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Abstract. We consider generalized KP-Burgers equations and attempt to identify subclasses
admitting Virasoro or Kac-Moody type algebras as their symmetries. We give reductions to
ODEs constructed from invariance requirement under these infinite-dimensional Lie symmetry
algebras and integrate them in cases where it is possible. We also look at the conditions under
which the equation passes the Painlevé test and construct some exact solutions by truncation.

1. Introduction
In this paper we give a classification of infinite-dimensional symmetries of the family of equations

(ut + p(y, t)uux + q(y, t)uxx + r(y, t)uxxx)x + σ(y, t)uyy

+ a(y, t)uy + b(y, t)uxy + c(y, t)uxx + e(y, t)ux + f(y, t)u+ h(y, t) = 0.
(1.1)

with the assumption p(y, t) 6= 0, q(y, t) 6= 0, r(y, t) 6= 0, σ(y, t) 6= 0. Eq. (1.1) includes
generalizations of the 2+1-dimensional Burgers and KP (Kadomtsev-Petviashvili) equations for
the choice of r = 0 and q = 0, respectively. For derivations of constant coefficient KP-Burgers
equations in different physical applications we refer, for instance, to Ref. [1, 2]

From group theoretical point of view, the case q = 0, r = r(t) was studied in [3], whereas
the case q = q(t), r = 0 was recently done in [4]. In the former, the equation has a Virasoro
algebra for some specific choice of the coefficients. In the latter, this remarkable algebra does
not arise. However, both cases contain infinite-dimensional symmetry algebras of Kac-Moody
type [5]. In the present work we wish to analyze the situation where both q and r can survive
with an additional y-dependence.

We note that for q(y, t) = 0 this family of equations is analyzed in [6] in the context of its
integrability properties and exact solutions.

2. Canonical Forms and Determining Equations
We shall convert Eq. (1.1) to some canonical form using point transformations preserving the
differential structure of the equation. These type of transformations are known as equivalence,
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allowed or form-invariant transformations. It is a straightforward calculation to show that they
are given by

u(x, y, t) = R(y, t)ũ(x̃, ỹ, t̃)− α̇

αp
x+ S0(y, t),

x̃ = α(t)x+ β(y, t), ỹ = Y (y, t), t̃ = T (t),

α 6= 0, R 6= 0 Yy 6= 0, Ṫ 6= 0

(2.1)

together with some restrictions on α(t) and coefficients of the equation:

(apy
p

+
σpyy
p
−

2σp2y
p2
− f

)
α̇ = 0. (2.2)

With this transformation coefficient functions are mapped to

p̃(ỹ, t̃) = p(y, t)
Rα

Ṫ
, q̃(ỹ, t̃) = q(y, t)

α2

Ṫ
, r̃(ỹ, t̃) = r(y, t)

α3

Ṫ
,

σ̃(y, t) = σ(y, t)
Y 2
y

αṪ
,

ã(ỹ, t̃) =
1

αṪ
{aYy + σYyy + 2σYy

Ry
R
},

b̃(ỹ, t̃) =
1

αṪ
{(bα+ 2σβy)Yy + αYt}, (2.3)

c̃(ỹ, t̃) =
1

αṪ
{cα2 + βtα+ pS0α

2 + σβ2y + bαβy},

ẽ(ỹ, t̃) =
1

αRṪ
{Rαe−Rα̇+Rtα+ aRβy + σRβyy + bαRy + 2σRyβy},

f̃(ỹ, t̃) =
1

αRṪ
(fR+ aRy + σRyy),

h̃(ỹ, t̃) =
1

αRṪ
{h− ∂

∂t

(
α̇

αp

)
+

1

p

(
α̇

α

)2

+ σS0,yy + aS0,y + fS0 − e
α̇

αp
+ b

α̇py
αp2
}.

