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Abstract. We construct a family of integrable systems generated by the Casimir functions
of Lie algebra of skew-symmetric matrices, where the Lie bracket is deformed by a symmetric
matrix.

1. Introduction
Let A(n) be the vector space of antisymmetric n× n matrices and Sym(n) be the vector space
of symmetric n× n matrices. The (A(n), [·, ·]S) is a Lie algebra with the S–bracket defined by a
deformeded commutator

[X,Y ]S = XSY − Y SX (1)

for fixed S ∈ Sym(n) and X,Y ∈ A(n), (see [4, 5]).
In this paper we construct the family of integrable systems — a hierarchy generated by the

Casimir functions on the dual of Lie algebra A(n). We prove that the integrals of this family of
Hamiltonian systems are in involution.

The idea of considering these systems comes from [1]. In this paper we present more general
case, which reduces to the case considering in [1] if we put that the matrix S = 1. Also in [3] the
authors studied similar systems in the complex setting and for matrices with a different internal
structure.

2. Hierarchy generated by Casimir functions
We identify A(n) with its dual A∗(n) ∼= A(n) using natural non-degenerate pairing by trace of
the product

〈X, ρ〉 = Tr(ρX), ρ ∈ A∗(n), X ∈ A(n). (2)

We shall write a general element A(n) as

X =
(

A B
−B> C

)
, (3)

where A ∈ A(2), C ∈ A(n − 2) and B ∈ Mat2×(n−2)(R). Having Lie algebra (A(n), [·, ·]S) one
defines the Lie-Poisson bracket on C∞(A(n)) by

{f, g}S = Tr
(
X

[
∂f

∂X
,
∂g

∂X

]
S

)
, f, g ∈ C∞(A(n)), (4)
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where
∂f

∂X
=

(
∂f
∂A

∂f
∂B

− ∂f
∂B>

∂f
∂C

)
, (5)

In order to obtain the second Poisson bracket ("frozen" Poisson bracket) we fix the element
X0 ∈ A(n) and put

{f, g}FS = Tr
(
X0

[
∂f

∂X
,
∂g

∂X

]
S

)
, f, g ∈ C∞(A(n)). (6)

It is a general fact that the Lie-Poisson bracket and frozen bracket are compatible in the sense
that their linear combination

α{·, ·}S + β{·, ·}FS (7)

is also a Poisson bracket.
We shall choose

X0 =
1
2

(
A0 0
0 0

)
, S =

(
S1 S3

S>3 S2

)
, (8)

where A0 is 2× 2 matrix defined by

A0 :=
(

0 1
−1 0

)
. (9)

After simple calculation we show that the Poisson bracket (6) can be written in the form

{f, g}FS = Tr
((

∂g

∂A
A0

∂f

∂B
− ∂f

∂A
A0

∂g

∂B

)
S>3

)
+ (10)

+ Tr
(
∂f

∂B>
A0

∂g

∂B
S2

)
.

Basic assumption. From now we put the block S3 equal to zero (S3 ≡ 0). After
reducing to this case we obtain

{f, g}FS = Tr
(
∂f

∂B>
A0

∂g

∂B
S2

)
. (11)

Thus, we can think of this bracket as being defined on C∞(Mat2×(n−2)(R)) (thus A(n) →
Mat2×(n−2)(R) is injective smooth Poisson map).

In the case when detS 6= 0 the Casimir functions for the Lie–Poisson bracket (4) are given by

Ck(X) =
1
2k

Tr(XS−1)2k, k = 1, 2, . . . (12)

see [5]. For the degenerate case when S1 ≡ 0 we know only some Casimir functions of the
following form

Ck(X) =
1
k

Tr
(
B>BS−1

2

)k
, k = 1, 2, . . . , (13)

(see [2] for the case S2 = 1). In this case the Lie-Poisson bracket (4) can be rewritten in the
form

{f, g}S =2 Tr
(
∂f

∂B>
A
∂g

∂B
S2 +

∂g

∂C
C
∂f

∂C
S2

)
+ (14)

+ 2 Tr
((

∂f

∂B>
B
∂g

∂C
− ∂g

∂B>
B
∂f

∂C

)
S2

)
.
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Now, we show that the functions given by (13) are Casimir functions for the bracket (14).
Since the derivative of Ck is

