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Abstract. We study cohomological obstructions to the existence of global conserved
quantities. In particular, we show that, if a given local variational problem is supposed to
admit global solutions, certain cohomology classes cannot appear as obstructions. Vice versa,
we obtain a new type of cohomological obstruction to the existence of global solutions for a
variational problem.
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1. Introduction
We are interested in studying corservation laws associated with invariance properties of global
field equations which are locally variational, this means that locally they can be derived
variationally from a Lagrangian, which is then only defined on an open set of the relevant field
space; this is what we call a local presentation of a given variational problem. The requirement
of globality for field equations, of course, determine the relationship between a Local Lagrangian
defined on one open set and another local Lagrangian defined on another open set providing the
same global field equations: we require two local presentations to differ by a variationally closed
form, i.e. locally by a variationally trivial Lagrangian (a local divergence). Noether currents
for such local presentations and corresponding conserved currents associated with each local
presentation have been characterized [6]; although they are associated with invariance of global
field equations, such conserved currents are, in principle, local currents.

In this paper we show that there exists cohomological obstructions for such local currents be
globalized and we shall see how such obstructions are also related with the existence of global
solutions for a given global field equation. To investigate when local variational objects can be
globalized, we use a geometric formulation of the calculus of variations as a subsequence of the
de Rham sequence of differential forms on finite order prologations of fibered manifolds.

We assume the r-th order prolongation of a fibered manifold π : Y → X, with dimX = n and
dimY = n + m, to be the configuration space; this means that fields are assumed to be (local)
sections of πr : JrY → X. Due to the affine bundle structure of πr+1

r : Jr+1Y → JrY, we have a
natural splitting JrY×Jr−1Y T ∗Jr−1Y = JrY×Jr−1Y (T ∗X⊕V ∗Jr−1Y), which induces natural
spittings in horizontal and vertical parts of vector fields, forms and of the exterior differential
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on JrY. Starting from this splitting one can define sheaves of contact forms Θ∗
r defined by

the kernel of the horizontalization; the sheaves Θ∗
r form an exact subsequence of the de Rham

sequence on JrY and one can define the quotient sequence

0 → IRY → . . . →En−1 Λn
r /Θn

r →En Λn+1
r /Θn+1

r →En+1 Λn+2
r /Θn+2

r →En+2 . . . → 0

the r–th order variational sequence on Y → X which is an acyclic resolution of the constant
sheaf IRY; see [13].

The quotient sheaves in the variational sequence can be represented as sheaves Vk
r of k-

forms on jet spaces of higher order, see e.g. [12, 13, 16]. Lagrangians are sheaf sections
λ ∈ (Vn

r )Y, while En is called the Euler-Lagrange morphism. The Euler-Lagrange equations
are then En(λ) ◦ j2r+1σ = 0 for (local) sections σ : X → Y. Sections η ∈ (Vn+1

r )Y are called
source forms or also dynamical forms, En+1 is called the Helmholtz morphism. The equations
η ◦ j2r+1σ = 0 are locally variational if and only if Helmholtz conditions En+1(η) = 0 hold true.

1.1. Inverse and local variational problems
Since the variational sequence is an exact resolution, it is possible to determine cohomological
obstructions to global inverse problems: i.e. given a closed section of a quotient sheaf of the
variational sequence, when this section is also globally exact. In fact, the cohomology of the
complex of global sections H∗

V S(Y) is naturally isomorphic to both the Čech cohomology and
the de Rham cohomology H∗

dR(Y) [13]. Thus if the cohomology of Y is trivial, each local inverse
problem is also global; we are here interested in the case of a nontrivial cohomology of Y. Let
Kp

r
.= Ker Ep; we have a natural short exact sequence of sheaves which gives rise in a standard

way [3] to a long exact sequence in Čech cohomology, where the connecting homomorphism
δp = i−1 ◦ d ◦ E−1

p is the mapping of cohomologies in the corresponding diagram of cochain
complexes (here d is the usual coboundary operator), see e.g. [2, 6, 27]. Every η ∈ (Ep(Vp

