set of roots of g with respect to the Cartan subalgebra t, and let R+ be the
set of positive roots. Let ∆ = {α1, . . . , αn} ⊂ R+ be the set of simple roots, {α∨1 , . . . , α∨n} ⊂ t
the corresponding simple coroots. For any 1 ≤ j ≤ n, the fundamental weight ωj ∈ Λ is defined
by

ωj(α
∨
i ) = δj,i, ∀ 1 ≤ i ≤ n. (2)

An element λ ∈ Λ is called dominant if λ(α∨i ) ≥ 0 for all the simple coroots α∨i . Let Λ+ denote
the set of all the dominant characters. There is an isomorphism between the set of isomorphism
classes of irreducible finite-dimensional representations of G and Λ+ via the highest weight of
the irreducible representation. For λ ∈ Λ+, we denote by V (λ) the corresponding irreducible
representation of the highest weight λ. The W -orbit of any λ ∈ Λ contains a unique element in
Λ+. We also have the shifted action of W on Λ via w ∗ λ = w(λ + ρ) − ρ, where ρ is the half
sum of positive roots.

Let Z[Λ(G)] = {eλ |λ ∈ Λ(G)} be a ring of formal exponentials and their linear combinations
with coefficients in the ring Z with the multiplication rule eλ · eµ = eλ+µ, for a group G.

An algebraic character chV (λ), λ ∈ Λ+, of a compact Lie group G can be obtained by the
Weyl character formula

chV (λ) =

∑
w∈W sgn(w) · ew(λ+ρ)∑
w∈W sgn(w) · ew(ρ)

, (3)

where the elements eλ are from the ring Z[Λ(G)].
For a semisimple connected complex Lie group G with the Lie algebra g, the irreducible

finite-dimensional representations of G are parametrized by the set Λ+ of dominant characters
of T , where T is a maximal torus of G with the Lie algebra t. By the complete reducibility, for
any λ, µ ∈ Λ+, the tensor product V (λ)⊗ V (µ) decomposes as

V (λ)⊗ V (µ) =
⊕
ν∈Λ+

mν
λ,µV (ν), (4)
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where mν
λ,µ are the tensor product multiplicities, which denote the multiplicity of V (ν) in the

tensor product V (λ)⊗ V (µ). We say that V (ν) occurs in V (λ)⊗ V (µ) if mν
λ,µ > 0.

One of the major goals of the tensor product decomposition is to determine all the components
of V (λ)⊗ V (µ) together with their multiplicities. In general, this is a very difficult task. [5]

3. Generating function for tensor products decomposition
3.1. Restricted representations
Let G be a semisimple connected complex Lie group and H its connected subgroup. Let T and
S are maximal tori in G resp. H, such that S ⊂ T . The straightforward algorithm to compute
a decomposition (V (µ)|V (λ) ↓ H) of the restricted representation V (λ) of G into irreducible
representations V (µ) of the subgroup H is to determine the set of all weights of the G-module
V (λ), then to compute their restrictions to S, and then to decompose them into H-modules.

Let r : Λ(G) 7→ Λ(H) be a linear restriction of the weights of T to the weights of S.
By choosing appropriate Borel subgroups, we may assume that r(α) 6∈ R−H for α ∈ R+

G. Let
R0 = {α ∈ RG | r(α) = 0} and R+

0 = R0 ∩ R+
G. Let W0 be the subgroup of WG generated by

R0. Let W = WG/W0; each coset of W has a unique representative in WG of a minimal length.
Let A = r(R+

G\{0}), let L be the lattice of non-negative integral linear combinations of A.
The Kostant’s partition function pA on L is defined in the following way:[4] for β ∈ L, let pA(β)
be the number of all different linear combinations of elements of A giving the element β, i.e., if
a = |A|, then pA(β) = |{(k1, . . . , ka) |β =

∑a
i=1 kiαi, ki ∈ Z}|, where |M | is the cardinality of

M .
For λ ∈ Λ+(G) and µ ∈ Λ+(H) holds Kostant’s formula[3]

(V (µ)|V (λ) ↓H) =
∑
w∈W

det(w) ·DH(w(λ+ ρG)) · pA[r(w(λ+ ρG))− (µ+ r(λ+ ρG))], (5)

where

DH(ν) =
∏

α∈R+
H

(ν, α)

(ρH , α)
, for ν ∈ Λ+(H),

is the Weyl dimensional polynomial. The corresponding generating function PG
H for restricted

representations is obtained[2] by multiplying (5) by Aλ from the ring Z[Λ+(G)], Xµ ∈ Z[Λ+(H)]
and by summing over all λ ∈ Λ+(G), µ ∈ Λ+(H).

