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Abstract. We construct a new representation of the infinite rank Lie algebra a∞ with central

charge c = 1 on the Fock space F⊗
1
2 of a single neutral fermion. We show that F⊗

1
2 is a direct

sum of irreducible integrable highest weight modules for a∞ with central charge c = 1. We prove

that as a∞ modules F⊗
1
2 is isomorphic to the Fock space F⊗1 of the charged free fermions. As

a corollary we obtain the decompositions of certain irreducible highest weight modules for d∞
with central charge c = 1

2
into irreducible highest weight modules for d∞ with central charge

c = 1.

1. Introduction
Our motivation for this paper was to better understand the various boson-fermion
correspondences and their connection with the representation theory of certain infinite
dimensional Lie algebras. The first to write on the topic of the relationship between a boson-
fermion correspondence and representation theory were Date, Jimbo, Kashiwara, Miwa in
[DKM81], [DJKM81a] and I. Frenkel in [Fre81]. Since then many attempts have been made
to understand the boson-fermion correspondences as nothing else but an isomorphism of infinite
dimensional Lie algebra modules. In his seminal paper I. Frenkel wrote: “The Boson-Fermion
correspondence is nothing else but the canonical isomorphism between two realizations of the
same representation of the affine Lie algebra D̂(2l) and in particular of its subalgebra ĝl(l)”
(page 317 of [Fre81]). In the language that became commonly used later many had translated
this to mean that the boson-fermion correspondence of type A is just an isomorphism between
the vertex (the bosonic) and the spinor (the fermionic) realizations of the standard modules of

a∞ = ĝl∞ (the label “type A” derives from the a∞ = ĝl∞, and is intended to distinguish this
correspondence from the boson-fermion correspondence of type B for example, [DJKM81b]).
This point of view of course had to be amended, as the charged free fermion Fock space F⊗1

underlying the fermionic side of the boson-fermion correspondence of type A is actually an
infinite direct sum of irreducible standard modules of a∞ = ĝl∞ (for details on F⊗1 see e.g.
[Fre81], [KR87], [Kac98], [Wan99a], as well as Remark 3.2 in this paper). Starting with I.
Frenkel’s work in [Fre81], and later, the boson-fermion correspondence of type A (and the
correspondence of type B) was related to different kinds of Howe-type dualities ([KWY98],

[Wan99a], [Wan99b]). For instance, in [Wan99a] Wang wrote that “the (GL1, D̂) -duality

in Theorem 5.3 is essentially the celebrated boson-fermion correspondence” (D̂ denotes the
universal central extension of the Lie algebra of differential operators on the circle, sometimes
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also labeled byW1+∞). But what we contend is that the boson-fermion correspondences are more
than just isomorphisms between certain Lie algebra modules: a boson-fermion correspondence
is first and foremost an isomorphism between two different chiral field theories, one fermionic
(expressible in terms of free fermions and their descendants), the other bosonic (expressible in
terms of exponentiated bosons). In fact, as I. Frenkel was careful to summarize in Theorem
II.4.1 of his very influential paper [Fre81], “the canonical” isomorphism of the two o(2l)-current
algebra modules in the bosonic and the fermionic Fock spaces follows from the boson-fermion
correspondence (in fact that is what makes the isomorphism canonical), but not vice versa.
But what we will show is that although the isomorphism of Lie algebra representations (and
indeed various dualities) follow from a boson-fermion correspondence, the isomorphism as Lie
algebra modules is not equivalent to a boson-fermion correspondence. To do that we consider

a single neutral fermion Fock space F⊗
1
2 and show that as modules for the Lie algebra a∞,

F⊗
1
2 ∼= F⊗1 . Of course, it is known that even as super vertex algebras, and certainly as modules

for the Lie algebras a∞, d∞ with central charge c = 1, as well as other affine Lie algebras,

F⊗1 ∼= F⊗
1
2 ⊗F⊗

1
2 . This fact is often and extensively used in many papers on vertex algebras,

and it was once again I. Frenkel who used it first in [Fre81] in connection to representation

theory. But, the representations of a∞, d∞ and other affine algebras on F⊗1 ∼= F⊗
1
2 ⊗F⊗

