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Abstract. We conjecture that the category of permutation-twisted modules for a multi-fold
tensor product vertex operator superalgebra and a cyclic permutation of even order is isomorphic
to the category of parity-twisted modules for the underlying vertex operator superalgebra.
This conjecture is based on our observations of the cyclic permutation-twisted modules for
free fermions as we discuss in this work, as well as previous work of the first author constructing
and classifying permutation-twisted modules for tensor product vertex operator superalgebras
and a permutation of odd order. In addition, we observe that the transposition isomorphism
for two free fermions corresponds to a lift of the −1 isometry of the integral lattice vertex
operator superalgebra corresponding to two free fermions under boson-fermion correspondence.
We conjecture that all even order cyclic permutation automorphisms of free fermions can be
realized as lifts of lattice isometries under boson-fermion correspondence. We discuss the role of
parity stability in the construction of these twisted modules and prove that in general, parity-
unstable weak twisted modules for a vertex operator superalgebras come in pairs that form
orthogonal invariant subspaces of parity-stable weak twisted modules, clarifying their role in
many other settings.

1. Introduction and preliminaries
Let V be a vertex operator (super)algebra, and for a fixed positive integer k, consider the
tensor product vertex operator (super)algebra V ⊗k (see [FLM3], [FHL]). Any element g of
the symmetric group Sk acts in a natural way on V ⊗k as a vertex operator (super)algebra
automorphism, and thus it is appropriate to consider g-twisted V ⊗k-modules. This is the setting
for permutation orbifold conformal field theory, and for permutation orbifold superconformal
field theory if the vertex operator superalgebra is not just super, but is also supersymmetric,
i.e. is a representation of a Neveu-Schwarz super-extension of the Virasoro algebra.

In [BDM], the first author along with Dong and Mason constructed and classified the g-
twisted V ⊗k-modules for V a vertex operator algebra and g ∈ Sk. In particular, it was proved
that the category of weak (1 2 · · · k)-twisted V ⊗k-modules is isomorphic to the category of weak
V -modules. In [Bar12], the first author extended this result to a construction and classification
of (1 2 · · · k)-twisted V ⊗k-modules for V a vertex operator superalgebra and k odd. However,
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as was shown by Barron in [Bar12], the results of [BDM] for permutation-twisted tensor product
vertex operator algebras and the results of Barron for the odd order case in the super setting, do
not extend in a natural way to the super setting for permutation automorphisms of even order.
Rather, the construction of the twisted modules for even order permutations is fundamentally
different whenever V has nontrivial odd subspace.

In this paper, following first the construction of [DZ2], we study the case of V ⊗kfer a k-fold

tensor product of the free fermion vertex operator superalgebra for k even and (1 2 · · · k) acting
as a vertex operator superalgebra automorphism to gain further insight into the problem. These
models, along with observations from [Bar12], provide the basis for a conjecture we make on
the nature of the classification of permutation-twisted modules in general. Our main conjecture
is that for k even, the category of weak (1 2 · · · k)-twisted V ⊗k-modules is isomorphic to the
category of weak parity-twisted V -modules. This contrasts to the case when k is odd where, as
shown in [Bar12], the category of (1 2 · · · k)-twisted V ⊗k-modules is isomorphic to the category
of weak untwisted V -modules.

Permutation-twisted modules for free fermions, as well as parity-twisted modules for free
fermions, give examples of how “parity-unstable” twisted modules arise. Motivated by these
examples, we prove that parity-unstable weak twisted modules arise as orthogonal pairs of
invariant subspaces of a parity-stable weak twisted module. Furthermore, if these two parity-
unstable weak twisted modules are ordinary then they will always have the same graded
dimension but are not isomorphic, meaning they can not be detected via techniques which
only produce the graded dimensions of the twisted modules. This simplifies much of the work
in [DZ1], [DZ3], [DH], and shows how from a categorical standpoint, all modules should be
defined so as to be parity-stable, and then what is referred to as “parity-unstable modules” in,
for instance [DZ1], [DZ3], [DH], should be referred to as “parity-unstable invariant subspaces”
of the parity-stable modules.

We use “boson-fermion correspondence” to formulate another conjecture regarding whether
one can realize the permutation-twisted modules for free fermions in the even cyclic case via two
different constructions. Boson-fermion correspondence refers to the fact that the two free fermion
vertex operator superalgebra is isomorphic to the rank one lattice vertex operator superalgebra
with length one generator, i.e. one fermion propagating on a circle. Thus one can use the work
of [DZ2] to construct the permutation-twisted modules for permutation-twisted free fermions,
or one can try to use boson-fermion correspondence and the theory of twisted modules for a
lattice vertex operator superalgebra and a lift of a lattice isometry as developed in [DL2] and
[X]. If the automorphism on the lattice is the lift of a lattice isometry, then one has an overlap
of construction techniques which can potentially give insight into the general theory of the
construction and classification of twisted modules.

However, then the question arises: When does the permutation correspond to a lift of a lattice
isometry? In this paper we provide an example of when it does, and make a conjecture that
any cyclic permutation of even order acting on free fermions is conjugate to a lift of a lattice
isometry under boson-fermion correspondence. This gives an alternative construction to even
order cyclic permutation-twisted modules for free fermion vertex operator superalgebras based
on twisted lattice constructions, i.e. space-time orbifold constructions, versus worldsheet orbifold
constructions that has potentially for being extended in general to further explore the connection
between the space-time geometry of the lattice versus the worldsheet geometry of propagating
strings, following, for instance [BHL], but in a new and different setting which explicitly involves
the supergeometry underlying vertex operator superalgebras. This is particularly interesting and
relevant for cases involving supersymmetric vertex operator superalgebras, cf. [Bar1] – [Bar13].

It is important, at the same time to note the following: We show (see Remark 4.1 below)
that the construction of twisted modules for lattice vertex operator superalgebras and a lift of
a lattice isometry can not be used in general to construct the permutation-twisted modules for
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lattice vertex operator superalgebras directly for the case of permutations of even order. This is
because if ν is a permutation isometry on the lattice of even order k, due to certain properties
of ν, which we note in Remark 4.1, the construction of [DL2], [X], only holds for ν lifted to
an automorphism ν̂ of the vertex operator superalgebra such that ν̂ is of order 2k. Thus it is
impossible for ν̂ to correspond to the permutation automorphism of order k. Details are given in
Section 4 and Section 5, and in particular in Remark 4.1. In particular, we give general criteria
for a lattice isometry of order k to lift to a vertex operator superalgebra automorphism of order
k. In the process of this, we clarify aspects of the construction of twisted modules for a lift of a
lattice isometry and a positive definite integral lattice following [DL2] and [X].

1.1. Background
Twisted vertex operators were discovered and used in [LW]. Twisted modules for vertex operator
algebras arose in the work of I. Frenkel, J. Lepowsky and A. Meurman [FLM1], [FLM2], [FLM3]
for the case of a lattice vertex operator algebra and the lattice isometry −1, in the course of the
construction of the moonshine module vertex operator algebra (see also [Bo]). This structure
came to be understood as an “orbifold model” in the sense of conformal field theory and string
theory. Twisted modules are the mathematical counterpart of “twisted sectors”, which are
the basic building blocks of orbifold models in conformal field theory and string theory (see
[DHVW1], [DHVW2], [DFMS], [DVVV], [DGM], as well as [KS], [FKS], [Ban1], [Ban2], [BHS],
[dBHO], [HO], [GHHO], [Ban3] and [HH]). Orbifold theory plays an important role in conformal
field theory and in superextensions, and is also a way of constructing a new vertex operator
(super)algebra from a given one.

Formal calculus arising from twisted vertex operators associated to a an even lattice was
systematically developed in [Le1], [FLM2], [FLM3] and [Le2], and the twisted Jacobi identity
was formulated and shown to hold for these operators (see also [DL2]). These results led to the
introduction of the notion of g-twisted V -module [FFR], [D], for V a vertex operator algebra
and g an automorphism of V . This notion records the properties of twisted operators obtained
in [Le1], [FLM1], [FLM2], [FLM3] and [Le2], and provides an axiomatic definition of the notion
of twisted sectors for conformal field theory. In general, given a vertex operator algebra V and
an automorphism g of V , it is an open problem as to how to construct a g-twisted V -module.

The focus of this paper is the study of permutation-twisted sectors for free fermion vertex
operator superalgebras. A theory of twisted operators for integral lattice vertex operator
superalgebras and finite automorphisms that are lifts of a lattice isometry were studied in
[DL2] and [X], and the general theory of twisted modules for vertex operator superalgebras
was developed by Li in [Li2]. Certain specific examples of permutation-twisted sectors in
superconformal field theory have been studied from a physical point of view in, for instance,
[FKS], [BHS], [MS1], [MS2].

The case of V a vertex operator superalgebra and V ⊗ V being permuted by the (1 2)
transposition is the mirror map if V ⊗ V , in addition to being a vertex operator superalgebra is
also N=2 supersymmetric (see for example, [Bar11]). This is one of the motivations for studying
this construction in detail in the case of free fermions. Although the free fermion vertex operator
superalgebras are not N=2 supersymmetric, they can be used to achieve supersymmetry via
tensoring with an appropriate bosonic theory as, for example, in [Bar11]. In particular, a
mirror-twisted module for an N=2 supersymmetric vertex operator superalgebra is naturally a
representation of the “mirror-twisted N=2 superconformal Lie superalgebra”, cf. [Bar10] and
[Bar11]. In [Bar13], further classifications and constructions involving this transposition mirror
map as well as other mirror maps for N=2 supersymmetric vertex operator superalgebras arising
from free fermions are given.
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1.2. The notion of vertex operator superalgebra
In this section, we recall the notion of vertex operator superalgebra, following the notation and
terminology of, for instance [LL], [Bar3]. Let x, x0, x1, x2, etc., denote commuting independent
formal variables. Let δ(x) =

∑
n∈Z x

n. We will use the binomial expansion convention, namely,
that any expression such as (x1 − x2)n for n ∈ C is to be expanded as a formal power series in
nonnegative integral powers of the second variable, in this case x2.

A vertex operator superalgebra is a 1
2Z-graded vector space V =

∐
n∈ 1

2
Z Vn, satisfying

dimV <∞ and Vn = 0 for n sufficiently negative, that is also Z2-graded by sign

V = V (0) ⊕ V (1), with V (j) =
∐

n∈Z+ j
2

Vn,

and equipped with a linear map

V −→ (EndV )[[x, x−1]], v 7→ Y (v, x) =
∑
n∈Z

vnx
−n−1, (1)

and with two distinguished vectors 1 ∈ V0, (the vacuum vector) and ω ∈ V2 (the conformal
element) satisfying the following conditions for u, v ∈ V :

unv = 0 for n sufficiently large; (2)

Y (1, x) = 1; (3)

Y (v, x)1 ∈ V [[x]] and lim
x→0

Y (v, x)1 = v; (4)

x−1
0 δ

(
x1 − x2

x0

)
Y (u, x1)Y (v, x2)− (−1)|u||v|x−1

0 δ

(
x2 − x1

−x0

)
Y (v, x2)Y (u, x1) (5)

= x−1
2 δ

(
x1 − x0

x2

)
Y (Y (u, x0)v, x2)

(the Jacobi identity), where |v| = j if v ∈ V (j) for j ∈ Z2;

[L(m), L(n)] = (m− n)L(m+ n) +
1

12
(m3 −m)δm+n,0c (6)

for m,n ∈ Z, where L(n) = ωn+1, for n ∈ Z, i.e., Y (ω, x) =
∑

n∈Z L(n)x−n−2, and c ∈ C (the
central charge of V );

L(0)v = nv = (wt v)v for n ∈ 1
2Z and v ∈ Vn; (7)

d

dx
Y (v, x) = Y (L(−1)v, x). (8)

This completes the definition. We denote the vertex operator superalgebra just defined by
(V, Y,1, ω), or briefly, by V .

Given two vertex operator superalgebras (V1, Y1,1
(1), ω(1)) and (V2, Y2,1

(2), ω(2)), we have
that (V1 ⊗ V2, Y, 1(1) ⊗ 1(2), ω(1) ⊗ 1(2) + 1(1) ⊗ ω(2)) is a vertex operator superalgebra, where
Y is given by

Y (u1 ⊗ u2, x)(v1 ⊗ v2) = (−1)|u2||v1|Y1(u1, x)v1 ⊗ Y2(u2, x)v2, (9)

for u1 ⊗ u2, v1 ⊗ v2 ∈ V1 ⊗ V2.

