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Abstract. We discuss general structure of low-energy effective actions in N = 2 and N = 4
three-dimensional supersymmetric electrodynamics (SQED) in gauge superfield sector. There
are specific terms in the effective action having no four-dimensional analogs. Some of these
terms are responsible for the moduli space metric in the Coulomb branch of the theory. We find
two-loop quantum corrections to the moduli space metric in the N = 2 SQED and show that
in the N = 4 SQED the moduli space does not receive two-loop quantum corrections.

1. Introduction and conclusions
Three-dimensional supersymmetric gauge theories with extended supersymmetry have attracted
considerable attention recently [1, 2]. On the one hand, they exhibit reach duality properties
[3, 4, 5, 6, 7, 8, 9, 10, 11], which restrict their low-energy dynamics severely. On the other hand,
they have deep relations to the dynamics of multiple M2 branes described in terms of the BLG
[12, 13, 14, 15, 16, 17, 18] and ABJM [19, 20] models.

In the present paper we study low-energy dynamics in N = 2 and N = 4 SQEDs without
Chern-Simons term. When the Chern-Simons therm vanishes, the Coulomb branch exists and
the low-energy effective action is given by supersymmetric Euler-Heisenberg effective action for
the gauge superfield. In four-dimensional N = 1 and N = 2 SQEDs the Euler-Heisenberg
effective action was studied in [21, 22, 23, 24, 25, 26]. It is interesting to compare the forms of
Euler-Heisenberg effective actions among three- and four-dimensional SQEDs.

Recall that in N = 1, d = 4 supersymmetric gauge theories the gauge superfield V has
Grassmann-odd superfield strengths Wα and W̄α̇ which carry spinorial indices. In three-
dimensional case these two Grassmann-odd superfield strengths remain, but there is also a
Grassmann-even superfield G which is a scalar with respect to the Lorentz group. To study the
Euler-Heisenberg effective action it is sufficient to consider constant on-shell superfield strengths
∂mG = ∂mWα = ∂mW̄α constrained by D2Wα = D̄2W̄α = 0. 1 Hence, the most general action
with the superfields Wα, W̄α and G subject to these constraints reads∫

d3xd4θ

[
A(G,DγWδ) +WαW̄ βBαβ(G,DγWδ) +W 2W̄ 2C(G,DγWδ)

]
, (1.1)

1 In components, these constraints correspond, in particular, to constant Maxwell field strength, ∂mFnp = 0.
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where A, B and C are some functions. It is important to note that the first two terms in (1.1)
have no four-dimensional analogs and are specific for three-dimensional gauge theories in N = 2,
d = 3 superspace.

In the present paper we will discuss only the first term in (1.1) under additional constraints,
Wα = W̄α = 0, G = const. In this case (1.1) reduces to a simple expression∫

d3xd4θ f(G) , (1.2)

where f(G) is a real function of one real argument which we refer to as the effective potential.
This function has good geometrical meaning [7]: it is responsible for the moduli space metric
for the N = 2, d = 3 gauge multiplet. In particular, the classical action for the gauge superfield
V implies f(G) = 1

e2
G2, where e is the gauge coupling constant. This quadratic function

corresponds to flat moduli space metric while loop quantum corrections deform the flat moduli
space. For a long time only one-loop quantum corrections to f(G) were known [3, 4]. In our
recent publication [27] we found two-loop effective potential in N = 2 SQED:

f(G) =
1

g2
G2 +

1

2π
(G ln(G+

√
G2 +m2)−

√
G2 +m2)− e2

8π2
ln(G2 +m2) . (1.3)

Here m is the mass of the chiral matter superfield. The corresponding moduli space metric reads

ds2 =
1

2
g(r)dr2 +

1

2

1

g(r)
dσ2 , g(r) =

1

e2
+

1

4π

1√
r2 +m2

+
e2

8π2

r2 −m2

(r2 +m2)2
. (1.4)

Equations (1.3) and (1.4) represent one of the main results of [27] which will be reviewed in the
present contribution.