We can choose R(y, t) = Ṫ /(pα) to normalize p̃(ỹ, t̃) = 1. With this simplification the condition
(2.2) reduces to α̇f = 0. If we set

Y 2
y = |αṪ

σ
|

we can normalize σ̃(ỹ, t̃) = ε = ∓1. Furthermore, choosing β(y, t) and S0(y, t) suitably we can
have

ẽ(ỹ, t̃) = h̃(ỹ, t̃) = 0.

Therefore, instead of Eq. (1.1) we can equivalently work on

(ut + uux + q(y, t)uxx + r(y, t)uxxx)x + εuyy

+ a(y, t)uy + b(y, t)uxy + c(y, t)uxx + f(y, t)u = 0, ε = ∓1
(2.4)

which we call the canonical form of (1.1). Allowed transformations for this class are found as

x̃ = α(t)x+ β(y, t), ỹ = ε
√
αṪy + γ(t), ε = ∓1,

t̃ = T (t), u =
Ṫ

α
ũ− α̇

α
x+ S0(y, t)

(2.5)
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with the constraints

α̇f = 0, εβyy + aβy + α
T̈

Ṫ
− 2α̇ = 0, εS0,yy + aS0,y + fS0 =

d

dt
(
α̇

α
)− (

α̇

α
)2. (2.6)

We shall restrict ourselves to the more manageable case ry = 0 in the rest of the article.

2.1. Canonical class when r = r(t)
In this case we can immediately normalize r̃(t̃) = 1 by choosing Ṫ = α3(t) r(t) in (2.3). We note
that this normalization will lead to an enormous simplicity in the determining equations. We
thus consider the canonical family

(ut + uux + q(y, t)uxx + uxxx)x + εuyy

+ a(y, t)uy + b(y, t)uxy + c(y, t)uxx + f(y, t)u = 0, ε = ∓1
(2.7)

with its allowed transformations

x̃ = α(t)x+ β(y, t), ỹ = εα2y + γ(t), ε = ∓1,

t̃ =

∫
α3(t)dt, u = α2ũ− α̇

α
x+ S0(y, t),

(2.8)

obeying the constraints

α̇f = 0, εβyy + aβy + α̇ = 0, εS0,yy + aS0,y + fS0 =
d

dt
(
α̇

α
)− (

α̇

α
)2. (2.9)

2.2. Canonical class when q = q(t), r = r(t), a = f = 0
For later convenience we note a further simplification of (2.7) when q = q(t) and a = f = 0. If
f vanishes identically, we have no condition on α(t) that we can choose α(t) := q(t) to simplify

q̃ = qα2

Ṫ
= q

α = 1 in (2.3). Assuming further a = 0, we have the canonical family

(ut + uux + uxx + uxxx)x + εuyy + b(y, t)uxy + c(y, t)uxx = 0, ε = ±1 (2.10)

with the equivalence transformations

x̃ = x+ β1(t)y + β2(t), ỹ = εy + γ(t),

t̃ = t+ T0, u = ũ+ S1(t)y + S2(t).
(2.11)

2.3. The infinitesimal and determining equations
Now we proceed to obtain the symmetry algebra of (2.7). Let us denote the infinitesimal as

V = τ∂t + ξ∂x + η∂y + φ∂u. (2.12)

Here the coefficients τ, ξ, η, φ depend on the variables t, x, y, u. We see that V has the form

V = τ(t)∂t +

(
τ̇

3
x+ ξ0(y, t)

)
∂x +

(
2

3
τ̇ y + η0(t)

)
∂y +

(
−2

3
τ̇u+

τ̈

3
x+ S(y, t)

)
∂u, (2.13)

where

S(y, t) = −τct − (
2

3
τ̇ y + η0)cy + ξ0,t + bξ0,y −

2

3
cτ̇ (2.14)
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subject to the determining equations

τ̇(q + 2yqy) + 3τqt + 3η0qy = 0, (2.15)

3τat + (2τ̇ y + 3η0)ay + 2aτ̇ = 0, (2.16)