PG
H(A,X) =

∑
λ∈Λ+(G)

∑
µ∈Λ+(H)

(V (µ)|V (λ) ↓H)AλXµ. (6)

3.2. Tensor product of representations as restricted representation
To compute the decomposition of a tensor product of two irreducible representations V (λ)⊗V (µ)
of a Lie group H it is possible to consider representations of the group H as restricted
representations of the diagonally embedded subgroup isomorphic to H with respect to the
overgroup G = H ×H. We can identify Λ+(G) with Λ+(H) × Λ+(H). The tensor product
multiplicities for the Lie group H then fulfill the equality mν

λ,µ = (V (ν)|V (λ) ⊗ V (µ) ↓ H),

where µ, ν, λ ∈ Λ+(H).
Let g and h are the Lie algebras of G resp. H, let s resp. t are the corresponding Cartan

subalgebras. We construct the linear restriction r in the following way. Let π : h 7→ g be
the projection of h into g, which is identical on h. It follows that π is identical on t as the
projection into s. The restriction r : s∗ 7→ t∗ is defined by r(ξ) = ξ ◦ π for ξ ∈ s∗. It holds that
r : Λ(G) 7→ Λ(H).
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Following the equation (6), the generating function PH×H
H can be obtained by multiplying

the multiplicities mν
λ,µ by Aλ, Bµ, Xν ∈ Z[Λ(H)] and by summing over all µ, ν, λ ∈ Λ(H).

PH×H
H (A,B,X) =

∑
λ,µ,ν∈Λ+(H)

(V (ν)|V (λ)⊗ V (µ) ↓H)AλBµXν , (7)

where the multiplicity (V (ν)|V (λ)⊗ V (µ) is computed via Kostant’s formula (5).

4. An algorithm for tensor products decomposition
The above mentioned algorithm[2] to obtain a generating function for tensor products
decomposition, in fact, use an advantage of generating functions only partially. The essence
lies in Kostant’s formula (5), which is a recurrence relation in the weights of Λ+. The authors
use the generating functions method to solve this recurrence.

We use an algorithm which employs the Patera-Sharp character generators (1). The
distinguishing feature of our algorithm lies in the fact that we do not use the generating function
only to solve some recurrence, but we use an operation over character generators, which are
generating functions themselves, to produce a new generating function for the tensor products
decomposition.

Let G be a semisimple connected complex Lie group with the Lie algebra g. As mentioned
above, the irreducible finite-dimensional representations of G are parametrized by the set Λ+

of the dominant characters of a maximal torus T . Let λ, µ ∈ Λ+; by the complete reducibility
theorem (4) and orthogonality relations, we have the following relation for the characters of the
corresponding representations

chV (λ) · chV (µ) =
∑
ν∈Λ+

mν
λ,µchV (ν). (8)

The equation (8) is the key for the following considerations. The characters on the right hand
side of (8) can be computed by Weyl character formula (3). Nevertheless, all the characters are
completely determined by the highest weight ν ∈ Λ+ of the corresponding representation V (ν).
Therefore, all the terms on the right hand side of (8) can be simply substituted by the expression
eν without an information loss on the presence of the representation V (ν).