The N = 4, d = 3 electrodynamics, as compared with N = 2 SQED, has extra propagating
chiral superfield Φ which, together with V , forms the N = 4 gauge multiplet. Therefore, an
extension of (1.2) to the N = 4 supersymmetric case reads∫

d3xd4θ f(G,ΦΦ̄) . (1.5)

This effective potential in known to be one-loop exact in N = 4 supersymmetric gauge theories
[3, 7]. For N = 4 SQED, one-loop quantum contributions to (1.5) were computed in [28],

f(G,ΦΦ̄) =
1

e2
(G2 − 1

2
Φ̄Φ) +

1

2π

[
G ln(G+

√
G2 + Φ̄Φ)−

√
G2 + ΦΦ̄

]
. (1.6)

In the present paper, by analyzing the structure of Feynman graphs in N = 2, d = 3
superspace, we show that two-loop quantum contributions to (1.5) vanish, confirming the
non-renormalizability of the effective potential beyond one loop. The moduli space metric
corresponding to the effective potential (1.6) is the well-known Taub-NUT metric [29].

It is natural to generalize the present results to the non-Abelian case and to find two-loop
quantum correction to the moduli space metric (1.4) in N = 2 supersymmetric Yang-Mills
models with different matter superfields. Another interesting extension could be to find all-loop
quantum contributions to (1.5) and derive the effective potential f(G) in a closed form. Such an
effective potential would give non-perturbative expression for the moduli space metric in N = 2
SQED. Another tempting problem is to find effective Kähler potential in three-dimensional
gauge theories in N = 2, d = 3 superspace.

The present contribution is based essentially on the results of our recent work [27]. Here we
will employ superspace notations adopted in this paper.
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2. N = 2 supersymmetric electrodynamics
2.1. Classical action
The classical action of the N = 2, d = 3 supersymmetric electrodynamics reads

SN=2 =
1

e2

∫
d7z G2 −

∫
d7z

(
Q̄+e

2VQ+ + Q̄−e
−2VQ−

)
−
(
m

∫
d5z Q+Q− + c.c.

)
, (2.1)

where Q± are chiral superfields with opposite charges with respect to the gauge superfield V .
G is the superfield strength for the gauge superfield V ,

G =
i

2
D̄αDαV . (2.2)

This superfield is real G∗ = G and linear,

D2G = D̄2G = 0 . (2.3)

The action (2.1) appears by virtue of the dimensional reduction from the N = 1, d = 4
electrodynamics [30, 31].

We are interested in the part of low-energy effective action which depends on the gauge
superfield only, Γ = Γ[V ], while the chiral superfields Q± are integrated out. For this problem
the background field method in the N = 2, d = 3 superspace [32] appears to be useful. We split
the gauge superfield V into the background V and quantum v parts

V → V + e v . (2.4)

Upon this splitting the Maxwell term in (2.1) changes as

1

e2

∫
d7z G2 → 1

e2

∫
d7z G2 +

i

e

∫
d7z vDαWα +

1

8

∫
d7z vDαD̄2Dαv . (2.5)

The operator DαD̄2Dα in the last term is degenerate and requires gauge fixing. In particular,
the Fermi-Feynman gauge is implemented by the following gauge-fixing term

Sgf = − 1

16

∫
d7z v{D2, D̄2}v . (2.6)

Adding this term to (2.1) we get

Squantum = S2 + Sint , (2.7)

S2 = −
∫
d7z

(
v�v + Q̄+Q+ + Q̄−Q−

)
−
(
m

∫
d5zQ+Q− + c.c.

)
, (2.8)

Sint = −2

∫
d7z

[
e
(
Q̄+Q+ − Q̄−Q−

)
v + e2

(
Q̄+Q+ + Q̄−Q−

)
v2
]

+O(e3) , (2.9)

where Q± and Q̄± are covariantly (anti)chiral superfields with respect to the background gauge
superfield,

Q̄+ = Q̄+e
2V , Q+ = Q+ , Q̄− = Q̄−e

−2V , Q− = Q− . (2.10)
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2.2. Propagators and heat kernels
The action S2 (2.8) is responsible for the propagators,

i〈Q+(z)Q−(z′)〉 = −mG+(z, z′) ,

i〈Q̄+(z)Q̄−(z′)〉 = mG−(z′, z) ,

i〈Q+(z)Q̄+(z′)〉 = G+−(z, z′) = G−+(z′, z) ,

i〈Q̄−(z)Q−(z′)〉 = G−+(z, z′) , (2.11)

where the Green’s functions G+ and G+− obey the equations

(�± +m2)G±(z, z′) = −δ±(z, z′) , (2.12)