−3η̇0 − 2yτ̈ + 3τbt + (2τ̇ y + 3η0)by + bτ̇ − 6εξ0,y = 0, (2.17)

τ̈ + 3aξ0,y + 3εξ0,yy = 0, (2.18)

f τ̈ = 0, (2.19)

4f τ̇ + 3ftτ + fy(2τ̇ y + 3η0) = 0, (2.20)
...
τ + 3fS + 3aSy + 3εSyy = 0. (2.21)

3. Symmetry Algebras
3.1. Search for the Virasoro symmetries
The set of determining equations (2.16)-(2.21) are almost the same with those obtained in [3].
Equation (2.15) stems from the extra term q(y, t)uxx. We are going to try to satisfy Eqs. (2.15)-
(2.21) without imposing any condition on τ(t). This requirement leading to a similar analysis
carried out in [3] implies that we must have

ξ0(y, t) = −ε
6
τ̈ y2 + µ(t)y + ξ(t), µ(t) =

ε

6

(
bτ̇ + 3τ ḃ− 3η̇0

)
, (3.1)

where τ(t), ξ(t) and η0(t) are arbitrary. Using these results in (2.21) we find

2τ̇(3cyy + ycyyy) + 3η0cyyy + 3τctyy = 0. (3.2)

We have the following splitting:
(i) ctyy = 0. This means we have

c(y, t) = k0y
2 + c1(t)y + c0(t) (3.3)

with k0 a constant and (3.2) is satisfied for arbitrary τ if k0 = 0. This is the form of c(t) obtained
in [3].
(ii) 3cyy + ycyyy = 0. We find by integration

c(y, t) =
c2(t)

y
+ c1(t)y + c0(t). (3.4)

The substitution of c(y, t) into (3.2) results in

3c2η0 − yτ ċ2 = 0. (3.5)

c2 = 0 corresponds to the previous case. If c2 6= 0, we need to have η0(t) = 0 and c2(t) = l0, a
constant. We therefore have

c(y, t) =
l0
y

+ c1(t)y + c0(t), (3.6)

where

η0(t) =

{
free, l0 = 0,
0, l0 6= 0.

(3.7)

Now Eq. (2.15) has the form

τ̇(q + 2yqy) + 3τqt + 3η0qy = 0, (3.8)

which implies that q + 2yqy = 0 and qt = 0 from which we have q(y, t) = q0√
y with q0 = const.

and the condition q0η0(t) = 0. From the assumption q(y, t) 6= 0 we should have η0(t) = 0.
We state the results of this part as theorems.
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Theorem 3.1 The canonical generalized KP-Burgers equation (2.7) allows the Virasoro algebra
as a symmetry algebra if and only if the coefficients satisfy

a = f = 0, q(y, t) =
q0√
y
, b = b(t), c = c0(t) + c1(t)y +

l0
y
. (3.9)

Theorem 3.2 The canonical generalized KP-Burgers equation

(ut + uux +
q0√
y
uxx + uxxx)x + εuyy + b(t)uxy + (c0(t) + c1(t)y +

l0
y

)uxx = 0 (3.10)

with ε = ±1, l0 ∈ R and b(t), c0(t) and c1(t) arbitrary smooth functions is invariant under an
infinite dimensional Lie point symmetry group. Its Lie algebra is realized by vector fields of the
form

V̂ = T (τ) +X(ξ), (3.11)

where τ(t) and ξ(t) are arbitrary smooth functions of time and we have

T (τ) = τ(t)∂t +
1

6
[3εḃyτ + (2x+ εby)τ̇ − ετ̈y2]∂x

+
2

3
τ̇ y∂y +

1

6
{[−6ċ0 + 3εbḃ+ (−6ċ1 + 3εb̈)y]τ

+ [−4u+ εb2 − 4c0 + 4(εḃ− 2c1)y]τ̇ + (2x− εby)τ̈ − εy2 ...
τ }∂u, (3.12)

X(ξ) = ξ(t)∂x + ξ̇(t)∂u. (3.13)

Remark 3.1 Theorems 1 and 2 are also valid for q0 = 0, therefore they should be noted as
different canonical classes in [3]. For the case q0 = 0 studied in [3], there are three arbitrary
functions in the vector field. Two of these functions exactly give rise to the generators T (τ)
and X(ξ). The last arbitrary function is nothing but η0(t), and the above analysis shows that
restricting η0(t) = 0 allows the terms q0uxxx/

√
y and l0uxx/y in (3.10).