r ))Y
(i.e. locally variational) defines a cohomology class δp(η) ∈ H1(Y,Kp

r) & Hp+1
V S (Y) & Hp+1

dR (Y)
(in particular, En(Vn

r ) is the sheave of Euler–Lagrange morphisms and η ∈ (En(Vn
r ))Y if and

only if En+1(η) = 0, which are Helmholtz conditions). In the following we shall use the notation
δ(η) ≡ δn(η); we furthermore point out that every µ ∈ (dH(Vn−1

r ))Y (i.e. locally variationally
trivial) defines a cohomology class δ′(µ) ≡ δn−1(µ) ∈ H1(Y,Kn−1

r ) & Hn
V S(Y) & Hn

dR(Y).
It is clear that η is globally variational if and only if δp(η) = 0. Every nonvanishing

cohomology class in Hp
dR(Y) gives rise to local variational problems: two local variational

problems of degree p are equivalent if and only if they give rise to the same variational class of
forms as the image of the corresponding morphism Ep in the variational sequence.

2. Currents variationally associated with locally variational field equations
We shall explicate now how cohomology enters in globality problems concerned with conserved
quantities. We shall examine this aspect within Noether formalism [20] (see [11] for an
epistemological discussion). Noether’s Theorems already pointed out the cohomological content
of the invariance of the Euler-Lagrange expressions and dealt with the study of the relationship
between currents associated with symmetries of global Lagrangians and of corresponding Euler-
Lagrange expressions; see, in particular, [1].

At the classical (infinitesimal) level, Noether Theorems can be formulated by means of the
Lie derivative of a Lagrangian density and in fact consist of deriving (by an integration by parts
procedure) a suitable version of the Cartan formula for the Lie derivative of horizontal n-forms
on prolongations of fibered manifolds. We notice that the underling concept is that of finding
a Lepage equivalent [18] for which a suitable Cartan formula can be written, then factorize
modulo contact structures [14, 15, 16, 17, 19] (this procedure is involved with the Legendre
transformation and thus with the appearing of a momentum at any degree of forms). This is the
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basic idea underling the definition of a variational Lie derivative operator LjrΞ and of a quotient
Cartan formula (a variation formula) defined on the sheaves of the variational sequence. This
enable us to define symmetries of classes of forms of any degree in the variational sequence and
corresponding conservation theorems; see [7] and [21] for details.

Having a suitable version of the Cartan formula and using naturality properties, for η ∈ Vp
r a

locally variational p-form such that δp(ηλ) (= 0, we have that δp(LΞηλ) = 0, i.e. the variational
Lie derivative ‘trivializes’ cohomology classes [6, 25, 27]. This suggests us that, if we know
that the first variational derivative of a local presentation is closed, then the second variational
derivative define a trivial cohomology class. In fact, the first variational derivative – with respect
to symmetries of Euler-Lagrange expressions – of a local presentation is closed; therefore a trivial
cohomology class is defined by the variational derivative of currents [9, 10].

Let then ηλ be a global Euler–Lagrange morphism for a local variational problem λi; within
the previously stated geometric framework, Noether’s First Theorem reads

LΞλi = ΞV )ηλ + dHεi .

Analogously, a suitable representation of the Lie derivative of classes of dynamical forms can
be obtained by a quotient Cartan formula; for details, see [21]. It is perhaps worthy of mention
that this is related with an integration by parts formula for ΞV )ηλ; such relationship has been
worked out for gauge-natural theories, see e.g. [4, 5, 8, 23, 22, 24, 26].

Since we assume ηλ to be closed, the quotient Cartan formula reduces to LΞηλ = En(ΞV )ηλ),
and if Ξ is such that LΞηλ = 0, then En(ΞV )ηλ) = 0; therefore locally

ΞV )ηλ = dHνi .

Notice that d(ΞV )ηλ) = 0, but in general we have the obstruction

δ
′
(ΞV )ηλ) ≡ δn−1(ΞV )ηλ) (= 0 ,

so that the current νi is a local object and it is conserved along the solutions of Euler–Lagrange
equations (critical sections) [6].