1

4
∇2G+−(z, z′) +m2G−(z, z′) = −δ−(z, z′) , (2.13)

1

4
∇̄2G−+(z, z′) +m2G+(z, z′) = −δ+(z, z′) . (2.14)

Here δ±(z, z′) are (anti)chiral delta-functions and �± are d’Alembertians acting in the space of
(anti)chiral superfields,

�+ = ∇m∇m +G2 +
i

2
(∇αWα) + iWα∇α , (2.15)

�− = ∇m∇m +G2 − i

2
(∇̄αW̄α)− iW̄α∇̄α . (2.16)

The Green’s functions (2.12)–(2.14) can be expressed in terms of corresponding heat kernels,

G±(z, z′) = i

∫ ∞
0

dsK±(z, z′|s)eis(m2+iε) , (2.17)

G+−(z, z′) = i

∫ ∞
0

dsK+−(z, z′|s)eis(m2+iε) , (2.18)

where the standard ε→ +0 prescription is assumed. These heat kernels were computed exactly
for the on-shell gauge superfield background DαWα = 0 subject to ∂mWα = 0, [27]

K+(z, z′|s) =
1

8(iπs)3/2

sB

sinh(sB)
eisG

2O(s)e
i
4

(F coth(sF ))mnρmρn− 1
2
ζ̄βρβγW

γ
ζ2I(z, z′) ,(2.19)

K+−(z, z′|s) = − 1

8(iπs)3/2

sB

sinh(sB)
eisG

2O(s)e
i
4

(F coth(sF ))mnρ̃mρ̃n+R(z,z′)I(z, z′) , (2.20)

where

ζα = (θ − θ′)α , ζ̄α = (θ̄ − θ̄′)α , ρm = (x− x′)m − iγmαβζαθ̄′β + iγmαβθ
′αζ̄β (2.21)

are components of the supersymmetric interval and I(z, z′) is the parallel transport propagator
[33] in N = 2, d = 3 superspace [27]. Among its properties there are

I(z, z) = 1 , I(z, z′)I(z′, z) = 1 , (2.22)

which will be useful in quantum loop computations. The heat kernel (2.20) contains also a
version of supersymmetric interval ρ̃m which is chiral with respect to the first argument and is
antichiral with respect to the second one,

ρ̃m = ρm + iζαγmαβ ζ̄
β , D′αρ̃

m = D̄αρ̃
m = 0 . (2.23)
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The two-point function R(z, z′) in (2.20) was found in the form

R(z, z′) = −iζζ̄G+
7i

12
ζ̄2ζW +

i

12
ζ2ζ̄W̄ − 1

2
ζ̄αρ̃αβW

β − 1

2
ζαρ̃αβW̄

β

+
1

12
ζαζ̄β[ρ̃γβDαWγ − 7ρ̃γαDγWβ] . (2.24)

The heat kernels (2.19) and (2.20) contain also the operator

O(s) = es(W̄
α∇̄α−Wα∇α) , (2.25)

and we use the following notations for derivatives of superfield strengths:

Nαβ = D(αWβ) , N̄αβ = D̄(αW̄β) , B2 =
1

2
Nβ
αN

α
β . (2.26)

The propagator G0(z, z′) for the gauge superfield v obeys the equation

2i〈v(z) v(z′)〉 = G0(z, z′) , �G0(z, z′) = −δ7(z − z′) . (2.27)

The corresponding heat kernel reads

G0(z, z′) = i

∫ ∞
0

dsK0(z, z′|s) e−sε , K0(z, z′|s) =
1

(4iπs)3/2
e
iρmρm

4s ζ2ζ̄2 . (2.28)

Here ρm, ζα and ζ̄α are the components of supersymmetric interval (2.21).