Remark 1.1 As a consequence of the definition of vertex operator superalgebra, we have that
wt(vnu) = wtu+ wtv − n− 1, for u, v ∈ V and n ∈ Z. This implies that vn ∈ (EndV )(j) if and
only if v ∈ V (j) for j ∈ Z2, i.e. that vnV

(j) ⊆ V (j+|v|)mod 2.
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1.3. Automorphisms of vertex operator superalgebras and the notion of twisted module
An automorphism of a vertex operator superalgebra V is a linear automorphism g of V preserving
1 and ω such that the actions of g and Y (v, x) on V are compatible in the sense that

gY (v, x)g−1 = Y (gv, x) (10)

for v ∈ V. Then gVn ⊂ Vn for n ∈ 1
2Z.

If g has finite order, V is a direct sum of the eigenspaces V j of g,

V =
∐

j∈Z/kZ

V j , (11)

where k ∈ Z+ is a period of g (i.e., gk = 1 but k is not necessarily the order of g) and
V j = {v ∈ V | gv = ηjv}, for η a fixed primitive kth root of unity.

Note that we have the following δ-function identity

x−1
2 δ

(
x1 − x0

x2

)(
x1 − x0

x2

)k
= x−1

1 δ

(
x2 + x0

x1

)(
x2 + x0

x1

)−k
(12)

for any k ∈ C.
Next we review the notions of weak, weak admissible and ordinary g-twisted V -module for

a vertex operator superalgebra V and an automorphism g of V of finite order k, as well as
the notion of “parity stability” for these various kinds of g-twisted V -modules. These are the
“standard” definitions, following, for instance [DZ1], [DZ3], [DH]. However, below we argue (see
Remark 2.2), that the more natural notion of “weak g-twisted V -module” should be that of a
“weak parity-stable g-twisted V -module”, and similarly for the notions of weak admissible or
ordinary g-twisted V -module.

Let (V, Y,1, ω) be a vertex operator superalgebra and let g be an automorphism of V of
period k ∈ Z+. A weak g-twisted V -module is a vector space M equipped with a linear map

V −→ (EndM)[[x1/k, x−1/k]], v 7→ Y g(v, x) =
∑
n∈ 1

k
Z

vgnx
−n−1, (13)

satisfying the following conditions for u, v ∈ V of homogeneous sign and w ∈M :

vgnw = 0 for n sufficiently large; (14)

Y g(1, x) = 1; (15)

x−1
0 δ

(
x1 − x2

x0

)
Y g(u, x1)Y g(v, x2)− (−1)|u||v|x−1

0 δ

(
x2 − x1

−x0

)
Y g(v, x2)Y g(u, x1) (16)

= x−1
2

1

k

∑
j∈Z/kZ

δ

(
ηj

(x1 − x0)1/k

x
1/k
2

)
Y g(Y (gju, x0)v, x2)

(the twisted Jacobi identity) where η is a fixed primitive kth root of unity.
We denote a weak g-twisted V -module by (M,Y g), or briefly, by M .
If we take g = 1, then we obtain the notion of weak V -module. Note that the notion of weak

g-twisted V -module for a vertex operator superalgebra is equivalent to the notion of g-twisted
V -module for V as a vertex superalgebra, cf. [Li2]. In particular, the term “weak” simply
implies that we are making no assumptions about a grading on M .
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It follows from the twisted Jacobi identity that

Y g(v, x) =
∑

n∈Z+ j
k

vgnx
−n−1 (17)

for j ∈ Z/kZ and v ∈ V j , and thus we have

Y g(gv, x) = lim
x1/k→η−1x1/k

Y g(v, x), (18)

where the limit stands for formal substitution.
Let (M1, Y

g
1 ) and (M2, Y

g
2 ) be two weak g-twisted V -modules. A g-twisted V -module

homomorphism from M1 to M2, is a linear map f : M1 −→M2 such that

f(Y g
1 (v, x)w) = Y g

2 (v, x)f(w) (19)

for v ∈ V and w ∈M1.
A weak g-twisted V -module may or may not have additional grading structures. These

possible grading structures fall into two different types: 1. Those involving the Z2 grading
structure, i.e. by sign or parity. 2. Those involving the weight grading structure. The first type
leads to the notion of parity stability for a weak g-twisted V -module which detects whether the
module has a Z2-grading that is compatible with the Z2-grading of V . The second type leads
to the notion of weak admissible g-twisted V -module which detects whether the module has a
1
2kZ-grading compatible with the 1

2Z-grading of V where k is the order of g. This second type
also leads to the notion of ordinary g-twisted V -modules which detects whether the g-twisted
V -module is graded by eigenvectors of the twisted Lg(0) operator.

We now give the details for these different module definitions.
A weak admissible g-twisted V -module is a weak g-twisted V -module M which carries a

1
2kZ-grading

M =
∐

n∈ 1
2k

Z

M(n) (20)

such that vgmM(n) ⊆ M(n + wt v − m − 1) for homogeneous v ∈ V , and M(n) = 0 for n
sufficiently small. If g = 1, we have the notion of weak admissible V -module.

An ordinary g-twisted V -module is a weak g-twisted V -module M which is C-graded

M =
∐
λ∈C

Mλ (21)

such that for each λ, dimMλ < ∞ and Mn/k+λ = 0 for all sufficiently negative integers n. In
addition,

Lg(0)w = λw for w ∈Mλ, (22)

where Lg(n) = ωgn+1 are the modes for the twisted vertex operator corresponding to the Virasoro
element. We will usually refer to an ordinary g-twisted V -module, as just a g-twisted V -module.
We call a g-twisted V -module M simple or irreducible if the only submodules are 0 and M .

For an ordinary g-twisted V -module, M , we have the notion of graded dimension or q-
dimension, denoted dimqM , and defined to be

dimqM = trMq
Lg(0)−c/24 = q−c/24

∑
λ∈C

(dimMλ)qλ. (23)
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A weak, weak admissible or ordinary g-twisted V -module M is said to be parity stable if there
exists a Z2-grading on M that is compatible with the Z2-grading of V in the following sense:

vgmM
(j) ⊆M (j+|v|)mod 2. (24)

In this case, setting |w| = j for w ∈M (j), defining the parity map on M by

σM : M −→M, w 7→ (−1)|w|w, (25)

and defining Y g ◦ σV by

Y g ◦ σV (v, x) = Y g(σV (v), x) = (−1)|v|Y g(v, x), (26)

we have that (M,Y g) is isomorphic to (σM (M), Y g◦σV ) as weak (or weak admissible or ordinary)
g-twisted V -modules. Note that a vertex operator superalgebra V is always a parity-stable V -
module by Remark 1.1.

2. Parity-unstable modules arise as pairs of invariant subspaces of parity-stable
modules
The notion of parity stability features prominently in, for instance, [DZ1]–[DZ3], [DH]. However,
in this section, we show that all parity-unstable weak twisted modules appear as invariant
subspaces of parity-stable weak twisted modules. Thus it is enough to study the parity-stable
weak twisted modules and then restrict to the invariant subspaces of such modules to study the
parity-stable ones. This theorem was motivated by constructions involving free fermions such
as those given below in Sections 3.2 and 3.3.

Theorem 2.1 Let V be a vertex operator superalgebra and g an automorphism. Suppose
(M,YM ) is a parity-unstable weak g-twisted V -module. Then (M,YM ◦ σV ) is a parity-unstable
weak g-twisted V -module which is not isomorphic to (M,YM ). Moreover (M,YM )⊕(M,YM ◦σV )
is a parity-stable weak g-twisted V -module. In addition, if (M,YM ) is weak admissible or
ordinary, then (M,YM ◦σV ) and hence (M,YM )⊕(M,YM ◦σV ) are weak admissible or ordinary.
In the case that (M,YM ) is ordinary, then (M,YM ) and (M,YM ◦ σV ) have the same graded
dimension.

Proof: Suppose (M,YM ) is a parity-unstable weak g-twisted V -module. Then it follows
immediately that (M,YM ◦σV ) is a weak g-twisted V -module. If (M,YM ◦σV ) were parity stable,
that would imply that there exists σM as in (25) such that (σM (M), YM ◦ σV ◦ σV ) = (M,YM )
is isomorphic to (M,YM ◦ σV ), implying (M,YM ) is parity stable. Thus (M,YM ◦ σV ) is parity
unstable.

Now consider (M,YM )⊕ (M,YM ◦ σV ), and let

σM⊕M : M ⊕M −→M ⊕M, σM⊕M : (w1, w2) 7→ (w2, w1) (27)

so that M ⊕M has a Z2-grading with respect to σM⊕M given by

(M ⊕M)(0) = {(w,w) | w ∈M} and (M ⊕M)(1) = {(w,−w) | w ∈M}. (28)

Then (σM⊕M (M⊕M), (YM⊕(YM ◦σV ))◦σV ) is obviously isomorphic to (M⊕M,YM⊕(YM ◦σV )).
The rest of the theorem follows in a straightforward way from the definitions. �
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Remark 2.2 Requiring weak twisted modules to be parity stable as part of the definition
gives the more canonical notion of weak twisted module from a categorical point of view, for
instance to allow for the tensor product of modules for two vertex operator superalgebras be
a module for the tensor product vertex operator superalgebra. (See e.g. (9)). In particular,
the notion of a weak V -module corresponding to a representation of V as a vertex superalgebra
only holds for parity-stable weak g-twisted V -modules, in that the vertex operators acting on
a weak g-twisted V -module have coefficients in EndM such that, the operators vgm have a Z2-
graded structure compatible with that of V . For instance the operators vg0 , for v ∈ V , give
a representation of the Lie superalgebra generated by v0 in EndV if and only if M is parity
stable. This corresponds to V acting as endomorphisms in the category of vector spaces (i.e.,
via even or odd endomorphisms) rather than in the category of Z2-graded vectors spaces (i.e.,
as grade-preserving and thus strictly even endomorphisms). However, it is interesting to note
that, as is shown in Section 7, for a lift of a lattice isometry, the twisted modules for a lattice
vertex operator superalgebra naturally sometimes give rise to parity-unstable modules. Thus
the notion of “parity-unstable module” does naturally arise in certain constructions.

3. Permutation-twisted free fermion vertex operator superalgebras and a
conjecture
We first recall the notion of free fermion vertex operator superalgebras following the notation of
[Bar11], but also in the spirit of [DZ2]. Then we recall the construction of parity-twisted modules
and construct the permutation-twisted modules following [DZ2]. Finally we make a conjecture
based on this example on the nature of the construction of (1 2 · · · k)-twisted V ⊗k-modules for
k even and V any vertex operator superalgebra based on the example of free fermions.

3.1. Free Fermion vertex operator superalgebras
Let h be finite-dimensional vector space over C equipped with a nondegenerate symmetric
bilinear form 〈·, ·〉. Let d denote the dimension of h, let t and x denote formal commuting
variables, and let U(·) denote the universal enveloping algebra for a Lie superalgebra (·).

Form the affine Lie superalgebra

ĥf = h⊗ t1/2C[t, t−1]⊕ Ck,

with Z2-grading given by sgn(α⊗ tn) = 1 for n ∈ Z + 1
2 , and sgn(k) = 0, and Lie super-bracket

relations
[k, ĥf ] = 0, and [α⊗ tm, β ⊗ tn] = 〈α, β〉δm+n,0k (29)

for α, β ∈ h and m,n ∈ Z + 1
2 . Then ĥf is a ((Z + 1

2) ∪ {0})-graded Lie superalgebra

ĥf =
∐

n∈(Z+ 1
2

)∪{0}

ĥfn

where ĥfn = h⊗ t−n, for n ∈ Z + 1
2 , and ĥf0 = Ck. It has graded subalgebras

ĥf+ = h⊗ t−1/2C[t−1] and ĥf− = h⊗ t1/2C[t].

Note that ĥf = ĥf− ⊕ ĥf+ ⊕ Ck, and note that ĥf is a Heisenberg superalgebra.

Let C be the (ĥf− ⊕ Ck)-module such that ĥf− acts trivially and k acts as 1. Let

V ⊗dfer = U(ĥf )⊗
U(ĥf−⊕Ck)

C '
∧

(ĥf+),
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so that V ⊗dfer is naturally isomorphic as a ĥf -module to the algebra of polynomials in the

anticommuting elements of ĥf+.

Let α ∈ h and n ∈ Z + 1
2 . We will use the notation

α(n) = α⊗ tn.