On the other hand, and independently (see [20]), we get locally

LΞλi = dHβi ,

thus we can write ΞV )ηλ + dH(εi − βi) = 0, where εi is the usual canonical Noether current.

Definition 1 We call the (local) current εi − βi a Noether–Bessel-Hagen current.

Note that when Ξ is only a symmetry of a dynamical form but not a symmetry of the Lagrangian,
the so-called strong Noether current νi+εi is not a conserved current and it is such that dH(νi+εi)
is locally equal to dHβi (i.e. they are variationally equivalent).

At this point it deserves attention that we are studing conserved quantities associated with
symmetries of global dynamical forms being global Euler-Lagrange forms of local presentations.
We identified an obstruction to globality of such currents and it is a natural question whether
and when we could instead be able to associate global conserved currents with globally invariant
dynamics. It is natural to expect that somehow some restrictions have to be made. We can, for
example, proceed in two different manner:

(i) look for an additional principle inspired by the fact that δ
′(LΞ(ΞV )ηλ)) = 0 and therefore

restrict the space of “admissible” generalized symmetries;
(ii) look for conditions on the cohomology of the configuration space and on the existence of

global critical sections and therefore restrict the “admissible” fields.
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The first approach provided us with the following results [9, 10].

Definition 2 A conserved current variationally associated with locally variational invariant field
equations is a current associated with a symmetry of the field equation which is also required to
be a symmetry for the variational derivative of the local problem generating such a field equation,
i.e. a current associated to a vector field Ξ satisfying

LΞηλ = 0 and LΞLΞλi = 0 but LΞλi (= 0 .

We see that the condition LΞLΞλi = 0 implies only ddHνi = 0, i.e. dHνi is global.
If we require the stronger condition LΞdλi = 0 (i.e. the Lie derivative drags the local problems

in such a way that their variational derivative coincide on the intersections of two open sets), we
get ddHβi = 0, i.e. the divergence of the strong Noether current is global. This is also equivalent
to say that the coboundary of the strong Noether currents is locally exact. Under this condition
we have the conservation law dHLΞ(νi + εi) = 0, where LΞ(νi + εi), the variation of the strong
Noether currents, is a local representative of a global conserved current.

3. Cohomological obstructions and existence of global critical sections
In this section we now investigate what is possible to state following the second approach. We
have seen that what we called the Noether–Bessel-Hagen current εi − βi is a local object and
it is a current associated with a generalized symmetry (conserved along critical sections, since
we locally have νi = εi − βi + dHψij). In the following we shall denote by [·, ·] a class in de
Rham cohomology. In the previous section, we saw that the current νi (as well as the Noether-
Bessel-Hagen current) is variationally equivalent to a global (conserved) current if and only if
0 = [ΞV )En(λi)] ∈ Hn

dR(Y).
We shall investigate the relationship between the existence of global critical sections and the

existence of global Noether–Bessel-Hagen currents. We show that for a large class of theories, if
a given local variational problem is supposed to admit global solutions, the above cohomology
class is trivial. Vice versa, we obtain a new type of cohomological obstruction to the existence
of global critical sections for a variational problem.

In the following we shall need to see certain cohomology classes in Hn
dR(Y) as the pull-back

of cohomology classes in Hn
dR(X), i.e. defined by closed differential forms on the base manifold.

For this reason we shall assume some restrictive conditions, which in fact can be relaxed; for
details see e.g. [28]. Note that JrY and Y have the same de Rham cohomology; accordingly, to
simplify the notation, we shall omit the jet prolongation order. We also stress that our reasoning
works well in cohomology in degree n, but not greater.

Let us then assume σ be a global section of π : Y → X; for any global section we have
of course σ∗ ◦ π∗ = idHn

dR(X). Let furthermore Hn
dR(Y) ∼ π∗(Hn

dR(X)), i.e. the pull-back
π∗ : Hn

dR(X) → Hn
dR(Y) is an isomorphism of cohomology groups.