2.3. Low-energy effective action
Consider loop expansion of the effective action in N = 2, d = 3 SQED,

ΓN=2 = Γ
(1)
N=2 + Γ

(2)
N=2 + . . . , (2.29)

where Γ
(1)
N=2 and Γ

(2)
N=2 are one- and two-loop quantum correction and dots correspond to higher-

order terms. It is clear that the one-loop effective action is given by the loop of chiral superfields
in the gauge superfield background,

Γ
(1)
N=2 = iTr ln(�+ +m2) = −i

∫ ∞
0

ds

s

∫
d3xd2θd2θ̄ K+(z, z|s) , (2.30)

where K+(z, z′) is the chiral heat kernel (2.19). At coincident superspace points it reads

K+(z, z|s) =
1

8(iπs)3/2
s2W 2eisG

2 tanh(sB/2)

sB/2
. (2.31)

In fact, for computing the effective potential it is sufficient to consider the expression (2.31) for
B = 0. Taking into account this simplification we calculate the integral over ds in (2.30),

Γ
(1)
N=2 =

1

2π

∫
d7z
[
G ln(G+

√
G2 +m2)−

√
G2 +m2

]
. (2.32)

Consider now the two-loop effective action

Γ
(2)
N=2 = −2e2

∫
d7z d7z′[G+−(z, z′)G+−(z′, z) +m2G+(z, z′)G−(z, z′)]G0(z, z′) . (2.33)
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Q+ Q̄+ Q− Q̄− Q+ Q−

Q̄+ Q+ Q̄− Q− Q̄+ Q̄−

v v v v v v

Type A Type B

Figure 1. Two-loop supergraphs in N = 2 supersymmetric electrodynamics.

The two terms in r.h.s. correspond to the Feynman graphs of Type A and B in fig. 1, respectively.
For obtaining two-loop quantum corrections to the effective potential it is sufficient to consider
the propagators (2.19) and (2.20) with Wα = W̄α = 0, Fmn = 0, Nαβ = 0 and B = 0, leaving
only the dependence on the superfield strengths G,

K+(z, z′|s) =
1

8(iπs)3/2
eisG

2
e
i
4s
ρmρmζ2I(z, z′) , (2.34)

K+−(z, z′|s) = − 1

8(iπs)3/2
eisG

2
e
i
4s
ρ̃mρ̃m−iζζ̄GI(z, z′) . (2.35)

Note that only the first term in (2.24) contributes to (2.35) in the case of such a simple
background.

The heat kernel (2.28) for the photon propagator contains the delta-function for Grassmann
variables ζ2ζ̄2. Therefore, it is sufficient to consider the heat kernels (2.34) and (2.35) at
coincident Grassmann points,

K+(z, z′|s)|ζ=ζ̄=0 = 0 , (2.36)

K+−(z, z′|s)|ζ=ζ̄=0 = − 1

8(iπs)3/2
eisG

2
e
i
4s
ρmρmI(z, z′)|ζ=ζ̄=0 . (2.37)

Hence, only the diagrams of Type A in fig. 1 contribute to the effective potential. Substituting
now (2.37) and (2.28) into (2.33) we find

Γ
(2)
N=2 =

2ie2

(4iπ)9/2

∫
d7zd3ρ

∫ ∞
0

ds dt du

(stu)3/2
ei(s+t)(G

2+m2)e
i
4

( 1
s

+ 1
t
+ 1
u

)ρ2

=
2e2

(4π)3

∫
d7z

∫ ∞
0

ds dt du

(st+ su+ tu)3/2
ei(s+t)(G

2+m2) . (2.38)

Here we did the Gaussian integration over d3ρ,

∫
d3ρ e

i
4

( 1
s

+ 1
t
+ 1
u

)ρ2 = −

(
4iπ

1
s + 1

t + 1
u

)3/2

. (2.39)

Hence, after computing the integrals over the parameters s, t, u we get

Γ
(2)
N=2 = − e2

8π2

∫
d7z ln(G2 +m2) . (2.40)
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Finally, putting together (2.32) and (2.40) we get the two-loop effective potential,

ΓN=2 =

∫
d7z f(G) ,

f(G) =
1

g2
G2 +

1

2π
(G ln(G+

√
G2 +m2)−

√
G2 +m2)− e2

8π2
ln(G2 +m2) . (2.41)

Here the term 1
e2
G2 is a part of the classical action (2.1) in the gauge superfield sector. We

stress that the effective potential (2.41) was known before only in the one-loop approximation
[3, 4] while the two-loop correction to this result was found in our work [27].

2.4. Two-loop moduli space metric
The moduli space is an important object in gauge theories which allows one to study various
issues of dualities [3, 4, 5, 6, 7, 8, 9, 10, 11] (see also [1, 2] for recent discussions of these problems).
The perturbative quantum corrections to the moduli space metric in the N = 2, d = 3 gauge
theories are known only up the one-loop order [3, 4, 7]. The two-loop effective action (2.41)
allows us to study two-loop moduli space in the N = 2, d = 3 electrodynamics (2.1).