Then V ⊗dfer is a ĥf -module with action induced from the supercommutation relations (29)
given by

kβ(−m)1 = β(−m)1 (30)

α(n)β(−m)1 = 〈α, β〉δm,n1 (31)

α(−n)β(−m)1 = −β(−m)α(−n)1 (32)

for α, β ∈ h and m,n ∈ N + 1
2 . That is letting {α(1), α(2), . . . , α(d)} be an orthonormal basis for

h, we have

V ⊗dfer =
∧[

α(j)(−n)
∣∣∣ j = 1, . . . d, n ∈ N + 1

2

]
(33)

where k acts as 1, and for j = 1, . . . , d and n ∈ N + 1
2 , the operator α(j)(n) acts as the partial

derivative with respect to a(j)(−n), and the operator α(j)(−n) acts as multiplication.
For α ∈ h, set

α(x) =
∑

n∈ 1
2

+Z

α(n)x−n−
1
2 , (34)

Define the normal ordering operator ◦◦ · ◦◦ on products of the operators α(n) by

◦
◦α(m)β(n)◦◦ =

{
α(m)β(n) if m ≤ n
−β(n)α(m) if m > n

(35)

for m,n ∈ Z + 1
2 .

For v = α1(−n1)α2(−n2) · · ·αm(−nm)1 ∈ Vfer, for αj ∈ h, nj ∈ N+ 1
2 , and j = 1, . . . ,m and

m ∈ N, define the vertex operator corresponding to v to be

Y (v, x) = ◦
◦

(
∂n1− 1

2
α1(x)

)(
∂n2− 1

2
α2(x)

)
· · ·
(
∂nm− 1

2
αm(x)

)
◦
◦, (36)

where for n ∈ N, we use the notation ∂n = 1
n!

(
d
dx

)n
.

Note that

[α(j)(x1), α(k)(x2)] = δj,k

(
1

(x1 − x2)
− 1

(−x2 + x1)

)
(37)

implying that the α(j)(x) = Y (α(j)(−1/2)1, x), for j = 1, . . . , d, are mutually local. And, in
fact, setting

ω =
1

2

d∑
j=1

α(j)(−3/2)α(j)(−1/2)1, (38)

we have that (V ⊗dfer , Y,1, ω) is a vertex operator superalgebra with central charge d/2. V ⊗dfer is
called the d free fermion vertex operator superalgebra.

When d is even, V ⊗dfer is precisely the vertex operator superalgebra studied in [FFR] denoted

CM(Z + 1
2), although in [FFR] a polarized basis for h is used as we will do also below, as in

Equation (43).
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The graded dimension of V ⊗dfer using the 1
2Z-grading of V ⊗dfer by eigenvalues of L(0) is

dimqV
⊗d
fer = q−c/24

∑
n∈ 1

2
Z

dim(V ⊗dfer)nq
n = q−d/48

∏
n∈Z+

(1 + qn−1/2)d = f(q)d, (39)

where f(q) is a classical Weber function [YZ]. A simple calculation shows that in fact

f(q) = η(q)2

η(q2)η(q1/2)
, where η(q) = q1/24

∏
n∈Z+

(1− qn) is the Dedekind η-function.

In addition, the superdimension of a vertex operator superalgebra V = V 0⊕V 1 is sometimes
of interest. It is defined to be sdimqV = dimqV

(0)− dimqV
(1). Thus the superdimension of Vfer

is
sdimqVfer = q−d/48

∏
n∈Z+

(1− qn−1/2)d = f1(q)d (40)

where f1(q) is also a classical Weber function. Observe that f1(q) = η(q1/2)
η(q) .

Remark 3.1 In addition to the two classical Weber functions, f and f1, there is a third classical
Weber function, denoted f2 and given by

f2(q) =
√

2q1/24
∏
n∈Z+

(1 + qn) =
√

2
η(q2)

η(q)
. (41)

This third classical Weber function, f2, will appear in Section 3.2. These three Weber functions,
f, f1, and f2, form a set that is SL2(Z)-invariant up to permutation and multiplication by 48th
roots of unity [YZ].

Finally, we note that Vfer, and thus V ⊗dfer , is not only rational, but is self-dual as a vertex

operator superalgebra (cf. [FFR], [KW], [Li1]), i.e., the only irreducible Vfer-module is Vfer
itself.

3.2. Parity-twisted free fermions
Form the affine Lie superalgebra

ĥf [σ] = h⊗ C[t, t−1]⊕ Ck,

with Z2-grading given by sgn(α ⊗ tn) = 1 for n ∈ Z, and sgn(k) = 0, and Lie super-bracket
relations

[k, ĥf [σ]] = 0, and [α⊗ tm, β ⊗ tn] = 〈α, β〉δm+n,0k (42)

for α, β ∈ h and m,n ∈ Z. Then ĥf [σ] is a Z-graded Lie superalgebra

ĥf [σ] =
∐
n∈Z

ĥf [σ]n

where ĥf [σ]0 = h⊕Ck, and ĥf [σ]n = h⊗ t−n for n 6= 0. And ĥf [σ] is a Heisenberg superalgebra.
If dim h = d is even, i.e. d = 2l, then we can choose a polarization of h into maximal isotropic

subspaces a±. That is a± both have dimension l, and satisfy 〈a+, a+〉 = 〈a−, a−〉 = 0, and

we can choose a basis of a−, given by {β(1)
− , β

(2)
− , . . . , β

(l)
− }, and a dual basis for a+, given by

{β(1)
+ , β

(2)
+ , . . . , β

(l)
+ } such that 〈β(j)

− , β
(n)
+ 〉 = δj,n.

If dim h = d is odd, i.e. d = 2l + 1, then we can choose a polarization of h into maximal
isotropic subspaces a±, each of dimension l, and a one-dimensional space e, so that h = a−⊕a+⊕e,
and such that 〈a±, e〉 = 0, and e = Cε with 〈ε, ε〉 = 2.
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Remark 3.2 If {α(1), α(2), . . . , α(d)} is an orthonormal basis for h with respect to the symmetric
bilinear form, then a polarization for h can be given as follows: For d either 2l or 2l + 1, set

β
(j)
± =

1√
2

(
α(j) ± iα(j+l)

)
(43)

for j = 1, 2, . . . l. Then a± = spanC{β
(1)
± , β

(2)
± , . . . , β

(l)
± } gives a decomposition into maximal

polarized spaces. If d = 2l + 1, then set ε =
√

2α(d). Note that (43) is equivalent to

α(j) = 1√
2

(
β

(j)
+ + β

(j)
−

)
and α(j+l) = −i√

2

(
β

(j)
+ − β

(j)
−

)
for j = 1, . . . , l.

Then ĥf [σ] has the following graded subalgebras

ĥf [σ]+ = h⊗ t−1C[t−1] and ĥf [σ]− = h⊗ tC[t],

and we have ĥf [σ] = ĥf [σ]− ⊕ h⊕ ĥf [σ]+ ⊕ Ck. In addition, ĥf [σ] has the subalgebras

ĥf [σ]+ ⊕ a+ and ĥf [σ]− ⊕ a−

for d even and
ĥf [σ]+ ⊕ a+ ⊕ e and ĥf [σ]− ⊕ a−

for d odd.
Let C be the (ĥf [σ]− ⊕ a− ⊕ Ck)-module such that ĥf [σ]− ⊕ a− acts trivially and k acts as

1. Set
Mσ = U(ĥf [σ])⊗U(ĥf [σ]−⊕a−⊕Ck) C. (44)

Then as a vector space, we have

Mσ
vec.sp.
'

{ ∧
(ĥf [σ]+ ⊕ a+) if d is even∧
(ĥf [σ]+ ⊕ a+ ⊕ e) if d is odd

, (45)

where if d is even, this is also an associative algebra isomorphism, but if d is odd it is not; rather,
if d is odd, Mσ is a Clifford algebra but not an exterior algebra.

Let α ∈ h and n ∈ Z. We use the notation

α(n) = α⊗ tn ∈ ĥf [σ]

where the overline is meant to distinguish elements of ĥf [σ] from elements of ĥ, used to construct
the free bosonic theory.

Then Mσ is a ĥf [σ]-module. For d even, the action induced from the supercommutation
relations (42) is given by

kβ(−m)1 = β(−m)1 (46)

α(n)β(−m)1 = 〈α, β〉δm,n1 (47)

α(−n)β(−m)1 = −β(−m)α(−n)1 (48)

for either (i) α, β ∈ h and m,n ∈ Z+; (ii) α ∈ h, β ∈ a+, m = 0, and n ∈ Z+; or (iii) α ∈ a−,
β ∈ h, n = 0, and m ∈ Z+; and

α(0)β(0)1 = 〈α, β〉1 (49)

if α ∈ a− and β ∈ a+, and where here 1 = 1Mσ = 1.
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For d odd, the action induced from the supercommutation relations are given by (46)–(49)
as well as

kε(0)1 = ε(0)1, α(0) ε(0)1 = 0, (50)

β(0) ε(0)1 = −ε(0)β(0)1, ε(0) ε(0) =
1

2
〈ε, ε〉1, (51)

for α ∈ a−, β ∈ a+, and ε ∈ e.

In particular, letting {β(1)
± , β

(2)
± , . . . , β

(l)
± } be the bases for the polarized spaces a± as defined

in Remark 3.2, and if d is odd, letting e = Cε with 〈ε, ε〉 = 2, then we have

Mσ =
∧[

β
(j)
− (−m)1, β

(j)
+ (−n)1

∣∣∣ m ∈ Z+, n ∈ N, and j = 1, . . . , l
]

for d even, and in this case, the identification is as an associative algebra. For d odd, we have

Mσ =
∧[

β
(j)
− (−m)1, β

(j)
+ (−n)1, ε(−n)1

∣∣∣m ∈ Z+, n ∈ N, and j = 1, . . . , l
]

where in this case, the identification is as a vector space but not as an associative algebra. As an
associative algebra with identity, Mσ for d odd is the Clifford algebra generated by ĥf [σ]+⊕a+⊕e
with the corresponding symmetric bilinear form.

That is, for d even, k acts as 1, and for j = 1, . . . , l, and n ∈ Z+, the operator β
(j)
± (n) acts

as the partial derivative with respect to β
(j)
∓ (−n), the operator β

(j)
± (−n) acts as multiplication

by β
(j)
± (−n), the operator β

(j)
− (0) acts as the partial derivative with respect to β

(j)
+ (0), and the

operator β
(j)
+ (0) acts via multiplication. If d is odd, then we have the operators as above in

addition to the operators ε(n) for n ∈ Z+, which act as two times the partial derivative with

respect to ε(−n), and the operators ε(−n) for n ∈ N, which act as multiplication with the

condition that ε(0)ε(0) = 1.
For α ∈ h, set

α(x)σ =
∑
n∈Z

α(n)x−n−
1
2 . (52)

Then for the orthonormal basis of h, α(j), for j = 1, . . . , d, we have

[α(j)(x1)σ, α(k)(x2)σ] = δj,k x
1/2
1 x

−1/2
2

(
1

(x1 − x2)
− 1

(−x2 + x1)

)
(53)

for j, k = 1, . . . , d, implying that the α(j)(x)σ, for j = 1, . . . , d, are mutually local.
For v ∈ V ⊗dfer , define Y σ(v, x) : Mσ −→ Mσ[[x1/2, x−1/2]] as follows: For α ∈ h, n ∈ N + 1/2,

and u ∈ V ⊗dfer , let

Y σ(α(−n)u, x) = Y σ(α−n−1/2u, x) = Resx1Resx0

(
x1 − x0

x

)1/2

x
−n−1/2
0 (54)

·
(
x−1

0 δ

(
x1 − x
x0

)
α(x1)σY σ(u, x)− (−1)|u|x−1

0 δ

(
x− x1

−x0

)
Y σ(u, x)α(x1)σ

)
.

Then since V ⊗dfer = 〈α(j)(−1/2)1 | j = 1, . . . , d〉, equation (54) defines Y σ(v, x) iteratively for

any v ∈ V ⊗dfer .
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Recalling that the Virasoro element, ωfer, for the free fermionic vertex operator superalgebra

V ⊗dfer is given by (38), we have

Y σ(ωfer, x) =
1

2

d∑
j=1

Y σ(α(j)(−1/2)−2α
(j)(−1/2)1, x) =

∑
n∈Z

Lσ(n)x−n−2, (55)

and thus

Lσ(m) =
d∑
j=1

∑
n∈Z

n>−m2

(
n+

m

2

)
α(j)(−n)α(j)(n+m) +

d

16
δm,0. (56)

From this it follows that
[
Lσ(−1), Y σ(α(j)(−1/2)1, x)

]
= d

dxY
σ(α(j)(−1/2)1, x). Thus from

[Li2], we have that Mσ is a weak σ-twisted module for V ⊗dfer . It is also admissible. In [FFR], if

d is even, Mσ is denoted by CM(Z).
By [Li2] as well as [DZ2], in the case that d = dim h is even, Mσ is irreducible and is the only

irreducible admissible σ-twisted module for V ⊗dfer , up to isomorphism. It is parity stable and is

also an ordinary σ-twisted V ⊗dfer -module, as we will see below when we discuss the Lσ(0)-grading
and the Z2-grading.