Using Weyl character formula (3), the expression eν can be obtained from the character
chV (ν), easily. First of all, the character chV (ν) is to be multiplied by the denominator of the
Weyl character

∑
w∈W sgn(w)ew(ρ), then by e−ρ, where ρ is the half sum of the positive roots of

H. At last, the annihilating operator D,

D

 ∞∑
i,j,...,k=−∞

ai,j,...,kx
iyj . . . zk

 =

∞∑
i,j,...,k=0

ai,j,...,kx
iyj . . . zk,

which annihilates all the terms with negative powers, is to be applied.
If the whole sequence of the steps is applied to equation (8), obtain

D

[(
e−ρ

∑
w∈W

sgn(w)ew(ρ)

)
chV (λ) · chV (µ)

]
=
∑
ν∈Λ+

mν
λ,µe

ν . (9)

If equation (9) is multiplied by Aλ, Bµ ∈ Z[Λ(H)] and summed over all λ, µ ∈ Λ+, the
generating function for the tensor product decomposition PH×H

H is obtained.

D

[(
e−δ

∑
w∈W

sgn(w)ew(δ)

)
X(A) ·X(B)

]
=

∑
λ,µ∈Λ+

∑
ν∈Λ+

mν
λ,µe

νAλBµ. (10)
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The object on the right hand side of (10) is the generating function PH×H
H ; on the left hand

side appear the character generators X(A) and X(B).
As can be seen, the tensor products decomposition generating function can be obtained by

simple calculations over the characters generators. Let us mention two examples for the groups
SU(2) and SU(3), respectively.

4.1. SU(2) case
The weight lattice of the group SU(2) is Λ = Zω, where ω is the single fundamental weight.
Then the character generator for SU(2) is of the form

X(A, x) =

∞∑
m=0

chV (mω)Amω =

∞∑
n=0

xm+1 − x−m−1

x− x−1
Am =

1

(1−Ax)(1−Ax−1)
, (11)

where we denote x = eω and A = Aω, for the elements of the ring Z[Λ], for simplicity.

The generating function for tensor product decomposition P
SU(2)×SU(2)
SU(2) is obtained simple

by multiplying X(A, x)X(B, x) by x−1(x− x−1), which corresponds to e−ρ
∑

w∈W sgn(w)ew(ρ),
and by applying the operator D.

P
SU(2)×SU(2)
SU(2) (A,B, x) = D

[
x−1(x− x−1)X(A, x)X(B, x)

]
=

1

(1−Ax)(1−AB)(1−Bx)
.

(12)

4.2. SU(3) case
The weight lattice of SU(3) is Λ = Zω1 + Zω2, where {ω1, ω2} are the fundamental weights.
The character generator is computed

X(A,B, x, y) =
∞∑

m,n=0

chV (mω1 + nω2)Amω1Bnω2 =

x2y2(1−AB)

(1−Ax)(1−By)(y −A)(x−B)(x−Ay)(y −Bx)
, (13)

where again x = eω1 , y = eω2 and A = Aω1 , B = Bω2 , for simplicity.

The generating function for tensor product decomposition P
SU(3)×SU(3)
SU(3) is obtained simple

by multiplying X(A,B, x, y)X(R,S, x, y) by the term

(x−1y−1)
(
xy − x−1y2 − x2y−1 − x−1y−1 + x−2y + xy−2

)
, (14)

which corresponds to e−ρ
∑

w∈W sgn(w)ew(ρ), and by applying the operator D. We obtain

P
SU(3)×SU(3)
SU(3) (A,B,R, S, x, y) =

1−ABRSxy
(AS − 1)(BR− 1)(Ax− 1)(By − 1)(Rx− 1)(Sy − 1)(ARy − 1)(BSx− 1)

. (15)

Let us describe this process in more detail how to obtain (15). Let us denote the product
X(A,B, x, y)X(R,S, x, y) multiplied by factor (14) by g(x), i. e.

g(x) =
xy(AB − 1)(RS − 1)

(
x4y − x3y3 − x3 + xy4 + xy − y3

)
d(x)

,
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where

d(x) = (Ax− 1)(A− y)(B − x)(By − 1)(Rx− 1)(R− y)×
(x− S)(Sy − 1)(x−Ay)(Bx− y)(x−Ry)(Sx− y).