The canonical class (3.10) can further be simplified with the allowed transformations (2.8). Since
a = f = 0, conditions (2.9) can be formulated as

β(y, t) = −εα̇
2
y2 + β1(t)y + β2(t), S0(y, t) =

ε

2
χ(t)y2 + S1(t)y + S2(t) (3.14)

with χ(t) = d
dt(

α̇
α)− ( α̇α)2. Using (2.3) we get

b̃(t̃) =
1

α3

(
εbα2 + 2εεαβ1 + γ̇), (3.15)

c̃(ỹ, t̃) =
l0α
−2

y
+ α−4(c0α

2 + αβ̇2 + S2α
2 + εβ21 + bαβ1)

+ α−4(c1α
2 + αβ̇1 + S1α

2 − 2α̇β1 − εbαα̇)y

+ α−4ε(−1

2
αα̈+

1

2
α2χ+ α̇2)y2. (3.16)

Choosing γ appropriately, we can have b̃(t̃) = 0. If l0 6= 0, we choose α2(t) = |l0| to make the
normalization l̃0 = ∓1. Coefficient of y2 vanishes, and there exist functions S1(t) and S2(t) such
that the coefficients of y0 and y also vanishes. Similar arguments apply if l0 = 0 in which α(t)
is chosen as an arbitrary constant. In summary, we can consider

b(t) = c0(t) = c1(t) = 0. (3.17)
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3.2. The function η0(t) free
From (2.15) we see that η0(t) is free only if we have qy = 0, that is, q = q(t). Then (2.15) is
easy to solve. We momentarily leave it aside and focus on the other equations. Since (2.16)-
(2.21) are the same with those given in [3], we skip the details of the calculations and state that
(2.16)-(2.20) can be solved for η0(t) free if

ξ0(y, t) = −ε
6
τ̈ y2 + ν(t)y + ξ(t), ν(t) =

ε

6

(
− 3η̇0 + 3τ ḃ0 + 3η0b1 + b0τ̇

)
, (3.18)

b(y, t) = b1(t)y + b0(t), (τb1)
· = 0, a(y, t) = f(y, t) ≡ 0. (3.19)

Since we have come to the situation that a = f = 0, this means the canonical equation (2.10)
can be studied instead of (2.7). Furthermore, equivalence transformations (2.11) are valid. If
we use q(t) = 1 in (2.15), we find that τ(t) = τ0 = const. (2.21) simplifies to

η0cyyy + τ0ctyy = 0. (3.20)

Obviously we need to have c(y, t) = c0(t) + c1(t)y + c2(t)y
2. Then the only relations to be

satisfied are
τ0 ḃ1 = 0, τ0 ċ2 = 0. (3.21)

(i) If τ0 = 0, we have the symmetry algebra in [3] and state it as a theorem.

Theorem 3.3 The equation

(ut + uux + uxx + uxxx)x + εuyy + (b1(t)y + b0(t))uxy

+ (c2(t)y
2 + c1(t)y + c0(t))uxx = 0,

(3.22)

where ε = ±1 and b0, b1, c0, c1, c2 are arbitrary functions of time, is invariant under an infinite-
dimensional Lie point symmetry group depending on two arbitrary functions. Its Lie algebra has
a Kac-Moody structure and is realized by vector fields of the form

V̂ = X(ξ) + Y (η), (3.23)

where ξ(t) and η(t) are arbitrary smooth functions of time and

X(ξ) = ξ∂x + ξ̇∂u, (3.24)

Y (η) =
ε

2
y(−η̇ + b1η)∂x + η∂y + {[−2c2η

+
ε

2
(−η̈ + ḃ1η + b21η)]y − c1η +

ε

2
b0(−η̇ + b1η)}∂u.