In the case that d is odd, Mσ is irreducible as a parity-stable module but reduces to the
direct sum of two irreducible parity-unstable subspaces, and these two are the only irreducible
admissible parity-unstable σ-twisted modules for V ⊗dfer , up to isomorphism. In this case, setting

W =
∧[

β
(j)
− (−m)1, β

(j)
+ (−n)1, ε(−m)1

∣∣∣m ∈ Z+, n ∈ N, and j = 1, . . . , l

]
and letting W = W 0 ⊕W 1 be the decomposition of W into even and odd subspaces, these two
irreducibles are given by

M±σ =
(

1± ε(0)1
)
W 0 ⊕

(
1∓ ε(0)1

)
W 1, (57)

and we have Mσ = M−σ ⊕M+
σ . That M±σ are in fact ordinary σ-twisted modules for V ⊗dfer and

parity-unstable, we shall see now by discussing the Lσ(0)-grading and the Z2-grading.
In terms of the polarization of h with respect to the basis α(j), we have from equation (56)

Lσ(0) =
l∑

j=1

∑
m∈Z+

(
mβ

(j)
+ (−m)β

(j)
− (m) +mβ

(j)
− (−m)β

(j)
+ (m)

)
+ L′ +

d

16
(58)

where if d is even, L′ = 0, and if d is odd, L′ = 1
2

∑
m∈Z+

mε(−m) ε(m). Thus for j = 1, . . . , l,

and m ∈ Z+, the Lσ(0) grading is given by

wt 1 = wtβ
(j)
+ (0)1 =

d

16
, and wtβ

(j)
± (−m)1 = m+

d

16
, (59)

for d = 2l, and if d is odd, we also have

wt ε(0)1 =
d

16
, and wt ε(−m)1 = m+

d

16
. (60)

Therefore, for d even, the graded dimension of Mσ is

dimqMσ = q−c/24
∑
λ∈C

(Mσ)λq
λ = q−d/48qd/162d/2

∏
n∈Z+

(1 + qn)d = f2(q)d (61)
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where f2 is a classical Weber function as discussed in Remark 3.1. For d odd, the graded
dimension of Mσ is

dimqMσ = q−d/48qd/162(d+1)/2
∏
n∈Z+

(1 + qn)d =
√

2f2(q)d, (62)

and the grading of each of the two submodules M±σ is exactly half that of the graded dimension
of Mσ.

Lemma 3.3 If d is even, then the unique up to equivalence irreducible parity-twisted module
for d free fermions Mσ is a parity-stable twisted module. If d is odd, then the two unique
up to equivalence irreducible parity-twisted modules M±σ for d free fermions are parity-unstable
invariant subspace of Mσ. In addition, Mσ = M+

σ ⊕M−σ is a parity-stable twisted module and
is irreducible as a parity-stable twisted module.

Proof: We first show that Mσ is parity stable for d even or odd. Define a Z2-grading on Mσ

via the natural Z2-grading on
∧

(ĥ[σ]+ ⊕ a+) for d even and via the natural Z2-grading on∧
(ĥ[σ]+ ⊕ a+ ⊕ e) for d odd. That is w = β1(−n1)β2(−n2) · βm(−nm)1 ∈ Mσ for nj ∈ Z+ if

βj ∈ ĥ[σ]+ and nj ∈ N if βj ∈ a+ ⊕ e has odd parity if m is odd and even parity if m is even.

Then Y σ(α(j)(−1/2)1, x) · w = α(j)(x)σ · w =
∑

n∈Z α(n) · wx−n−1/2 is contained in

M
(m+1)mod 2
σ [[x1/2, x−1/2]], implying vσn ·M

(j)
σ ⊂M (j+|v|)mod 2

σ for all v ∈ V ⊗dfer and w ∈Mσ.

However, for d odd, considering the irreducible modules M±σ , we have, for instance

Y σ(ε(−1/2)1, x) · (1± ε(0)1) = ±(1± ε(0)1)x−1/2 + (1∓ ε(0)1)
∑
−n∈Z+

ε(n)1x−n−1/2. (63)

Thus there exists no Z2-grading on M±σ such that this lowest weight vector (1 ± ε(0)1) has a
parity compatible with the Z2-grading of V ⊗dfer . �

From Theorem 2.1, we have that (M−σ , Y
σ ◦ σ) must be a parity-unstable parity-twisted

module that is isomorphic to (M+
σ , Y

σ). This isomorphism is given explicitly by

f : M+
σ −→ M−σ (64)(

(1 + ε(0)1)w0, (1− ε(0)1)w1

)
7→

(
(1− ε(0)1)w0,−(1 + ε(0)1)w1

)
,

for wj ∈W (j) for j = 0, 1.

3.3. Permutation-twisted modules for free fermions
Now we turn our attention to tensor product vertex operator superalgebras. Let V = (V, Y,1, ω)
be a vertex operator superalgebra, and let k be a fixed positive integer. Then V ⊗k is also a
vertex operator superalgebra, and the permutation group Sk acts naturally on V ⊗k as signed
automorphisms. That is (j j + 1) · (v1⊗ v2⊗ · · · ⊗ vk) = (−1)|vj ||vj+1|(v1⊗ v2⊗ · · · vj−1⊗ vj+1⊗
vj ⊗ vj+2 ⊗ · · · ⊗ vk), and we take this to be a left action so that, for instance

(1 2 · · · k) : V ⊗ V ⊗ · · · ⊗ V −→ V ⊗ V ⊗ · · · ⊗ V (65)

v1 ⊗ v2 ⊗ · · · ⊗ vk 7→ (−1)|v1|(|v2|+···+|vk|)v2 ⊗ v3 ⊗ · · · ⊗ vk ⊗ v1.

Letting V = Vfer, we have that g = (1 2 · · · k) acting as a signed permutation on V ⊗kfer is a
lift of the following permutation on h, the k-dimensional Heisenberg Lie superalgebra used to
construct V ⊗kfer : Let α(j), for j = 1, . . . , d = k be an orthonormal basis for h as before. Then

(1 2 · · · k) : Cα(1) ⊕ Cα(2) ⊕ · · · ⊕ Cα(k) −→ Cα(1) ⊕ Cα(2) ⊕ · · · ⊕ Cα(k) (66)

(c1, c2, . . . , ck) 7→ (c2, c3, . . . , ck, c1),
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that is (1 2 · · · k)α(j) = α(j−1) for j = 1, . . . , k where α(−1) is understood to be α(k).

Defining h0 = {h ∈ h | gh = h}, we have that h0 = Cβ with β =
∑k

j=1 α
(j).

Thinking of h as a purely odd super vector space, we also have a parity map on h denoted by
σh which of course just acts as multiplication by −1. Then defining h0∗ = {h ∈ h | gσhh = h},
we have that h0∗ = {(c1, c2, . . . , ck) ∈ h | cj = −cj+1 for 1 ≤ j ≤ k − 1 and ck = −c1}. So that
h0∗ is of dimension 1 if k is even and is of dimension 0 if k is odd.

Since from the first author’s work in [Bar12], we already have a unified construction and
classification of all (1 2 · · · k)-twisted V ⊗k modules for k odd and V any vertex operator
superalgebra, we turn our attention here to the case when k is even, following [DZ2]. In this
case, according to [DZ2], we should obtain two equivalence classes of irreducible parity-unstable
(1 2 · · · k)-twisted V ⊗kfer modules for k even.

Letting g = (1 2 · · · k) for k odd, we consider the gσh-eigenspaces

hf(n) = {h ∈ h | gσhh = ηnh} ⊂ h, (67)

for η a fixed primitive kth root of unity. And so in terms of our discussion above, h0∗ = hf(0). (In

the notation of [DZ2], we have hf(n) = Hn∗.) We use the f superscript to denote this fermionic

setting as opposed to the bosonic setting of the lattice we will encounter latter in Section 5.

We have h =
∐
n∈Z/kZ h

f
(n), where we identify hf(n mod k) with hf(n) for n ∈ Z. For n ∈ Z/kZ,

denote by Pn : h −→ hf(n), the projection onto hf(n), and for h ∈ h and n ∈ Z, set

h(n) = P(n mod k)h. In general, we have that for h ∈ h and n ∈ Z,

h(n) =
1

k

k−1∑
j=0

η−nj(gσh)
jh. (68)

Then it is clear that dim hf(n) = 1, for 0 ≤ n ≤ k − 1. In fact, α
(1)
(n) can be taken as a basis for

each hf(n).

Viewing h as an abelian Lie superalgebra concentrated in the odd component, let

ĥf [g] =
∐
n∈ 1

k
Z

hf(kn) ⊗ t
n ⊕ Ck (69)

with Z2-grading given by sgn(α ⊗ tn) = 1 for n ∈ 1
kZ, and sgn(k) = 0, and Lie super-bracket

relations
[k, ĥf [g]] = 0, and [α⊗ tm, β ⊗ tn] = 〈α, β〉δm+n,0k (70)

for α ∈ hf (km), β ∈ hf (kn), and m,n ∈ 1
kZ. Then ĥf [g] is a 1

kZ-graded Lie superalgebra

ĥf [g] =
∐
n∈ 1

k
Z

ĥf [g]n

where ĥf [g]0 = hf(0) ⊕ Ck, and ĥf [g]n = h(kn) ⊗ t−n for n 6= 0. And ĥf [g] is a Heisenberg

superalgebra.
Then ĥf [g] has the following graded subalgebras

ĥf [g]+ =
∐
n<0

hf (kn) ⊗ tn, and ĥf [g]− =
∐
n>0

hf (kn) ⊗ tn, (71)
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and we have ĥf [g] = ĥf [g]− ⊕ hf(0) ⊕ ĥf [g]+.

Let C be the ĥf [g]− ⊕ Ck-module such that ĥf [g]− acts trivially and k acts as 1. Set

Mg = U(ĥf [g])⊗U(ĥf [g]−⊕Ck) C. (72)

Then as a vector space, we have

Mg
vec.sp.
'

∧
(ĥf [g]+ ⊕ hf(0)). (73)

Let α ∈ h and n ∈ 1
kZ. We use the notation

α(n)g = α⊗ tn ∈ ĥf [g].

Then Mg is a ĥf [g]-module. The action induced from the supercommutation relations (70) is
given by

kβ(−l)g1 = β(−l)g1 (74)

α(n)gβ(−m)g1 = 〈α(kn), β(km)〉δm,n1 (75)

α(−n)gβ(−m)g1 = −β(−m)gα(−n)g1 (76)

α(0)gβ(0)g1 =
1

2
〈α(0), β(0)〉1 (77)

for α, β ∈ h, m,n ∈ 1
kZ+ and l ∈ 1

kN. (Here 1 = 1 ∈ Mg.) As an associative algebra with

identity, Mg is the Clifford algebra generated by ĥf [g]+⊕hf(0) with the corresponding symmetric

bilinear form.
For α ∈ h, set

α(x)g =
∑
n∈ 1

k
Z

α(n)gx−n−
1
2 . (78)

Then for the orthonormal basis of h, α(j), for j = 1, . . . , k, we have

[α
(j)
(km)(x1)g, α

(l)
(kn)(x2)g] =

1

k
δj,lδm,−nx

m+1/2
1 x

−m−1/2
2

(
1

(x1 − x2)
− 1

(−x2 + x1)

)
(79)

for j, l = 1, . . . , k and m,n ∈ 1
kZ implying that the α(j)(x)g, for j = 1, . . . , k, are mutually local.

For v ∈ V ⊗kfer , define Y g(v, x) : Mg −→ Mg[[x
1/k, x−1/k]] as follows: For α ∈ hf(r), n ∈ N + 1

2 ,

and u ∈ V ⊗kfer , let

Y g(α(−n)u, x) = Y g(α−n−1/2u, x) = Resx1Resx0

(
x1 − x0

x

)r/k
x
−n−1/2
0 (80)

·
(
x−1

0 δ

(
x1 − x
x0

)
α(x1)gY g(u, x)− (−1)|u|x−1

0 δ

(
x− x1

−x0

)
Y g(u, x)α(x1)g

)
.

Then since V ⊗kfer = 〈α(j)(−1/2)1 | j = 1, . . . , k〉, equation (80) defines Y g(v, x) iteratively for

any v ∈ V ⊗kfer .
Recalling that the Virasoro element, ωfer, for the free fermionic vertex operator superalgebra

V ⊗dfer is given by (38), a nontrivial computation shows that

Lg(m) = k
k−1∑
r=0

∑
n∈Z

n>−m2

(
n+

m

2
− r

k

)
α

(1)
(r)(−n+ r/k)α

(1)
(−r)(n+m− r/k) +

k2 + 2

48k
δm,0. (81)
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One should compare this with (56).
From (81) it follows that

[
Lg(−1), Y g(α(j)(−1/2)1, x)

]
= d

dxY
g(α(j)(−1/2)1, x), and thus,

following [Li2], Mg is a weak g-twisted V ⊗kfer -module. It is also admissible.
Similarly to the situation in the parity-twisted case, the admissible g-twisted module, Mg,

reduces as the direct sum of two irreducible parity unstable admissible g-twisted modules, and
according to[DZ2], these two irreducibles are the only irreducible admissible g-twisted modules
for V ⊗kfer , up to isomorphism.