The moduli space in N = 2, d = 3 SQED is a two-dimensional Kähler manifold. It can be
parametrized by two real coordinates r and σ. The coordinate r is naturally identified with the
vev of the scalar field φ which is a part of the N = 2, d = 3 gauge multiplet, r = 〈φ〉. This
scalar is the lowest component of the superfield strength G,

G|θ→0 = φ . (2.42)

Another scalar field a appears upon dualizing the Abelian vector Am,

∂ma ∝ εmnpFnp , (2.43)

where Fmn is the Maxwell field strength corresponding to the Abelian vector field Am. The
coordinate σ corresponds to the vev of this scalar, σ = 〈a〉. The moduli space metric is
parametrized by r and σ,

ds2 = grr(r, σ)dr2 + gσσ(r, σ)dσ2 . (2.44)

Our aim is to find the explicit form of the functions grr(r, σ) and gσσ(r, σ).
The procedure of deriving the metric (2.44) from the low-energy effective action is described

in [7]: Given the function f(G) one dualizes the linear superfield G into a chiral superfield Φ
following standard procedure of [29]. The chiral superfield serves as the Lagrange multiplier for
the linearity constraint (2.3),

Slow−energy =

∫
d7z [f(G)−G(Φ + Φ̄)] . (2.45)

The superfield G is treated now as unconstrained. Varying (2.45) with respect to G we get

Φ + Φ̄ = f ′(G) =
2

e2
G+

1

2π
ln(G+

√
G2 +m2)− e2

4π2

G

G2 +m2
. (2.46)

From this equation the superfield G should be expressed in terms of Φ + Φ̄ and substituted back
to (2.45). This yields a sigma-model action,

Slow−energy =

∫
d7z K(Φ + Φ̄) , (2.47)
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with some function K(Φ + Φ̄). We do not need the manifest expression for K since the Kähler
metric is defined rather by its second derivative,

ds2 = K ′′ dΦ dΦ̄ . (2.48)

This metric should be expressed in terms of r and σ where r = 〈G〉 and σ can be identified
with the imaginary part of Φ, σ = ImΦ. Using the fact that the inverse Legendre transform is
a Legendre transform, we have

K ′(Φ + Φ̄) = r . (2.49)

From this equation and from (2.46) we conclude

K ′′(Φ + Φ̄) =

(
∂(Φ + Φ̄)

∂r

)−1

=
1

2

1

g(r)
, (2.50)

where

g(r) =
1

e2
+

1

4π

1√
r2 +m2

+
e2

8π2

r2 −m2

(r2 +m2)2
. (2.51)

Finally, we note that (2.46) implies that

dΦ = g(r)dr + idσ , dΦ̄ = g(r)dr − idσ . (2.52)

Substituting now (2.50) and the latter identities into (2.48) we find the moduli space metric in
the form

ds2 =
1

2
g(r)dr2 +

1

2

1

g(r)
dσ2 . (2.53)

In the massless limit the function g(r) in (2.51) simplifies such that

ds2|m=0 =
1

2

(
1

e2
+

1

4πr
+

e2

8π2r2

)
dr2 +

1

2

(
1

e2
+

1

4πr
+

e2

8π2r2

)−1

dσ2 . (2.54)

Equation (2.54) shows that the one-loop metric is corrected by the two-loop contribution
e2

8π2r2
. It is naturally to expect that the n-loop correction could be of the form cn

1
e2

( e
2

r )n, with
some coefficient cn. It is very tempting to compute such higher-loop coefficients cn and to find a
closed expression for all-loop moduli space metric both for the Abelian and non-Abelian N = 2,
d = 3 gauge theories.