We now perform a partial fractions decomposition of g, obtaining

g(x) =−
A2
(
ARSy3 −Ay3 −RSy + y

)
(A−R)(AS − 1)(Ax− 1)(By − 1)(R− y)(Sy − 1)(Ay −B)(ARy − 1)(Ay − S)

−

y
(
A2RSy2 −A2y2 −ARS +A

)
(A−R)(AS − 1)(By − 1)(R− y)(Sy − 1)(Ay −B)(ARy − 1)(Ay − S)(x−Ay)

−

B2RSy −B2y −BRSy3 +By3

(A− y)(BR− 1)(B − S)(x−B)(R− y)(Sy − 1)(B −Ay)(B −Ry)(BS − y)
+

B2y
(
BRS −B −RSy2 + y2

)
(y −A)(BR− 1)(B − S)(R− y)(Sy − 1)(B −Ay)(B −Ry)(BS − y)(Bx− y)

+

R2
(
ABRy3 −ABy −Ry3 + y

)
(A−R)(A− y)(BR− 1)(By − 1)(Rx− 1)(Sy − 1)(ARy − 1)(Ry −B)(Ry − S)

+

y
(
ABR2y2 −ABR−R2y2 +R

)
(A−R)(A− y)(BR− 1)(By − 1)(Sy − 1)(ARy − 1)(Ry −B)(Ry − S)(x−Ry)

−

ABS2y −ABSy3 − S2y + Sy3

(AS − 1)(A− y)(B − S)(By − 1)(y −R)(x− S)(S −Ay)(BS − y)(S −Ry)
−

S2y
(
ABS −ABy2 − S + y2

)
(AS − 1)(A− y)(B − S)(By − 1)(y −R)(S −Ay)(BS − y)(S −Ry)(Sx− y)

.

We now look at the terms which can be thrown away immediatelly. The first one, for example,
cannot be thrown away because it contains the term (Ax− 1) in the denominator and this leads
to positive powers of x. The second one can be thrown away, because the term (x − Ay) can
lead to negative powers of x. Similar way we examine all terms, obtaining the result consisting
of four terms only, denoted by g̃(y):

g̃(y) =−
A2
(
ARSy3 −Ay3 −RSy + y

)
(A−R)(AS − 1)(Ax− 1)(By − 1)(R− y)(Sy − 1)(Ay −B)(ARy − 1)(Ay − S)

+

B2y
(
BRS −B −RSy2 + y2

)
(y −A)(BR− 1)(B − S)(R− y)(Sy − 1)(B −Ay)(B −Ry)(BS − y)(Bx− y)

+

R2
(
ABRy3 −ABy −Ry3 + y

)
(A−R)(A− y)(BR− 1)(By − 1)(Rx− 1)(Sy − 1)(ARy − 1)(Ry −B)(Ry − S)

−

S2y
(
ABS −ABy2 − S + y2

)
(AS − 1)(A− y)(B − S)(By − 1)(y −R)(S −Ay)(BS − y)(S −Ry)(Sx− y)

.

Now comes the decomposition to the partial fractions concerning the variable y. Generally, such
decomposition is possible via solving system of linear equations. We obtain the result consisting
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of 18 terms:

g̃(y) =
R2A3

(A−R)(AR−B)(BR− 1)(AR− S)(AS − 1)(Ax− 1)(ARy − 1)
+

RA2

(A−R)(AR−B)(BR− 1)(AR− S)(AS − 1)(Ax− 1)(y −R)
−

R3A2

(A−R)(AR−B)(BR− 1)(AR− S)(AS − 1)(Rx− 1)(ARy − 1)
+

S2A2

(A−R)(AR− S)(S −B)(AS − 1)(A−BS)(Ax− 1)(Sy − 1)
−

R2A

(A−R)(AR−B)(BR− 1)(AR− S)(AS − 1)(Rx− 1)(y −A)
−

S2A

(A−R)(B − S)(AR− S)(AS − 1)(A−BS)(A− Sx)(y −A)
+

AB2RS −AB2

(A−R)(AR−B)(BR− 1)(B − S)(AS − 1)(A−BS)(A−Bx)(y −A)
−

B2R

(A−R)(AR−B)(BR− 1)(B − S)(R−BS)(R−Bx)(y −R)
+

ABRS2 −RS2

(A−R)(BR− 1)(B − S)(AR− S)(AS − 1)(R−BS)(R− Sx)(y −R)
−

BS

(BR− 1)(B − S)(AS − 1)(BS −A)(BS −R)(B − x)(y −BS)
+

BS

(BR− 1)(B − S)(AS − 1)(BS −A)(BS −R)(S − x)(y −BS)
−

B(RS − 1)
(
Bx3 − x

)
(BR− 1)(B − S)(S − x)(Ax− 1)(Bx−A)(Bx−R)(Rx− 1)(BSx− 1)(y −Bx)