Note that Mg =
∧[

α
(1)
(r)(−n)g1 | r = 0, . . . , k − 1, n ∈ N + r

k

]
. Thus setting α = kα

(1)
(0) =

α(1) − α(2) + α(3) + · · · + α(k−1) − α(k), then hf(0) = h0∗ = Cα. Let ε = 1√
2k
α so that hf(0) = Cε

and 〈ε, ε〉 = 1. Set

W =
∧[

ε(−m)g1
∣∣∣ for m ∈ Z+,

]
(82)

and let W = W 0 ⊕W 1 be the decomposition of W into even and odd subspaces. Then these
parity-unstable subspaces of the irreducible parity-stable module Mg are given by

M±g =
(
(1± ε(0)g1)W 0 ⊕ (1∓ ε(0)g1)W 1

)
(83)

⊗
∧[

α
(1)
(r)(−n)g1

∣∣∣ r = 1, . . . , k − 1, n ∈ N + r
k ,
]
.

Then we have Mg = M−g ⊕M+
g is an ordinary parity-stable irreducible g-twisted V ⊗kfer -module

and M±g are parity unstable invariant subspaces of Mg, i.e. parity unstable irreducible g-twisted

V ⊗kfer -modules.

From (81), we have that the Lg(0) grading on Mg is given by

wt 1 =
k2 + 2

48k
, and wtα

(1)
(r)(−n)g1 = n+

k2 + 2

48k
, (84)

for n ∈ N + r
k and r = 0, . . . , k − 1. Thus the graded dimension of Mg is

dimqMg = 2q−k/48q(k2+2)/(48k)
∏

n∈ 1
k
Z+

(1 + qn) =
√

2f2(q1/k). (85)

3.4. A conjecture for (1 2 · · · k)-twisted V ⊗k-modules for k even and V any vertex operator
superalgebra
We make the following two observations, Remarks 3.4 and 3.5, to motivate the conjecture we
are about to make.

Remark 3.4 Comparing the graded dimension of the σ twisted Vfer-module, Mσ, to the graded

dimension of the (1 2 · · · k)-twisted V ⊗kfer module, Mg, we have that

dimqMg =
√

2f2(q1/k) = dimq1/kMσ. (86)

This relationship of q → q1/k between graded dimensions was in the past observed in the vertex
operator algebra setting between untwisted V -modules and (1 2 · · · k)-twisted V ⊗k-modules for
k even or odd, and was one of the original motivations to the proof that these two categories of
modules are in fact isomorphic given in [BDM]. That is, it had been observe that the graded
dimension of a (1 2 · · · k)-twisted V ⊗k-module was the same as the graded dimension of a
V -module but with q replaced by q1/k. In [Bar12], the first author showed that in the case
when V is a vertex operator superalgebra, the extension of the construction in [BDM] to an
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isomorphism of categories between untwisted V -modules and (1 2 · · · k)-twisted V ⊗k-modules
exists in general for a vertex operator superalgebra V if and only if k is an odd positive integer.
Motivated by the relationship between Mg and Mσ observed here, we make the conjecture below,
Conjecture 3.6, that for k even, the categorical correspondence is between (1 2 · · · k)-twisted
V ⊗k-modules and parity-twisted V -modules.

Remark 3.5 In addition, we have that both the modules Mσ and Mg split into parity-unstable
invariant subspaces. This was another one of the motivating examples for Theorem 2.1 as well
as further evidence to bolster our conjecture given below, Conjecture 3.6.

These two observations given above, as well as recent constructions given by the second
author, and certain observations given by the first author in [Bar12], leads us to the following
conjecture.

Conjecture 3.6 If V is a vertex operator superalgebra, and k is an even positive integer,
then the category of weak (parity-stable) (1 2 · · · k)-twisted V ⊗k-modules for k even is
isomorphic to the category of weak (parity-stable) parity-twisted V -modules. In addition, the
subcategories of weak admissible and ordinary (1 2 · · · k)-twisted V ⊗k-modules are isomorphic
to the subcategories of weak admissible and ordinary parity-twisted V -modules, respectively.
Furthermore, all the various subcategories of parity-unstable invariant subspaces, i.e. parity-
unstable submodules, coincide.

Note that this is in contrast to the results of the first author in [Bar12] where we prove the
following:

Theorem 3.7 ([Bar12]) If V is a vertex operator superalgebra, and k is an odd positive integer,
then the category of weak (parity-stable) (1 2 · · · k)-twisted V ⊗k-modules is isomorphic to the
category of weak (parity-stable) V -modules. In addition, the subcategories of weak admissible
and ordinary (1 2 · · · k)-twisted V ⊗k-modules are isomorphic to the subcategories of weak
admissible and ordinary V -modules, respectively. Furthermore, all the various subcategories of
parity-unstable invariant subspaces, i.e. parity-unstable submodules, coincide.

In addition, in [Bar12], an explicit construction of the weak, weak admissible, and ordinary
(1 2 · · · k)-twisted V ⊗k-modules for k odd is given in terms of the weak, weak admissible and
ordinary V -modules.

4. Lattice vertex operator superalgebras
We recall the notion of a lattice vertex operator superalgebra following the notation and
terminology of [FLM3] and using the setting and results of, e.g. [Le1], [FLM2], [DL1], [X],
and [DL2].

Let L be a positive-definite integral lattice, with nondegenerate symmetric Z-bilinear form
〈·, ·〉. We introduce a lattice L with an isometry ν, and two central extensions, L̂ and L̂ν . (There
should be no confusion between this use of the symbol L and the operators L(n) for the Virasoro

Algebra). The lattice L together with the central extension L̂ will be used to construct a vertex

operator super algebra VL. The central extension L̂ν will be used in Section 5 to construct a
space V T

L on which VL acts via twisted vertex operators. In Section 7.1, ν will be specified to

the −1 isometry and a certain lift ν̂ on L̂ν to construct the twisted modules we are interested
in.

Let k be a fixed positive integer. The following initial assumptions and conditions are
assumed.
1. Let L be a positive definite integral lattice with nondegenerate symmetric Z-valued bilinear
form 〈·, ·〉, i.e. L is a finitely generated abelian group with positive definite symmetric Z-bilinear
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form 〈·, ·〉 : L× L→ Z.
2. Let ν be an isometry of L with period k (k need not be the order of ν, and in fact will be a
period that is not the order in the particular case in which we will be interested).
3. We fix a primitive kth root of unity η. Set η0 = (−1)kη, so that η0 is a primitive 2kth root
of unity if k is odd, and η0 = η remains a primitive kth root of unity if k is even.

Since L is integral, we can give it a natural Z2-grading

L = L0 ∪ L1, Lj = {α ∈ L | 〈α, α〉 ∈ 2Z + j}, (87)

and L0 is an even sublattice of L. We will use the notation |α| = j for α ∈ Lj .
Note that

k−1∑
j=0

〈νjα, α〉 ∈
{
|α|+ 2Z if k is odd

|α|+ 〈νk/2α, α〉+ 2Z if k is even
. (88)

In addition,
k−1∑
j=0

〈jνjα, α〉 ∈
{
kZ if k is odd
k
2 〈ν

k/2α, α〉+ kZ if k is even
. (89)

Remark 4.1 If k is even and 〈νk/2α, α〉 ∈ 2Z + |α|, which can always be arranged by doubling
k if necessary, then the expressions in 88 and 89 are in |α| + 2Z and kZ, respectively. For
the purposes of this paper, we always assume that if k is even, then 〈νk/2α, α〉 ∈ 2Z + |α|.
That is we do indeed double k if necessary. However in the setting of permutation-twisted
modules for lattice vertex operator superalgebras, this can not be done. That is, following but
extending [BHL], taking L to be the orthogonal sum of k copies of K for k even and considering
ν = (1 2 · · · k) acting on L in the natural way, then we have 〈νk/2α, α〉 ∈ 2Z. But doubling k
results in a lift that is of order 2k, i.e. that is not the permutation automorphism on the tensor
product lattice vertex operator superalgebra. This is another illustration of the fundamental
difference between the nonsuper case or the super case for k odd versus the super case for k
even in the permutation twisted setting.

Let q = k if k is even, and q = 2k if k is odd. We define the ν-invariant functions

C0 : L× L −→ C×, (α, β) 7→ (−1)〈α,α〉〈β,β〉+〈α,β〉, (90)

C : L× L −→ C×, (α, β) 7→ (−1)〈α,α〉〈β,β〉+
∑k−1
j=0 〈ν

jα,β〉η
∑k−1
j=0 〈jν

jα,β〉 (91)

= (−1)〈α,α〉〈β,β〉
k−1∏
j=0

(−ηj)〈νjα,β〉.

Note that C0 and C are bilinear into the abelian group C×; i.e., C(α+β, γ) = C(α, γ)C(β, γ)
and C(α, β + γ) = C(α, β)C(α, γ), for α, β, γ ∈ L, and similarly for C0. In addition, we have
C0(α, α) = 1, and by (88) and (89), we have C(α, α) = 1. Moreover, C(β, α) = C(α, β)−1.

The maps C0 and C determine uniquely (up to equivalence) two central extensions of L by
the cyclic group 〈η0〉,

1→ 〈η0〉 → L̂−̄→L→ 1, (92)

1→ 〈η0〉 → L̂ν−̄→L→ 1, (93)

with commutator maps c0 and cν0 , respectively, i.e., such that

aba−1b−1 = C0(ā, b̄) for a, b ∈ L̂, (94)

aba−1b−1 = C(ā, b̄) for a, b ∈ L̂ν . (95)
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There is a natural set-theoretic identification (which is not an isomorphism of groups unless

k = 1 or k = 2) between the groups L̂ and L̂ν such that the respective group multiplications ×
and ×ν are related by

a× b =
∏

0<j<k/2

(−ηj)〈ν−j ā,b̄〉a×ν b for a, b ∈ L̂. (96)

Note that this is the exact same relationship as in the even lattice case treated in [FLM2], [Le1],
and [BHL]. Observe further that since C0 is ν-invariant, if we replace the map ¯ in (92) by ν ◦ ¯,
we obtain another central extension of L by 〈η0〉 with commutator map C0. By uniqueness of

the central extension of L, there is an automorphism ν̂ of L̂ (fixing η0) such that ν̂ is a lifting
of ν, i.e., such that

(ν̂a)¯ = νā for a ∈ L̂. (97)

The map ν̂ is also an automorphism of L̂ν satisfying

(ν̂a)¯ = νā for a ∈ L̂ν . (98)

Moreover, we may choose the lifting ν̂ of ν so that

ν̂a = a if νā = ā (99)

(see (134) below).

We now use the central extension L̂ to construct a vertex operator superalgebra VL equipped
with an automorphism ν̂ of period k, induced from the automorphism ν̂ of L̂. This is essentially
a specialized case of the “unrelativised operators” in Section 2 of [DL1], [DL2] and of [X].

Embed L canonically in the C-vector space h = C ⊗Z L, and extend the Z-bilinear form on
L to a C-bilinear form 〈·, ·〉 on h. The corresponding affine Lie algebra is

ĥ = h⊗ C[t, t−1]⊕ Ck, (100)

with brackets determined by

[k, ĥ] = 0 and [α⊗ tm, β ⊗ tn] = 〈α, β〉mδm+n,0k (101)

for α, β ∈ h, and m,n ∈ Z. Then ĥ has a Z-gradation, the weight gradation, given by
wt (α⊗ tn) = −n and wt k = 0, for α ∈ h and n ∈ Z.