(3.25)

It is possible to make
b0(t) = c0(t) = c1(t) = 0 (3.26)

using transformations (2.11).

Remark 3.2 This result shows that the Kac-Moody algebra (3.24)-(3.25) of the generalized
KP equation [3] and generalized Burgers equation [4] is actually admitted by the KP-Burgers
equation.

(ii) For the case τ0 6= 0 we proceed with the case (3.26) and find b1(t) = k1, c2(t) = k2 as
constants. So, the equation

(ut + uux + uxx + uxxx)x + εuyy + k1y uxy + k2y
2uxx = 0 (3.27)

has the obvious symmetry T = ∂t in addition to (3.24) and (3.25).
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3.3. One function in symmetry algebra
If we let τ(t) and η0(t) be constrained by the determining equations, but let some freedom
remain in ξ0(y, t), then we have the following:

Theorem 3.4 Equation (2.4) is invariant under an infinite dimensional Abelian group
generated by the vector field

X(ξ) = ξ(t)∂x + ξ̇(t)∂u (3.28)

for f(y, t) = 0 and a, b, c, q, r arbitrary.

4. Some Applications
In this Section we apply method of reduction and truncating Painlevé expansion to find exact
solutions.

4.1. Reduction for the Virasoro case
The solution invariant under the group exp(T (τ) +X(ξ)) for τ 6= 0 is given by

ρ = xτ−1/3 +
ε

6
τ̇ τ−4/3y2 −

∫ t

0
ξ(s)τ(s)−4/3ds, θ = y−3/2τ,

u = τ−2/3w(ρ, θ)− ε

18
τ−2y2(3τ τ̈ − 2τ̇2) +

x

3

τ̇

τ
+
ξ

τ
,

(4.1)

where w satisfies

[wρρρ + q0θ
1/3wρρ + l0θ

2/3wρ + wwρ]ρ +
15ε

4
θ7/3wθ +

9ε

4
θ10/3wθθ = 0. (4.2)

This equation admits a two-dimensional Lie algebra generated by X1 = ∂ρ, X2 = ρ∂ρ − 3θ∂θ −
2w∂w. The solutions invariant under the subalgebra X1 are straightforward to obtain. They are
given by

w(θ) = w1 + w0θ
−2/3

which produces solutions

u(x, y, t) = w0τ
−4/3y−2/3 + w1τ

−2/3 − ε

18
τ−2y2(3τ τ̈ − 2τ̇2) +

x

3

τ̇

τ
+
ξ

τ

depending on two arbitrary functions of time τ(t), ξ(t) and two constants w0, w1.
Invariance under X2 implies that the solution will have the form

w(ρ, θ) = θ2/3F (z), z = ρθ1/3, (4.3)

where F (z) satisfies the fourth order ODE

F ′′′′ + q0F
′′′ + (l0 +

ε

4
z2)F ′′ +

7ε

4
zF ′ + (FF ′)′ + 2εF = 0. (4.4)

Unfortunately, we have not been able to integrate it further, neither found a first integral.
We mention that the projective action on the solution u under the subgroup of the full

symmetry group

C = T (t2) = t2∂t +
1

6
(4xt− 2εy2)∂x +

4

3
ty∂y +

1

6
(4x− ut)∂u (4.5)
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is given by

t̃ = t(1− λt)−1, ỹ = (1− λt)−4/3y,

x̃ = (1− λt)−2/3(x+
ε

3

y2

t
)− ε

3

y2

t
(1− λt)−5/3,

ũ = (1− λt)4/3{u+
2

3
(x+

ε

3

y2

t
)

λ

1− λt
+
ε

6

λy2t

(1− λt)2
(λt− 2)},

(4.6)

where λ is the group parameter. These type of solution formulas have proved useful in
constructing blow-up profiles for evolution equations.