3. N = 4 supersymmetric electrodynamics
3.1. Classical action
N = 4 supersymmetric gauge multiplet consists of the N = 2 gauge superfield V and a chiral
superfield Φ. The classical action of the N = 4 supersymmetric electrodynamics reads

SN=4 =
1

e2

∫
d7z(G2 − 1

2
Φ̄Φ) + SQ , (3.1)

SQ = −
∫
d7z(Q̄+Q+ + Q̄−Q−)−

∫
d5zQ+ΦQ− +

∫
d5z̄ Q̄+Φ̄Q̄− ,

We are interested in the part of low-energy effective action in this model which depends both
on V and Φ. Therefore, we make the background-quantum splitting for both these superfields,

V → V + e v , Φ→ Φ + e φ , (3.2)
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Q+ Q̄+

Q− Q̄−

φ φ̄

Type C

Figure 2. Two-loop supergraph in N = 4 supersymmetric electrodynamics which involves
chiral superfield propagator 〈φφ̄〉.

while the hypermultiplet (Q+,Q−) is considered as the ‘quantum’ superfield which should be
integrated out in the path integral. We impose the following constraints on the background
superfield:

∂mG = 0 , Wα = W̄α = 0 , DαΦ = 0 . (3.3)

These constraints are sufficient for obtaining the effective potential of the form (1.5).
Upon quantization in the Fermi-Feynman gauge (2.6), we end up with the following action

for ‘quantum’ superfields,

Squantum = S2 + Sint , (3.4)

S2 = −
∫
d7z(v�v +

1

2
φ̄φ+ Q̄+Q+ + Q̄−Q−)−

(∫
d5zQ+ΦQ− + c.c.

)
, (3.5)

Sint = −2

∫
d7z

[
e
(
Q̄+Q+ − Q̄−Q−

)
v + e2

(
Q̄+Q+ + Q̄−Q−

)
v2
]

−e
∫
d5zQ+φQ− + e

∫
d5z̄ Q̄+φ̄Q̄+ +O(e3) . (3.6)

The propagators for the chiral matter superfields and for the gauge superfield V are the same
as in the N = 2 electrodynamics (2.11) and (2.27). However, the chiral superfield φ propagates
now,

〈φ(z)φ̄(z′)〉 = − i
8
D̄2D2G0(z, z′) . (3.7)

3.2. Low-energy effective action

The one-loop effective action Γ
(1)
N=4 receives contributions only from the chiral matter superfields

which are the same as in the N = 2 electrodynamics (2.1). The only difference is that the chiral
superfield is dynamical now while in the N = 2 case it was ‘frozen’ to be equal to the mass
parameter m. Therefore we can easily generalize the one-loop effective action (2.32) to the
N = 4 case,

Γ
(1)
N=4 =

1

2π

∫
d7z
[
G ln(G+

√
G2 + Φ̄Φ)−

√
G2 + ΦΦ̄

]
. (3.8)

The two-loop effective action in the N = 4 electrodynamics differs from the N = 2 case
because the chiral superfield Φ propagates now. Indeed, apart from the diagrams in fig. 1, there
is an additional two-loop diagram with quantum 〈φφ̄〉 line, see fig. 2. This extra graph yields
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additional contributions to the two-loop effective action which we denote by ΓC,

Γ
(2)
N=4 = ΓA + ΓB + ΓC , (3.9)

ΓA = −2e2

∫
d7z d7z′G+−(z, z′)G+−(z′, z)G0(z, z′) , (3.10)

ΓB = −2e2

∫
d7z d7z′ Φ̄ΦG+(z, z′)G−(z, z′)G0(z, z′) , (3.11)

ΓC = 2e2

∫
d7z d7z′G+−(z, z′)G+−(z, z′)G0(z, z′) . (3.12)

We are interested in the part of the low-energy effective action depending on constant
background superfields G and Φ which we refer to as the effective potential. It is easy to
see that the part of the low-energy effective action (3.11) does not contribute to the effective
potential because of (2.36). Hence, it is necessary to consider only

ΓA + ΓB = 2e2

∫
d7zd7z′[G+−(z, z′)G+−(z, z′)−G+−(z, z′)G+−(z′, z)]G0(z, z′) . (3.13)

The heat kernel K+−(z, z′|s) given by (2.37) is symmetric with respect to the superspace points.
Hence, the two terms in the r.h.s. of (3.13) exactly cancel each other. Thus, we conclude that
there are no two-loop quantum corrections to the effective potential (3.8). This result is a direct
check of the general statement that the moduli space metric in the N = 4, d = 3 gauge theories
is one-loop exact [3, 7]. This metric is known as the Taub-NUT metric which was originally
derived in [29] from geometrical principles.
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