Set
ĥ+ = h⊗ tC[t] and ĥ− = h⊗ t−1C[t−1]. (102)

The subalgebra ĥZ = ĥ+ ⊕ ĥ− ⊕ Ck of ĥ is a Heisenberg algebra, in the sense that its
commutator subalgebra equals its center, which is one-dimensional. Consider the induced ĥ-
module, irreducible even under ĥZ, given by

M(1) = U(ĥ)⊗U(h⊗C[t]⊕Ck) C ' S(ĥ−) (linearly), (103)

where h⊗C[t] acts trivially on C and k acts as 1, U(·) denotes universal enveloping algebra and

S(·) denotes symmetric algebra. The ĥ-module M(1) is Z-graded so that wt 1 = 0 (where we
write 1 for 1⊗ 1)

M(1) =
∐
n∈N

M(1)n, (104)

where M(1)n denotes the homogeneous subspace of weight n.
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Form the induced L̂-module and C-algebra

C{L} = C[L̂]⊗C[〈η0〉] C ' C[L] (linearly), (105)

where C[·] denotes group algebra. For a ∈ L̂, write ι(a) for the image of a in C{L}. Then the

action of L̂ on C{L} is given by

a · ι(b) = ι(a)ι(b) = ι(ab) (106)

for a, b ∈ L̂. We give C{L} the C-gradation determined by

wt ι(a) =
1

2
〈ā, ā〉 for a ∈ L̂. (107)

Also define a grading-preserving action of h on C{L} by

h · ι(a) = 〈h, ā〉ι(a) (108)

for h ∈ h, and define
xh · ι(a) = x〈h,ā〉ι(a) (109)

for h ∈ h. Set
VL = M(1)⊗C C{L} ' S(ĥ−)⊗ C[L] (linearly) (110)

and give VL the tensor product C-gradation

VL =
∐
n∈C

(VL)n. (111)

We have wt ι(1) = 0, where we identify C{L} with 1 ⊗ C{L}. Then L̂, ĥZ, h, xh (h ∈ h) act
naturally on VL by acting on either M(1) or C{L} as indicated above. In particular, k acts as
1.

For α ∈ h, n ∈ Z, we write α(n) for the operator on VL determined by α⊗ tn. For α ∈ h, set

α(x) =
∑
n∈Z

α(n)x−n−1. (112)

We use a normal ordering procedure, indicated by open colons, which signify that the enclosed
expression is to be reordered if necessary so that all the operators α(n), for α ∈ h, with n < 0,

as well as the operator a for a ∈ L̂, are to be placed to the left of all the operators α(n) and xα,

for α ∈ h and n ≥ 0, before the expression is evaluated. For a ∈ L̂, set

Y (a, x) = ◦
◦ e

∫
(ā(x)−ā(0)x−1)axā ◦◦, (113)

using an obvious formal integration notation. Let a ∈ L̂, α1, . . . , αm ∈ h, n1, . . . , nm ∈ Z+ and
set

v = α1(−n1) · · ·αm(−nm)⊗ ι(a) = α1(−n1) · · ·αm(−nm) · ι(a) ∈ VL. (114)

Define
Y (v, x) = ◦

◦ (∂n1−1α1(x)) · · · (∂nm−1αm(x))Y (a, x) ◦◦, (115)

where again, for n ∈ N, we use the notation ∂n = 1
n!

(
d
dx

)n
. This gives us a well-defined linear

map

VL → (EndVL)[[x, x−1]], v 7→ Y (v, x) =
∑
n∈Z

vnx
−n−1. (116)

Set 1 = 1 = 1 ⊗ 1 ∈ VL and ω = 1
2

∑dim h
i=1 hi(−1)hi(−1)1, where {hj | j = 1, . . . ,dim h} is an

orthonormal basis of h. Then VL = (VL, Y,1, ω) is a vertex operator superalgebra of central
charge c = dim h = rankL. For a proof that this is a vertex operator superalgebra, see for
instance Chapter 6.1 of [X].
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Remark 4.2 The construction of the vertex operator superalgebra VL depends on the central
extension (92) subject to (94), and hence on the choices of k ∈ Z+ and the primitive root of unity
η. But it is a standard fact that VL is independent of these choices, up to isomorphism of vertex
operator superalgebras preserving the ĥ-module structure; see for instance Proposition 6.5.5,
and also Remarks 6.5.4 and 6.5.6, of [LL]. In particular, VL as constructed above is essentially
the same as VL constructed from a central extension of the type (92) subject to (94) but with
the kernel of the central extension replaced by the group 〈±1〉. For the purpose of constructing
twisted modules, it is valuable to have this flexibility, and we will use this property of lattice
vertex superalgebras below in Section 5.

5. Twisted modules for a lattice vertex operator superalgebra and a lift of a
lattice isometry
Following [Le1], [FLM2], [FLM3], [DL2], [X], we recall the construction and classification of
ν̂-twisted VL-modules for a general lattice isometry ν and a lift ν̂.

Following [Le1], but extended to integral lattices, we note that the automorphism ν of L acts

in a natural way on h, on ĥ (fixing k) and on M(1), preserving the gradations, and for u ∈ ĥ
and m ∈M(1),

ν(u ·m) = ν(u) · ν(m). (117)

The automorphism ν of L lifted to the automorphism ν̂ of L̂ satisfies

ν̂(h · ι(a)) = ν(h) · ν̂ι(a), (118)

for h ∈ h and a ∈ L̂, and for b ∈ L̂ we have

ν̂(ι(a)ι(b)) = ν̂(a · ι(b)) = ν̂(a) · ν̂ι(b) = ν̂ι(a)ν̂ι(b), (119)

ν̂(xh · ι(a)) = xν(h) · ν̂ι(a). (120)

Thus we have a natural grading-preserving automorphism of VL, which we also call ν̂, which
acts via ν ⊗ ν̂, and this action is compatible with the other actions

ν̂(a · v) = ν̂(a) · ν̂(v) (121)

ν̂(u · v) = ν(u) · ν̂(v) (122)

ν̂(xh · v) = xν(h) · ν̂(v) (123)

for a ∈ L̂, u ∈ ĥ, h ∈ h, and v ∈ VL, so that ν̂ is an automorphism of the vertex operator
superalgebra VL.

Recalling our fixed primitive kth root of unity η from Section 4, for n ∈ Z set

h(n) = {h ∈ h | νh = ηnh} ⊂ h, (124)

so that h =
∐
n∈Z/kZ h(n), where we identify h(n mod k) with h(n), for n ∈ Z. Then in general,

h(n) = {h+ η−nνh+ η−2nν2h+ · · ·+ η−(k−1)nνk−1h | h ∈ h}. (125)

For n ∈ Z/kZ, denote by
Pn : h −→ h(n), (126)

the projection onto h(n), and for h ∈ h and n ∈ Z, set h(n) = P(n mod k)h. In general, we have
that for h ∈ h and n ∈ Z,

h(n) =
1

k

k−1∑
j=0

η−njνjh. (127)
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Viewing h as an abelian Lie algebra, consider the ν-twisted affine Lie algebra

ĥ[ν] =
∐
n∈ 1

k
Z

h(kn) ⊗ tn ⊕ Ck (128)

with brackets determined by

[k, ĥ[ν]] = 0 and [α⊗ tm, β ⊗ tn] = 〈α, β〉mδm+n,0k (129)

for α ∈ h(km), β ∈ h(kn), and m,n ∈ 1
kZ.

Define the weight gradation on ĥ[ν] by wt (α⊗ tn) = −n, wt k = 0, for n ∈ 1
kZ, α ∈ h(kn). Set

ĥ[ν]+ =
∐
n>0

h(kn) ⊗ tn, ĥ[ν]− =
∐
n<0

h(kn) ⊗ tn. (130)

Now the subalgebra
ĥ[ν] 1

k
Z = ĥ[ν]+ ⊕ ĥ[ν]− ⊕ Ck (131)

of ĥ[ν] is a Heisenberg algebra. Form the induced ĥ[ν]-module

S[ν] = U(ĥ[ν])⊗U(
∐
n≥0 h(kn)⊗tn⊕Ck) C ' S(ĥ[ν]−) (linearly), (132)

where
∐
n≥0 h(kn)⊗ tn acts trivially on C and k acts as 1. Then S[ν] is irreducible under ĥ[ν] 1

k
Z.

Following [DL2], Section 6, we give the module S[ν] the natural Q-grading (by weights)

compatible with the action of ĥ[ν] and such that

wt 1 =
1

4k2

k−1∑
j=1

j(k − j)dim (h(j)). (133)

Following Sections 5 and 6 of [Le1] extended to this setting, we have that the automorphisms

of L̂ν covering the identity automorphism of L are precisely the maps ρ∗ : a → aρ(ā) for a
homomorphism ρ : L → 〈η0〉. Similarly, there is a homomorphism ρ0 : L ∩ h(0) → 〈η0〉 such
that ν̂a = aρ0(ā) if νā = ā. Now ρ0 can be extended to a homomorphism ρ : L → 〈η0〉 since
the map 1− P0 induces an isomorphism from L/(L ∩ h(0)) to the free abelian group (1− P0)L.

Multiplying ν̂ by the inverse of ρ∗0 gives us an automorphism ν̂ of L̂ν satisfying (98) and

ν̂a = a if νā = ā, (134)

as in (99).

Next, we wish to construct a space UT for L̂ν and h(0) to act upon which will be a subspace
of our twisted module. Set

N = {α ∈ L | 〈α, h(0)〉 = 0} = (1− P0)h ∩ L, (135)

M = (1− ν)L ⊂ N, (136)

R = {α ∈ N | CN (α,N) = 1}, (137)

where CN denotes the map C restricted to N ×N . Note that M ⊂ R = Z(N) are all subgroups
of L, where Z(N) denotes the center of N . Also, it is clear that M ⊂ L0, the even sublattice of
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L. For α ∈ h, we have
∑k−1

j=0 ν
jα ∈ h(0), and N ⊂

k−1∑
j=1

h(j) and thus for α, β ∈ N , the commutator

map C, defined by (91) on N , simplifies to

CN (α, β) = (−1)〈α,α〉〈β,β〉η
∑k−1
j=0 〈jν

jα,β〉. (138)

Denote by Q̂ the subgroup of L̂ν obtained by pulling back any subgroup Q of L. Then
{aν̂a−1 | a ∈ L̂ν} ⊂ M̂ ⊂ (L̂0)ν . Note that by (134), we have that {aν̂a−1 | a ∈ L̂ν} ∩ 〈η0〉 = 1.

For a ∈ L̂ν define

τ(aν̂a−1) = ηk〈ā,ā〉/2−
∑k−1
j=0 〈ν

j ā,ā〉/2 = ηk〈ā,ā〉/2−k〈ā(0),ā(0)〉/2. (139)

In addition, for b ∈ M̂ , let

τ(ηj0b) = τ(ηj0)τ(b) = ηj0τ(b) for j = 1, . . . , q. (140)

Then we have the following proposition:

Proposition 5.1 The map τ : M̂ → C× given by (139) and satisfying (140) is a well-defined

group homomorphism. Moreover, τ is the unique group homomorphism from M̂ to C× satisfying
(139) and (140). In addition, if 〈νk/2α, α〉 ∈ 2Z + |α| for all α ∈ L, then the image of τ lies in
〈η〉.

Proof: We first show that τ is well-defined. Suppose aν̂a−1 = bν̂b−1. Then (1− ν)ā = (1− ν)b̄,
which implies (1− νj)ā = (1− νj)b̄, for j = 1, . . . , k − 1. Thus

2〈ā, ā〉 − 〈νj ā, ā〉 − 〈νk−j ā, ā〉 = 〈(1− νj)ā, (1− νj)ā〉 = 〈(1− νj)b̄, (1− νj)b̄〉
= 2〈b̄, b̄〉 − 〈νj b̄, b̄〉 − 〈νk−j b̄, b̄〉

which implies that

k〈ā, ā〉/2−
k−1∑
j=0

〈νj ā, ā〉/2 = k〈b̄, b̄〉/2−
k−1∑
j=0

〈νj b̄, b̄〉/2.

Therefore τ(aν̂a−1) = τ(bν̂b−1), proving that τ is well defined.

For a, b ∈ L̂ν , we have

τ(aν̂a−1)τ(bν̂b−1) = ηk〈ā,ā〉/2−
∑k−1
j=0 〈ν

j ā,ā〉/2+k〈b̄,b̄〉/2−
∑k−1
j=0 〈ν

j b̄,b̄〉/2

= ηk〈ā+b̄,ā+b̄〉/2−
∑k−1
j=0 〈ν

j(ā+b̄),ā+b̄〉/2+
∑k−1
j=0 〈ν

j ā,b̄〉

= C(ā− νā, b̄)τ((ba)ν̂(ba)−1)

= C(ā− νā, b̄)τ(C(ā− νā, b̄)−1(aν̂a−1)(bν̂b−1))

= τ((aν̂a−1)(bν̂b−1)).

This proves τ is a group homomorphism. Since M̂ is the subgroup of L̂ν which is a lift of M ,
the uniqueness follows immediately from (139) and (140).

The last statement follows from (88). �
Next we extend τ to R̂, and then to a maximal abelian subgroup Ĵ of N̂ . We first observe

that if α ∈ N , then there exists h ∈ h, such that

kα = kh− kh(0) = kh−
k−1∑
j=0

νjh =

k−1∑
j=1

(h− νjh). (141)
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Furthermore for j = 1, . . . , k, we have h− νjh = (h− νh) + (νh− ν2h) + · · ·+ (νj−1h− νjh) ∈
(1 − ν)h. Therefore kα ∈ (1 − ν)h. Writing h = cβ for c ∈ C and β ∈ L, we have that kα ∈ L
and kα = c(kβ −

∑k−1
j=0 ν

jβ). It follows that c ∈ Z and thus kα ∈ (1− ν)L = M . That is

kN ⊂ (1− ν)L = M. (142)

Therefore N/M is a finitely generated torsion group, i.e. it is finite. Thus R/M is a finite group.