∂Ck

∂B
= 2BS−1

2

(
B>BS−1

2

)k−1
, (15)

∂Ck

∂B>
= 2S−1

2

(
B>BS−1

2

)k−1
B>, (16)

∂Ck

∂C
= 0, (17)

we have

{Ck, Cl}S = Tr
(
∂Ck

∂B>
A
∂Cl

∂B
S2

)
= (18)

= 4Tr
(
S−1

2

(
B>BS−1

2

)k−1
B>ABS−1

2

(
B>BS−1

2

)l−1
S2

)
=

= 4Tr
(
B>ABS−1

2

(
B>BS−1

2

)k+l−2
)

= 0 = {Ck, Cl}FS ,

because the matrix B>AB is antisymmetric and S−1
2

(
B>BS−1

2

)k+l−2 is symmetric. Moreover
we have the following proposition.

Proposition 1 The Casimir functions Ck defined by (12) or (13) for the Lie-Poisson bracket
(4) considered as functions of B are in involution with respect to the frozen bracket (11).

Proof 1 Since the derivative of Ck given by (12) is

∂Ck

∂B
= −2P+

(
XS−1

)2k−1
P−, (19)

∂Ck

∂B>
= 2P−

(
S−1X

)2k−1
P+, (20)

where P+, P− are the orthogonal projectors given, in block matrix notation, by

P+ =
(

1 0
0 0

)
, P− =

(
0 0
0 1

)
. (21)

After a direct calculation we obtain

{Ck, Cl}FS = Tr
(
∂Ck

∂B>
A
∂Cl

∂B
S2

)
= (22)

= −4 Tr
(
P−
(
S−1X

)2k−1
P+A0P+

(
XS−1

)2l−1
P−S2

)
=

= −4 Tr
(
P−
(
XS−1

)2k−2
XP+A0P+

(
XS−1

)2l−1
P−

)
=

= −4 Tr
((
XS−1

)2k−2
XP+A0P+

(
XS−1

)2l−1
)

+

+ 4 Tr
(
P+

(
XS−1

)2k−2
XP+A0P+

(
XS−1

)2l−1
P+

)
=

= −4 Tr
((
XS−1

)k+l−2
XP+A0P+X

(
S−1X

)k+l−2
S−1

)
= 0.

Above vanishes because in the first term we have a product of three antisymmetric 2× 2 matrices
which is also antisymmetric and in the second term we have a product of an antisymmetric matrix(
XS−1

)k+l−2
XP+A0P+X

(
S−1X

)k+l−2 and symmetric matrix S−1.
The proof of the involution of the functions (13) with respect to the frozen Poisson bracket

(11), was given before this proposition.
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Proposition 2 The smooth functions δk : Mat2×(n−2)(R)→ R defined by

δk(B) = Tr
(
BS−1

2

(
CS−1

2

)2k−1
B>A0

)
(23)

are in involution with respect to the frozen Poisson bracket (11)

{δk, δl}FS = 0. (24)

Proof 2 Since the derivative of δk is

∂δk
∂B

= 2A0BS
−1
2

(
CS−1

2

)2k−1
, (25)

∂δk
∂B>

= 2S−1
2

(
CS−1

2

)2k−1
B>A0, (26)

we have

{δk, δl}FS = Tr
(
∂δk
∂B>

A0
∂δl
∂B

S2

)
= (27)

= 4Tr
(
S−1

2

(
CS−1

2

)2k−1
B>A0A0A0BS

−1
2

(
CS−1

2

)2l−1
S2

)
=

= −4 Tr
(
B>A0BS

−1
2

(
CS−1

2

)2(k+l)−2
)

= 0,

because the matrix B>A0B is antisymmetric and S−1
2

(
CS−1

2

)2(k+l)−2 is symmetric.