1
2 that

are known in the literature do not reduce to representations on each of the F⊗
1
2 factors. What

was known is that F⊗
1
2 is a representation of the Lie algebra d∞ with central charge c = 1

2 (this

is one of the explanations for the label 1
2 in F⊗

1
2 , the other being that F⊗

1
2 is only a “half-

infinite” Fock space, as opposed to F⊗1 ). This is then what we do in this paper: First, we build

a fermionic (spinor) representation of a∞ with central charge c = 1 on F⊗
1
2 . Next we show how

this representation decomposes into irreducible highest weight modules, which ultimately shows

that as modules for the Lie algebra a∞ with central charge c = 1, F⊗
1
2 ∼= F⊗1 . This shows that

it is not the a∞-module structure that distinguishes these spaces—F⊗
1
2 and F⊗1 are identical

as vector spaces, or even as a∞ Lie algebra modules. The difference is in the vertex algebra

structure (field theory) on F⊗
1
2 , versus the vertex algebra structure on F⊗1 . The field theory

on F⊗1 is local in the usual sense (at z = w, or as we can refer to it, 1-point local, see Definition
2.2); or more precisely F⊗1 has a super vertex algebra structure (see e.g. [Kac98], [LL04],
[FBZ04] for a precise definition of a super vertex algebra). On the other hand, even though

F⊗
1
2 has a super vertex algebra structure, this super vertex algebra structure is not enough to

produce the new representations that we obtain below– to do that we at the minimum need to

introduce 2-point locality (i.e., the fields we consider on F⊗
1
2 are allowed to be multi-local, at

both z = w and z = −w). More precisely, there is a twisted vertex algebra structure on F⊗
1
2

(see [Ang12], [ACJ13] for a precise definition of a twisted vertex algebra). This shows that the

type of vertex algebra structure on F⊗1 versus F⊗
1
2 is of great importance, in particular the set

of points of locality is a necessary part of the data describing any boson-fermion correspondence.
The outlay of the paper is as follows. First, we recall the necessary definitions and technical

tools in Section 2. In Section 3 we introduce the infinite Lie algebras that we will work with,

and the Fock space F⊗
1
2 and its different gradings. Next we show that F⊗

1
2 is a module for the

Lie algebra a∞ with central charge c = 1, and by restriction for the Lie algebra d∞ with central

charge c = 1. Next we show that each homogeneous component of F⊗
1
2 is a highest weight

module for a∞ with central charge c = 1, which is moreover irreducible. That allows us to show

that F⊗
1
2 is completely reducible and to show its decomposition in terms of irreducible modules

for a∞ with central charge c = 1. Hence we can compare and conclude that as a∞ modules with

central charge c = 1 F⊗
1
2 ∼= F⊗1 . Finally as a corollary we obtain the decomposition of certain

c = 1
2 modules for d∞ in terms of irreducible highest weight d∞ with central charge c = 1.
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2. Notation and background
We work over the field of complex numbers C.

The mathematical definitions of a field in a chiral quantum field theory and normal ordered
products of fields are well known, they can be found for instance in [FLM88], [FHL93], [Kac98],
[LL04] and others, we include them for completeness:

Definition 2.1 (Field) A field a(z) on a vector space V is a series of the form

a(z) =
∑
n∈Z

a(n)z
−n−1, a(n) ∈ End(V ), such that a(nv)v = 0 for any v ∈ V, nv � 0. (2.1)

Denote
a(z)− :=

∑
n≥0

anz
−n−1, a(z)+ :=

∑
n<0

anz
−n−1. (2.2)

Definition 2.2 ([ACJ13]) (N-point local fields) Let ε be a primitive N th root of unity. We
say that a field a(z) on a vector space V is even and N -point self-local at 1, ε, ε2, . . . , εN−1, if
there exist n0, n1, . . . , nN−1 ∈ Z≥0 such that