4.2. Reduction for the Kac-Moody case
A solution of (3.22) invariant under exp(X(ξ) + Y (η)) will have the form

u =
[ε

4

(
ḃ+ b2 − η̈

η

)
− c
]
y2 +

ξ̇

η
y + F (z, t),

z = x+
ε

4
(−b+

η̇

η
)y2 − ξ

η
y.

(4.7)

We assumed the simplification (3.26) and re-labeled b1(t) = b(t), c2(t) = c(t). The reduced
equation is found to be

(Ft + FFz + Fzz + Fzzz)z + ε
ξ2

η2
Fzz +

1

2

( η̇
η
− b
)
Fz − 2εc+

1

2

(
ḃ+ b2 − η̈

η

)
= 0. (4.8)

It is possible to eliminate the term Fzz by putting

F (z, t) = F̃ (z̃, t̃), z̃ = z + β(t), t̃ = t, β̇(t) = −εξ
2

η2
. (4.9)

Further choosing η̇/η = b gives rise to the one-dimensional nonhomogeneous KdV-Burgers
equation

(Ft + FFz + Fzz + Fzzz)z = 2εc(t). (4.10)

4.3. Painlevé property and an exact solution
We checked whether (2.4) has the Painlevé property, using the package PainleveTestV2.m [7]
with a Kruskal anzats in x, and we saw that the equation passes the test when

q(y, t) = a(y, t) = f(y, t) = 0, b(y, t) = b0(t) + b1(t)y,

r(y, t) = r0 exp
(2

3

∫
b1(t)dt

)
, c(y, t) =

ε

3

(2

3
b21 + ḃ1

)
y2 + c1(t)y + c0(t).

(4.11)

Since r is a function of t, it can be normalized to 1, which means that we can make b1(t)→ 0.
They are exactly the coefficients of the class which are invariant under the Kac-Moody-Virasoro
algebra [3].

According to these results, our canonical equation (3.10) with the Virasoro algebra cannot
have the Painlevé property (q0 6= 0).

We also found that

(ut + uux + uxx + uxxx)x + εuyy + b(t)yuxy + c(t)y2uxx = 0 (4.12)
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fails to have the Painlevé property. In search for any possible exact solutions we truncate the
Painlevé series for this equation at the first term and propose a solution of the form

u(x, y, t) =
u0(x, y, t)

Φ2(x, y, t)
, (4.13)

where Φ defines the singularity manifold. We substitute (4.13) in (4.12) and require that the
coefficients of Φj , j = −6,−5, ..,−1 vanish identically. For c(t) = 0 it has been possible to solve
these system of equations in the form

u0 = −12k21
25

exp
[
− 2x

5
− 12t

125
+ 2k2ye

−
∫
b(t)dt + 10εk22

∫
e−2

∫
b(t)dtdt

]
,

Φ = k1 exp
[
− x

5
− 6t

125
+ k2ye

−
∫
b(t)dt + 5εk22

∫
e−2

∫
b(t)dtdt

]
+ k3,

(4.14)

where k1, k2, k3 are arbitrary constants. We checked whether the same approach works for (3.10)
with (3.17). It turned out that a solution of the type (4.13) is not possible in this case.