Proposition 3 Assume that S1 = 1. Then the functions δk and Cl (given by (12)), k, l =
1, 2, . . . , are in involution with respect to the frozen Poisson bracket (11)

{δk, Cl}FS = 0. (28)

Proof 3 First, we show that δ1 commutes with Ck given by (12)

{δ1, Ck}FS = Tr
(
∂δ1
∂B>

A0
∂Ck

∂B

)
= (29)

= −4 Tr
(
S−1

2 CS−1
2 B>A0A0P+

(
XS−1

)2k−1
P−S2

)
=

= 4Tr
(
CS−1

2 B>P+

(
XS−1

)2k−1
P−

)
=

= −4 Tr
(
P−
(
XS−1

)
P−XP+

(
XS−1

)2k−1
P−

)
=

= −4 Tr
((
XS−1

)
P−XP+

(
XS−1

)2k−1
)

+

+ 4 Tr
(
P+

(
XS−1

)
P−XP+

(
XS−1

)2k−1
P+

)
=

= −4 Tr
(
P−XP+

(
XS−1

)2k
)

+

− 4 Tr
(
P−XP+

(
XS−1

)2k−1 (P−XP+)> S−1
)

=

= −4 Tr
(
XP+

(
XS−1

)2k
)

+

+ 4 Tr
(
P+XP+

(
XS−1

)2k
P+

)
=

= −4 Tr
(
P+

(
XS−1

)2k
XP+

)
= 0,
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because P+

(
XS−1

)2k
XP+ is antisymmetric, P+XP+ is antisymmetric and P+

(
XS−1

)2k
P+ is

symmetric. Second, the functions δk and Cl satisfy the following recursion formula

{δk, Cl}FS = {δk−1, Cl+1}FS . (30)

Thus the relation (28) is valid for any k.

Proposition 4 The functions δk and Cl (given by (13)), k, l = 1, 2, . . . , are in involution with
respect to the frozen Poisson bracket (11)

{δk, Cl}FS = 0. (31)

Proof 4 For the functions Ck given by (13) we have

{δk, Cl}FS = Tr
(
∂δk
∂B>

A0
∂Cl

∂B

)
= (32)

= 4Tr
(
S−1

2

(
CS−1

2

)2k−1
B>A0A0BS

−1
2

(
B>BS−1

2

)l−1
S2

)
=

= −4 Tr
((
CS−1

2

)2k
CS−1

2

(
B>BS−1

2

)l
)

= 0, (33)

because the matrix
(
CS−1

2

)2k
C is antisymmetric and S−1

2

(
B>BS−1

2

)l is symmetric.

We obtain a hierarchy of Hamilton’s equations generated by Hamiltonians Ck given by (12)
or (13) with respect the frozen Poisson bracket (11)

∂B

∂tk
= A0

∂Ck

∂B
S2, k = 1, 2, . . . (34)

Example 1 In this example we consider the case when X is 5× 5-matrix which we denote

X =


0 a p1 p2 p3

−a 0 q1 q2 q3
−p1 −q1 0 −c3 c2
−p2 −q2 c3 0 −c1
−p3 −q3 −c2 c1 0

 (35)

and matrix S is degenerate, that mean S1 = 0 and

S2 =

 e1 0 0
0 e2 0
0 0 e3

 . (36)

The frozen Poisson bracket in this case is

{f, g}FS(pi, qi) =e1

(
∂f

∂p1

∂g

∂q1
− ∂f

∂q1

∂g

∂p1

)
+ e2

(
∂f

∂p2

∂g

∂q2
− ∂f

∂q2

∂g

∂p2

)
+

+ e3

(
∂f

∂p3

∂g

∂q3
− ∂f

∂q2

∂g

∂p3

)
. (37)
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The integrals in involution are

C1 =
(
S−1

2 ~p
)
· ~p+

(
S−1

2 ~q
)
· ~q, (38)

C2 =
1
2
C2

1 −
((
S−1

2 ~q
)
×
(
S−1

2 ~p
))
· (~q × ~p) , (39)

δ1 = −2~C ·
((
S−1

2 ~q
)
×
(
S−1

2 ~p
))
. (40)

Hamilton’s equations for the Hamiltonian C1 are

∂~p

∂t
= 2~q, (41)

∂~q

∂t
= −2~p. (42)

Hamilton’s equations for the Hamiltonian C2 are

∂~p

∂t
= 2

(
C1~q +

(
S−1

2 ~p
)
× (~p× ~q)

)
, (43)

∂~q

∂t
= 2

(
−C1~p+

(
S−1

2 ~q
)
× (~p× ~q)

)
. (44)
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