Proposition 1 Under the assumption of the isomorphism above, if a given (local) variational
problem admits global critical sections (solutions), all conservation laws derived from symmetries
of global field equations admit global Noether–Bessel-Hagen conserved currents.

Proof. Let then σ be a global critical section; being a critical section the locally variational
source form η vanishes along its corresponding jet prolongation jσ and we have that also ΞV )η
vanishes along jσ. Since it is a global section we get that its pull-back to X is identically zero, so
that [jσ∗ΞV )η] = 0 and, hence, since π∗ is an isomorphism, we have [ΞV )η] = 0. The vanishing
of ΞV )η along jσ implies the vanishing of the pull-back of a differential form representing the
cohomology class [ΞV )η] and hence of the image of the cohomology class in Hn

dR(X). This works
well in spite of the fact that η, and thus also ΞV )η, is not a differential form, but a representative
of an equivalence class of differential forms in the quotient Λ∗

r/Θ∗
r .
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This is apparently a little problem, because we need to compare the cohomology of the base
manifold with the cohomology of the total space, and while Hn

dR(Y) & Hn
V S(Y), in principle we

do not have a similar isomorphism for the cohomology groups Hn
dR(X). This is overcome by the

peculiar structure of quotient space in the variational sequence: for all sections jσ∗(Θ∗
r) = 0,

we can correctly define jσ∗[η] .= [jσ∗η]; in fact, as explained before since Θn
r consists of contact

n-forms the pull-back σ∗ factorizes over Λn
r /Θn

r . It is furthermore a well known fact that we
can always find a closed form α ∈ Λn

r which represents the cohomology class [ΞV )η] and which
projects onto ΞV )η ∈ Λn

r /Θn
r . Thus, jσ∗(α) = 0 and the corresponding class vanishes in Hn

dR(X);
therefore [Ξ)ηλ] = 0, then there exist global conserved currents for all generalized symmetry Ξ.
Note that the obstruction does not depend on the section because of the isomorphism.

We notice that without the assumption of the isomorphism of cohomology groups, we can
anyway say that [Ξ)ηλ] /∈ π∗Hn

dR(X). Of course, in this case we cannot infer in the same way
the existence of global currents.

Example 1 In the case of the geometric formulation of Chern-Simons theories Y takes the
form J1P/G for a principal bundles P over an arbitrary odd dimensional X. Since J1P/G
is an affine bundle over X, J1P/G and X are homotopy equivalent and, in particular,
Hn

dR(J1P/G) ∼ Hn
dR(X). We can therefore state that Chern Simons theories, which admit global

critical sections, always admit global conserved quantities (Noether–Bessel-Hagen currents).

We can use the result above also conversely to define a cohomological obstruction to the
existence of global solutions for a given problem.

Corollary 1 Let σ be a section of Y over X. Let α be a closed differential form which represents
[ΞV )η], the obstruction to the existence of global conserved quantities for conservation laws
associated with the problem η and its symmetry Ξ, in Hn

dR(Y). If the class jσ∗[α] ∈ Hn
dR(X)

does not vanish, then there are no global solutions in the homotopy class of σ.

Now, as discussed before, if π : Y → X admits a global section σ, then this section (as
well as any other section) defines a projection σ∗ : Hn

dR(Y) ,→ Hn
dR(X); the non vanishing of

jσ∗([ΞV )η]) is an obstruction to the existence of global solutions in the homotopy class of σ.
Note that, in this case, the obstruction does depend on the section; jσ∗[α] may vanish for sections
from one homotopy class, but not for those from another.

It is also important to note that this obstruction is not identically zero, in general. We remark
that in the case when the isomorphism of cohomology groups is not given, if a global section
is not critical, then the class [ΞV )η] is an obstruction for any other homotopic section to be a
critical section [28].
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[17] O. Krupková: Lepage forms in the calculus of variations, in Variations, geometry and physics, 27–55, Nova
Sci. Publ., New York, 2009.

[18] Th.H.J. Lepage: Sur les champ geodesiques du Calcul de Variations, I, II, Bull. Acad. Roy. Belg., Cl. Sci.
22 (1936) 716–729, 1036–1046.
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