4.4. The special case a = b = c = e = f = h = 0
We finally consider the equation

(ut + p(t)uux + q(t)uxx + r(t)uxxx)x + σ(t)uyy = 0, (4.15)

where all the coefficients are assumed to be nonzero. Allowed transformations are again of the
form (2.1), while the coefficients map to

p̃(t̃) = p(t)
Rα

Ṫ
, q̃(t̃) = q(t)

α2

Ṫ
, r̃(t̃) = r(t)

α3

Ṫ
, σ̃(t) = σ(t)

Y 2
y

αṪ
. (4.16)

In order that no additional terms appear in the equation, we must have

σYyy = 0, (4.17)

2σβyYy + αYt = 0, (4.18)

βtα+ pSα2 + σβ2y = 0, (4.19)

−Rα̇+ Ṙα+ σRβyy = 0, (4.20)

− d

dt

(
α̇

αp

)
+

1

p

(
α̇

α

)2

+ σSyy = 0. (4.21)

Normalization p̃(t̃) = r̃(t̃) = 1 is again possible if we choose Ṫ = α3r and R = α2 r
p . Furthermore,

we see that Y (y, t) = µ(t)y+ ν(t) so that σ̃ has no dependence on y. We solve (4.18) for β(y, t)
and (4.19) for S(y, t) to obtain

β(y, t) = − αµ̇

4σµ
y2 − αν̇

2σµ
y + β1(t), (4.22)

S(y, t) = − 1

pα2
(αβt + σβ2y). (4.23)

(4.20) is satisfied if µ(t) = µ0

(
αr
p

)2
. There remains Eq. (4.21), which takes the form

α̇

α

(
4
ṗ

p
− 3

ṙ

r
− σ̇

σ

)
=
p̈

p
− r̈

r
+
ṗ2

p2
+ 3

ṙ2

r2
− 4

ṗṙ

pr
− ṗσ̇

pσ
+
ṙσ̇

rσ
. (4.24)
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(i) Suppose σ 6= σ0
p4

r3
, where σ0 is an arbitrary constant. Then we can solve α(t) from (4.24)

and the normalization process is completed, which means we have obtained the canonical form

(ut + uux + q(t)uxx + uxxx)x + σ(t)uyy = 0. (4.25)

(ii) If σ = σ0
p4

r3
, then the left-hand side of (4.24) vanishes and from the right-hand side we

have the condition
r̈

r
− p̈

p
+ 3

ṗ2

p2
− 3

ṗṙ

pr
= 0. (4.26)

When we consider the canonical version (4.25), we see that the infinitesimal generator takes the
form

V = (c1t+ c2)∂t + (
c1
3
x− η̇0

2σ
y+ ξ0)∂x + (

2c1
3
y+ η0)∂y −

(
2c1
3
u+ y

d

dt

( η̇0
2σ

)
− ξ̇0

)
∂u. (4.27)

Here ξ0(t) and η0(t) are arbitrary functions, and we have the following two restricting equations

(c1t+ c2)σt = 0, (c1t+ c2)q
3 = q0, (4.28)

where q0 is an arbitrary constant. Let us consider the case c1 = c2 = 0, then there is no condition
on q(t) and σ(t). The symmetry algebra is an infinite-dimensional one generated by the vector
field

V = X(ξ) + Y (η), (4.29)

where X(ξ) and Y (η) are given by

X(ξ) = ξ∂x + ξ̇∂u, (4.30)

Y (η) = − η̇

2σ
y∂x + η∂y − y

d

dt

( η̇
2σ

)
∂u. (4.31)

Using invariance under Y (η), we perform a reduction of (4.25) seeking solutions in the form

u = −y
2

2η

d

dt

( η̇
2σ

)
+ F (z, t), z = x+

η̇

4ση
y2, (4.32)

and the reduced equation reads

(Ft + FFz + qFzz + Fzzz)z +
η̇

2η
Fz +

η̇σ̇

2ησ
− η̈

2η
= 0. (4.33)

Choosing η̇(t) = σ(t) the inhomogeneity is disposed of and we end up with the equation

(Ft + FFz + qFzz + Fzzz)z + σ̃(t)Fz = 0, (4.34)

where σ̃(t) = σ(t)
2
∫
σ(t) dt

. An integration gives a one-dimensional variable coefficient KP-Burgers

equation
Ft + FFz + qFzz + Fzzz + σ̃(t)F = f(t).
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