+

(AB − 1)S
(
Sx3 − x

)
(B − S)(AS − 1)(B − x)(Ax− 1)(Rx− 1)(Sx−A)(Sx−R)(BSx− 1)(y − Sx)

+

B2
(
A2RS −A2

)
(A−R)(AR−B)(BR− 1)(B − S)(AS − 1)(A−BS)(Ax− 1)(By − 1)

−

B2R2

(A−R)(AR−B)(BR− 1)(B − S)(R−BS)(Rx− 1)(By − 1)
+

B3S2

(BR− 1)(B − S)(AS − 1)(BS −A)(BS −R)(BSx− 1)(By − 1)
+(

ABR2 −R2
)
S2

(A−R)(BR− 1)(B − S)(AR− S)(AS − 1)(R−BS)(Rx− 1)(Sy − 1)
−

B2S3

(BR− 1)(B − S)(AS − 1)(BS −A)(BS −R)(BSx− 1)(Sy − 1)
.

We apply the same procedure to the above sum. The first term cannot be thrown away because
of the (ARy−1) in the denominator. The second one is thrown because of (y−R), etc. Finally,
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we get sum of eight terms, namely

g1 =
A3R2

(A−R)(AS − 1)(Ax− 1)(BR− 1)(AR−B)(AR− S)(ARy − 1)
+

B2
(
A2RS −A2

)
(A−R)(AS − 1)(Ax− 1)(BR− 1)(B − S)(By − 1)(AR−B)(A−BS)

−

A2R3

(A−R)(AS − 1)(BR− 1)(Rx− 1)(AR−B)(AR− S)(ARy − 1)
+

A2S2

(A−R)(AS − 1)(Ax− 1)(S −B)(Sy − 1)(A−BS)(AR− S)
+

B3S2

(AS − 1)(BR− 1)(B − S)(By − 1)(BS −A)(BS −R)(BSx− 1)
−

B2R2

(A−R)(BR− 1)(B − S)(By − 1)(Rx− 1)(AR−B)(R−BS)
−

B2S3

(AS − 1)(BR− 1)(B − S)(Sy − 1)(BS −A)(BS −R)(BSx− 1)
+

S2
(
ABR2 −R2

)
(A−R)(AS − 1)(BR− 1)(B − S)(Rx− 1)(Sy − 1)(AR− S)(R−BS)

.

Summing these terms up, we get the desired result (15).

5. Conclusions
The feature of the obtained generating functions is the generality, i.e., they solve all the tensor
products decomposition problems for a given group at the same time. In other words, “they are
equivalent to the table of all tensor product decompositions”. [7]

For example, the generating function P
SU(3)×SU(3)
SU(3) for the group SU(3) computed in

subsection 4.2 has the following meaning. The symbols A,B resp. R,S correspond to the first
resp. second factorrepresentation. A term AaBb corresponds to the representation V (aω1+bω2),
a term RrSs corresponds to the representation V (rω1 + sω2), a term xmyn corresponds to
the representation V (mω1 + nω2). Then, the presence of a term AaBbRrSsxmyn in the
expansion ofG(A,B,R, S, x, y) into a series implies that the tensor product of the representations
V (aω1 + bω2) and V (rω1 + sω2) contains the representation V (m,n), i.e.,

V (aω1 + bω2)⊗ V (rω1 + sω2) ⊃ V (mω1 + nω2).

Using the Patera-Sharp character generators, we can simply obtain the generating functions
for the tensor products decomposition for all semisimple Lie groups. These character generators
are always rational functions.[2] Therefore, the algorithm used in the section 4 involves only
operations over rational functions. The advantage of the algorithm against other methods is in
its simultaneous simplicity and generality.

An unsolved task, which should be studied in the future, is the action of the annihilating
operator D. Generally, it is not obvious, how it acts on a general rational function. This should
be the direction of the following investigations.
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