Also N/M finite implies that N̂/M̂ and N̂/ker τ are finite as well. (The last statement follows

from the fact that τ(akν̂a−k) = 1 for all aν̂a−1 ∈ M̂ .)

We wish to construct an irreducible N̂ -module, T , on which M̂ acts as multiplication by the
character τ .

The following is just a restatement of Proposition 6.2 of [Le1], but extended to our setting,
and follows directly from Theorem 5.5.1 of [FLM3].

Proposition 5.2 There are exactly |R/M | extensions of τ to a homomorphism χ : R̂ → C×.

For each such χ, there is a unique (up to equivalence) irreducible N̂ -module on which R̂ acts

according to χ, and every irreducible N̂ -module on which M̂ acts according to τ is equivalent to
one of these. Every such module has dimension |N/R|1/2. Supposing that T is an irreducible

module for M̂ such that M̂ acts as τ , to construct the N̂ -module structure for T corresponding to
χ, let J be any subgroup of N (necessarily containing R) that is maximal such that CN is trivial

on J . Then Ĵ is a maximal abelian subgroup of N̂ . Let ψ : Ĵ → C× be any homomorphism
extending χ and denote by Cψ the Ĵ-module C with character ψ. Then T is isomorphic to the

induced N̂ -module
T = C[N̂ ]⊗C[Ĵ ] Cψ ' C[N/J ] (linearly). (143)

Let T be any N̂ -module on which M̂ acts as multiplication by the character τ as given by
Proposition 5.2. Form the induced L̂ν-module

UT = C[L̂ν ]⊗C[N̂ ] T. (144)

Since T can be viewed as a module for the finite group N̂/ker τ , we have that T is completely
reducible. Then the structure of T follows from Proposition 5.2, and in the irreducible case,

UT = C[L̂ν ]⊗C[N̂ ] T = C[L̂ν ]⊗C[Ĵ ] Cψ ' C[L/J ] (linearly). (145)

The action of L̂ν on UT is given by

a · b⊗ r = ab⊗ r, (146)

for a, b ∈ L̂ν , and r ∈ T , and of course

(aν̂a−1) · b⊗ r = C(ā− νā, b̄)(b(aν̂a−1))⊗ r = C(ā− νā, b̄)b⊗ τ(aν̂a−1)r. (147)

Let λ̂ ∈ h(0) be any fixed element such that

〈α, λ̂〉 ∈ 1

k
Z (148)

for all α ∈ L.
Define the following action of h(0) on UT by

h · b⊗ r = 〈h, b̄+ λ̂〉b⊗ r (149)
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for a, b ∈ L̂ν , r ∈ T , h ∈ h(0). Then as operators on UT ,

ha = a(〈h, ā〉+ h) (150)

for a ∈ L̂ν and h ∈ h(0).

Remark 5.3 For instance, we could take λ̂ = 0, but in general it can be nonzero, and this
gives us other h(0)-module structures, and will result in other ν̂-twisted VL-module structures.

However, for the specialized case we are interested in, since h(0) = 0 (see (177)), this λ̂ will be
zero.

Note that the projection map P0 (recall (126)) induces an isomorphism from L/N to P0L,
and thus we have a natural isomorphism

UT = C[P0L]⊗C T, (151)

of h(0) ∪ L̂ν-modules. We extend UT to a ĥ[ν]-module by letting ĥ[ν] 1
k
Z (recalling (131)) act

trivially.

Remark 5.4 In the case that R = N , we have a linear isomorphism UT ' C[P0L]. Also
P0L = 1

k

(
L ∩ h(0)

)
, and so in the case when R = N we have UT ' C

[
1
k

(
L ∩ h(0)

)]
. This is the

case in, for instance, the important setting of permutation-twisted modules for lattice vertex
operator superalgebras [BDM], [BHL].

Now note that we can write
UT =

∐
α∈P0L

Uα, (152)

where
Uα = {u ∈ UT | h · u = 〈h, α+ λ̂〉u for h ∈ h(0)}, (153)

and the actions of L̂ν and h(0) are compatible in the sense that

a · Uα ⊂ Uα+ā(0) (154)

for a ∈ L̂ν and α ∈ P0L.
We define an EndUT -valued formal Laurent series xh for h ∈ h(0) as follows

xh · u = x〈h,α〉u for α ∈ h(0) and u ∈ Uα. (155)

Then from (150),

xha = ax〈h,ā〉+h for a ∈ L̂ν (156)

as operators on UT . Also, for h ∈ h(0), if 〈h, ā(0)〉 ∈ Z for all a ∈ L, define the operator ηh on
UT by

ηh · u = η〈h,α〉u (157)

for u ∈ Uα with α ∈ P0L.
Then for a ∈ L̂ν , and using (147), we have

ν̂a = aη−
∑k−1
j=0 ν

j ā+k〈ā,ā〉/2−
∑k−1
j=0 〈ν

j ā,ā〉/2 = aη−kā(0)+k〈ā,ā〉/2−k〈ā(0),ā(0)〉/2 (158)

as operators on UT .
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Then we have
ν̂ja = aη−jkā(0)+jk〈ā,ā〉/2−jk〈ā(0),ā(0)〉/2 (159)

and thus
ν̂ka = a, (160)

for all a ∈ L̂ν acting as operators in EndUT , where we recall that we had from the beginning
doubled k if necessary (see Remark 4.1). And thus ν̂k = 1 on L̂ν as well.

It is shown in, for instance, [X] in Chapter 6.2, that UT is an irreducible L̂ν ∪ h(0)-module
when T is irreducible.

Define a C-gradation on UT by

wtu =
1

2
〈α, α〉 for α ∈ P0L and u ∈ Uα. (161)

Then ν̂ preserves this gradation of UT since ν(α) = α for α ∈ P0L ⊂ h(0).
Form the space

V T
L = S[ν]⊗ UT =

(
U(ĥ[ν])⊗U(

∐
n≥0 h(kn)⊗tn⊕Cc) C

)
⊗
(
C[L̂ν ]⊗C[N̂ ] Cτ

)
(162)

' S(ĥ[ν]−)⊗C (C[P0L]⊗C T ),

which is naturally graded (by weights), using the weight gradations of S[ν] and UT . We let L̂ν ,

ĥ[ν] 1
k
Z, h(0) and xh, for h ∈ h(0), act on V T

L by acting on either S[ν] or UT , as described above.

For α ∈ h and n ∈ 1
kZ, write αT (n) or α(kn)(n) for the operator on V T

L associated with
α(kn) ⊗ tn, and set

αT (x) =
∑
n∈ 1

k
Z

αT (n)x−n−1 =
∑
n∈ 1

k
Z

α(kn)(n)x−n−1. (163)

Following [Le1] and [FLM2], for α ∈ L, define

ρ(α) =


2〈ν

k/2α,α〉/2
∏

0<j<k/2

(1− η−j)〈νjα,α〉 if k ∈ 2Z

∏
0<j<k/2

(1− η−j)〈νjα,α〉 if k ∈ 2Z + 1

. (164)

Then ρ(να) = ρ(α).
Using the normal-ordering procedure described above, define the ν̂-twisted vertex operator

Y ν̂(a, x) for a ∈ L̂ acting on V T
L as follows

Y ν̂(a, x) = k−〈ā,ā〉/2ρ(ā) ◦◦e
∫

(āT (x)−āT (0)x−1)axā(0)+〈ā(0),ā(0)〉/2−〈ā,ā〉/2 ◦◦. (165)

Note that on the right-hand side of (165), we view a as an element of L̂ν using our set-theoretic

identification between L̂ and L̂ν given by (96).
For α1, . . . , αm ∈ h, n1, . . . , nm ∈ Z+ and v = α1(−n1) · · ·αm(−nm) · ι(a) ∈ VL, set

W (v, x) = ◦
◦
(
∂n1−1α

T
1 (x)

)
· · ·
(
∂nm−1α

T
m(x)

)
Y ν̂(a, x) ◦◦, (166)

where the right-hand side is an operator on V T
L . Extend to all v ∈ VL by linearity.
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Define constants cmnr ∈ C for m,n ∈ N and r = 0, . . . , k − 1 by the formulas

∑
m,n≥0

cmn0x
myn = −1

2

k−1∑
j=1

log

(
(1 + x)1/k − η−j(1 + y)1/k

1− η−j

)
, (167)

∑
m,n≥0

cmnrx
myn =

1

2
log

(
(1 + x)1/k − η−r(1 + y)1/k

1− η−r

)
for r 6= 0. (168)

Let {β1, . . . , βdim h} be an orthonormal basis of h, and set

∆x =
∑
m,n≥0

k−1∑
r=0

dim h∑
j=1

cmnr(ν
−rβj)(m)βj(n)x−m−n. (169)

Then e∆x is well defined on VL since c00r = 0 for all r, and for v ∈ VL, e∆xv ∈ VL[x−1]. Note that
∆x is independent of the choice of orthonormal basis. Then ν̂∆x = ∆xν̂ and hence ν̂e∆x = e∆x ν̂
on VL.

For v ∈ VL, the ν̂-twisted vertex operator Y ν̂(v, x) is defined by

Y ν̂(v, x) = W (e∆xv, x). (170)

Then this yields a well-defined linear map

VL −→ (EndV T
L )[[x1/k, x−1/k]], v 7→ Y ν̂(v, x) =

∑
n∈ 1

k
Z

vν̂nx
−n−1 (171)

where vν̂n ∈ EndV T
L .

From [DL2], [X] we have that (V T
L , Y

ν̂) is an irreducible ν̂-twisted VL-module.

6. An isomorphism between Vfer ⊗ Vfer and VZα
In this section we present an isomorphism between the two free fermion vertex operator
superalgebra Vfer ⊗ Vfer and the lattice vertex operator superalgebra VZα with 〈α, α〉 = 1.
The fact that these two vertex operator superalgebras are isomorphic is commonly referred
to as “boson-fermion correspondence” [F], [FFR]. More specifically this isomorphism is a
correspondence between two free fermions and a fermion constrained to the circle R/Zα.

To express this isomorphism, we polarize our two free fermions using the transformation

α± =
1√
2

(α(1) ∓ iα(2)) (172)

or equivalently α(1) = 1√
2
(α+ + α−) and α(2) = i√

2
(α+ − α−). This polarization puts us in the

setting of [FFR]. In keeping with [Bar6], [Bar7], [Bar11], [Bar10], we call α± the “homogeneous”
basis for h = spanC{α1, α2}.

Consider the vertex operator subalgebra of Vfer ⊗ Vfer generated by the vector
α+(−1/2)α−(−1/2). Denote this vertex operator algebra by 〈α+(−1/2)α−(−1/2)〉. In addition,

consider the free, rank one bosonic vertex operator algebra Vbos = S(ĥ+) = 〈α(−1)〉. Then Vbos
is isomorphic to 〈α+(−1/2)α−(−1/2)〉 as vertex operator algebras with isomorphism given by
α(−1) 7→ α+(−1/2)α−(−1/2).

Then, for n ∈ Z, the spaces Vbos ⊗ enα are irreducible modules for Vbos, and VZα =∐
n∈Z Vbos ⊗ enα. An isomorphism ϕ : VL −→ Vfer ⊗ Vfer is given by

ϕ :
1⊗ enα 7→ α+(−n+ 1/2)α+(−n+ 3/2) · · ·α+(−1/2) · 1
1⊗ e−nα 7→ α−(−n+ 1/2)α−(−n+ 3/2) · · ·α−(−1/2) · 1 (173)
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for n ∈ Z+.
Here enα is chosen as a section of L̂ for convenience of notation. That is letting e : L =

Zα −→ L̂, e : nα 7→ enα be a section of L̂, this choice of section allows us to identify C{L} with
the group algebra C[L] by the linear isomorphism

C[L] −→ C{L}, enα 7→ ι(enα). (174)

But in a slight abuse of notation, we write enα for ι(enα).
The vertex operator subalgebra 〈α+(−1/2)α−(−1/2)〉 consists of those vectors in Vfer⊗Vfer

which have an equal number of positive and negative α±(−m) terms for m ∈ Z+ − 1
2 . Then

the modules corresponding to Vbos ⊗ en consist of those vectors in Vfer ⊗ Vfer that have n more
positive terms than negative terms if n > 0 and that have n more negative terms than positive
terms for n < 0.

The isomorphism Vfer⊗Vfer ∼= VZα implies that V ⊗2d
fer
∼= V ⊗dZα for d ∈ Z+. That is, the lattice

vertex operator superalgebra corresponding to the orthogonal rank d lattice
⊕d

j=1 Zα(j) with

〈α(j), α(k)〉 = δj,k is isomorphic to the 2d free boson vertex operator superalgebra.

7. Construction and classification of the (1 2)-twisted Vfer ⊗ Vfer-modules through
boson-fermion correspondence and a conjecture
In this section, we use the isomorphism of Vfer ⊗ Vfer ∼= VZα to construct the (1 2)-twisted
Vfer ⊗ Vfer-modules by first transferring the signed permutation automorphism (1 2) on
Vfer ⊗ Vfer to the corresponding automorphism ϕ ◦ (1 2) ◦ ϕ−1 on VZα, observing that this
automorphism is a lift of the −1 lattice isometry, and then using the construction of such
twisted modules recalled in Section 5.

The transposition (1 2) acting as a signed permutation on Vfer ⊗ Vfer is given by (1 2) :

u⊗ v 7→ (−1)|u||v|v ⊗ u for u, v ∈ Vfer. In terms of the polarization (172), this automorphism is
given by

(1 2) : α±(−1/2) 7→ α∓(−1/2).

7.1. The automorphism ν̂ = ϕ ◦ (1 2) ◦ ϕ−1 of VZα corresponding to (1 2) on Vfer
Let ϕ ◦ (1 2) ◦ϕ−1 be the automorphism of VZα corresponding to (1 2) on Vfer⊗Vfer. Then this
automorphism is uniquely determined by

ϕ ◦ (1 2) ◦ ϕ−1 : VZα −→ VZα (175)

α(−1)1⊗ 1 7→ −α(−1)1⊗ 1

1⊗ enα 7→ (−i)n(1⊗ e−nα).

In particular, letting ν be the lattice isometry

ν : Zα −→ Zα, nα 7→ −nα, (176)

then ν̂ = ϕ ◦ (1 2) ◦ ϕ−1 is a lift of the lattice isometry ν to a central extension L̂ν of L = Zα
by the cycle group 〈i〉 of order 4.

7.2. Constructing the ν̂-twisted VZα-modules
We now specialize the construction of twisted modules for a lattice vertex operator superalgebra
and a lift of a lattice isometry given in Section 5 to the following setting:
• Let L = Zα with 〈α, α〉 = 1.
• Let k = 4 and let η = η0 = i.
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• Let ν = −1 on L = Zα.
• Let ν̂ = ϕ ◦ (1 2) ◦ ϕ−1.

We follow Section 5 to construct and classify the ν̂-twisted VZα-modules.
We have

h(0) = h(1) = h(3) = 0 and h(2) = h, (177)

and C(α, β) = 1, for all α, β ∈ L. Furthermore, we have N = R = L and M = 2L.

For a ∈ L̂ν we have
τ(aν̂a−1) = i2〈ā,ā〉 = (−1)〈ā,ā〉. (178)

But in addition, from (175), we have, for a = enα,

τ(aν̂a−1) = τ(enαν̂e−nα) = τ(enαinenα) = inτ(e2nα). (179)

Therefore,

τ(e2nα) = (−1)〈nα,nα〉i−n = (−1)n
2
(−i)n = in. (180)

Next we extend τ to R̂ = L̂ν , thereby constructing an irreducible L̂ν-module, T , on which
M̂ = 2L̂ν acts as multiplication by the character τ . From Proposition 5.2, there are exactly
|R/M | = |L/2L| = 2 extensions of τ to a homomorphism χ : L̂ν → C×, and every irreducible

L̂ν-module on which M̂ acts as τ is equivalent to one of these. Furthermore, since N = R = L,
we have χ = ψ in Proposition 5.2, and thus the modules T = Cψ = Cχ will be precisely these
two modules.

It is clear from (180), that the two choices for χ are

χ± : L̂ν −→ C×, enα 7→ ±(eπi/4)n (181)

for the primitive eighth root of unity eπi/4 and n ∈ Z.
Denote these two inequivalent irreducible L̂ν-modules on which L̂ν act as χ+ and χ−,

respectively, by C+ and C−, respectively. Then we have two choices for UT up to isomorphism,
namely UT = C±.

Note that (158) does reduce to ν̂a = ai2〈ā,ā〉 = a(−1)〈ā,ā〉 = (−1)|a|a, as operators on either

C±, and ν̂2 = 1 on L̂ν .
Form the two ν̂-twisted VZα modules

M± = S[ν]⊗ C± ' S[ν]. (182)

Note that in this setting, we have

αT (x) =
∑

n∈Z+ 1
2

αT (n)x−n−1. (183)

Then the ν̂-twisted vertex operators are given by (165) and (170). We denote these two
different ν̂-twisted vertex operators by Y ν̂

± on M±, respectively.
And note that of course we have

VZα −→ (EndM±)[[x1/2, x−1/2]], v 7→ Y ν̂
±(v, x) =

∑
n∈ 1

2
Z

vν̂,±n x−n−1 (184)

where vν̂,±n ∈ EndM±.
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From (133), we have

wt 1 =
1

64

3∑
j=1

j(4− j)dim (h(j)) =
1

16
. (185)

Following (161), we have that the C-gradation on C± is zero, and thus the weight grading of C±
is 1

16 . In fact, we have that

Lν̂±(0) =
∑
n∈N

αT (−n− 1/2)αT (n+ 1/2) +
1

16
, (186)

and thus

dimqM± = q−1/24q1/16
∏
n∈Z+

(1 + qn/2) =
η(q)

η(q1/2)
=
√

2
−1

f2(q1/2). (187)

In particular, M+ andM− have the same graded dimension. Note also that this graded dimension
is the same as the graded dimension for the g-twisted free boson vertex operator algebra module
where g is uniquely determined by −1 on the generator; see for instance [Bar11] Section 5.2. It is
also the graded dimension with q replaced by q1/2 for either of the two unique up to equivalence
irreducible parity-twisted Vfer-modules as constructed in Section 3.2; see Remark 3.4.

From [DL2], [X] we have that (M±, Y
ν̂
±) are each irreducible ν̂-twisted VZα-modules, and they

are the only irreducible ν̂-twisted VZα-modules. In addition, although these two modules, M+

and M− have the same graded dimension, they are not isomorphic to each other as ν̂-twisted
VZα- modules. That is, if f : (M+, Y

ν̂
+) −→ (M−, Y

ν̂
−) is a twisted module isomorphism, then

f ◦Y+(v, x) ◦ f−1 = Y ν̂
−(v, x) = (−1)|v|Y ν̂

+(v, x) for all v ∈ V . This would imply that there exists

a Z2-grading on M±, given by M± = M
(0)
± ⊕M

(1)
± , such that |Y+(v, x)w| = (|v| + |w|)mod 2

for all w ∈ M+, where |w| = j for w ∈ M (j)
+ , for j = 0, 1. But if w ∈ M+ is a nonzero vector

which is homogeneous with respect to the Z2-grading, then writing w = u⊗ t with u ∈ S[ν] and
t ∈ C+, we have

Y ν̂
+(eα, x)w =

1

2
ρ(α)

(
◦
◦e

∫
(αT (x)−αT (0)x−1) ◦

◦x
−1/2u

)
⊗ χ+(eα) · t (188)

= r
(
◦
◦e

∫
(αT (x)−αT (0)x−1) ◦

◦x
−1/2u

)
⊗ t

for a constant r ∈ C×. Taking r−1Resxx
−1/2 of both sides we obtain u⊗ t = w. Since |eα| = 1,

this implies that |w| = (1 + |w|)mod 2, a contradiction. Thus there exists no such Z2-grading
that would give an isomorphism between M+ and M−.

It follows that

Lemma 7.1 The modules M± are isomorphic as ordinary parity-unstable (1 2)-twisted V ⊗2
fer-

modules to the modules M±(1 2) presented in Section 3.3 following [DZ2].

Remark 7.2 We observe that using the construction of [DZ2], one first constructs a parity-
stable irreducible (1 2)-twisted V ⊗2

fer-module and then identifies two invariant subspaces which

are parity-unstable irreducible (1 2)-twisted V ⊗2
fer-modules. However using boson-fermion

correspondence and the theory of lattice vertex operator superalgebras, one first directly
constructs a pair of parity-unstable irreducible (1 2)-twisted V ⊗2

fer-modules. In addition, from the

lattice construction it is immediately obvious that (M+, Y
ν̂

+) is isomorphic to (M−, Y
ν̂
− ◦ σV ) as

parity-unstable ν̂-twisted modules, wheres the isomorphism is less straightforward in the [DZ2]
construction.
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7.3. A conjecture
For k > 2 even, if one tries to directly lift (1 2 · · · k) to the lattice vertex operator superalgebra
V ⊗kZα = VZα⊕···⊕Zα in the obvious way extending what we did in the case k = 2 in the last section,
one does not get a lift of a lattice isometry.

For example if one tries to directly lift, say (1 2 3 4) to the lattice vertex operator
superalgebra V ⊗2

Zα = VZα⊕Zα in the obvious way, we have that for instance under the map
(ϕ⊗ ϕ) ◦ (1 2 3 4) ◦ (ϕ⊗ ϕ)−1, we have

(α(−1)1⊗ 1)⊗ (1⊗ 1) 7→ 1

2

((
1⊗ (eα + e−α)

)
⊗
(
1⊗ (eα − e−α)

))
. (189)

However, we note that all the (1 2 · · · k)-twisted V ⊗kfer -modules, M±(1 2 ··· k), of Section 3.3 for k

even, have a structure that would imply that they could be realized as g-twisted V
⊗k/2
Zα -modules

for g a lift of some lattice isometry. In particular, they look like S[ν] ⊗ C± for S a symmetric
algebra and C± a one dimensional space on which the odd generating operator acts as ±c for a
constant c.

This, as well as recent constructions of other permutation-twisted modules for free fermions
given by the second author, lead us to the following conjecture:

Conjecture 7.3 The (1 2 · · · k) permutation automorphism of V ⊗kfer for k even is conjugate to

a lift of a lattice isometry on V
⊗k/2
Zα via boson-fermion correspondence.

Note that from (189), this conjecture is nontrivial. In addition, we stress that although the
permutation automorphisms for free fermions can be realized as lifts of isometries on h as in
[DZ2] and Section 3.3, this conjecture goes further to state that they can be be realized as lifts of
isometries on the lattice underlying the purely bosonic part of the vertex operator superalgebra.
This is a much stronger statement, and allows for the full theory of twisted modules for lattice
vertex operator superalgebras to come to bear.

8. Construction and classification of the σ ◦ (1 2)-twisted Vfer ⊗ Vfer-modules
Let ν̂ = ϕ ◦ (1 2) ◦ ϕ−1 be the automorphism of VZα corresponding to (1 2) on Vfer ⊗ Vfer
given explicitly by (175), where ϕ is the isomorphism between Vfer ⊗ Vfer and VZα given by
(173). Then the automorphism σ ◦ (1 2) of Vfer ⊗ Vfer corresponds to the automorphism
σ ◦ ν̂ = ϕ ◦ σ ◦ (1 2) ◦ ϕ−1 given by

ϕ ◦ σ ◦ (1 2) ◦ ϕ−1 : VZα −→ VZα (190)

α(−1)⊗ 1 7→ −α(−1)

1⊗ enα 7→ in(1⊗ e−nα).

Then σ ◦ ν̂ = ϕ ◦σ ◦ (1 2) ◦ϕ−1 is also a lift of the lattice isometry ν = −1 to a central extension
of L = Zα by the cycle group 〈i〉 of order 4. Repeating the construction of Section 7.2, we have
that there are exactly two inequivalent irreducible σ ◦ ν̂-twisted VZα given by

Mσ
± = S[ν]⊗ Cσ± ' S[ν]. (191)

where Cσ± are the irreducible L̂ν-modules constructed as follows: Define the characters

χσ± : L̂ν −→ C×, enα 7→ ±(e3πi/4)n (192)

for the primitive eighth root of unity e3πi/4, cf. (181). Denote the two inequivalent irreducible

L̂ν-modules on which L̂ν act as χσ+ and χσ−, respectively, by Cσ+ and Cσ−, respectively.
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Proposition 8.1 The modules M± are isomorphic as ordinary parity-unstable σ(1 2)-twisted
V ⊗2
fer-modules to the modules M±σ(1 2) following [DZ2], and are the only irreducible parity-unstable

σ(1 2)-twisted V ⊗2
fer-modules up to equivalence.

We further conjecture that in general, for k even, (not just two) that σ ◦ (1 2 · · · k) can be
realized as a conjugate of a lift of a lattice isometry under boson-fermion correspondence.
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