(z − w)n0(z − εw)n1 · · · (z − εN−1w)nN−1 [a(z), a(w)] = 0. (2.3)

In this case we set the parity p(a(z)) of a(z) to be 0.
We set {a, b} := ab+ ba.We say that a field a(z) on V is N -point self-local at 1, ε, ε2, . . . , εN−1

and odd if there exist n0, n1, . . . , nN−1 ∈ Z≥0 such that

(z − w)n0(z − εw)n1 · · · (z − εN−1w)nN−1{a(z), a(w)} = 0. (2.4)

In this case we set the parity p(a(z)) to be 1. For brevity we will just write p(a) instead of
p(a(z)).
Finally, if a(z), b(z) are fields on V , we say that a(z) and b(z) are N -point mutually local at
1, ε, ε2, . . . , εN−1 if there exist n0, n1, . . . , nN−1 ∈ Z≥0 such that

(z − w)n0(z − εw)n1 · · · (z − εN−1w)nN−1

(
a(z)b(w)− (−1)p(a)p(b)b(w)a(z)

)
= 0. (2.5)

Definition 2.3 (Normal ordered product) Let a(z), b(z) be fields on a vector space V .
Define

: a(z)b(w) := a(z)+b(w) + (−1)p(a)p(b)b(w)a−(z). (2.6)

One calls this the “normal ordered product” of a(z) and b(w).

Remark 2.4 Let a(z), b(z) be any fields on a vector space V . Then
: a(z)b(λz) : and : a(λz)b(z) : are well defined fields on V for any λ ∈ C∗.

For a rational function f(z, w), with poles only at z = 0, z = εiw, 0 ≤ i ≤ N − 1, we denote by
iz,wf(z, w) the expansion of f(z, w) in the region |z| � |w| (the region in the complex z plane
outside of all the points z = εiw, 0 ≤ i ≤ N − 1), and correspondingly for iw,zf(z, w). The
mathematical background of the well-known and often used (both in physics and in mathematics)
notion of Operator Product Expansion (OPE) of product of two fields for the case of usual
locality (N = 1) has been established for example in [Kac98], [LL04]. The following lemma
extended the mathematical background to the case of N -point locality:
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Lemma 2.5 ([ACJ13]) (Operator Product Expansion (OPE) of N-point local fields)
Let a(z), b(w) be N -point mutually local fields on a vector space V . Then exists fields cjk(w),
j = 0, . . . , N − 1; k = 0, . . . , nj − 1, such that we have

a(z)b(w) = iz,w

N−1∑
j=0

nj−1∑
k=0

cjk(w)

(z − εjw)k+1
+ : a(z)b(w) : . (2.7)

We call the fields cjk(w), j = 0, . . . , N − 1; k = 0, . . . , nj − 1 OPE coefficients. We will write the
above OPE as

a(z)b(w) ∼
N−1∑
j=0

nj−1∑
k=0

cjk(w)

(z − εjw)k+1
. (2.8)

The ∼ signifies that we have only written the singular part, and also we have omitted writing
explicitly the expansion iz,w, which we do acknowledge tacitly. Often also the following notation
is used for short:

babc = a(z)b(w)− : a(z)b(w) := [a(z)−, b(w)], (2.9)

i.e., the contraction of any two fields a(z) and b(w) is in fact also the iz,w expansion of the
singular part of the OPE of the two fields a(z) and b(w).

The OPE expansion of the product of two fields is very convenient, as it completely determines
in a very compact manner the commutation relations between the modes of the two fields, and
we will use it extensively in what follows. In particular, extending of the OPEs to the case of
N-point local fields allows us to extend and use Wick’s Theorem for N-point local fields:

Theorem 2.6 (Wick’s Theorem, [BS83], [Hua98] or [Kac98] ) Let a(z), b(w) be N -
point mutually local fields on a vector space V , satisfying

(i) [bai(z)bj(w)c, ck(x)±] = [baibjc, ck(x)±] = 0, for all i, j, k and ck(x) = ak(z) or ck(x) =
bk(w).

(ii) [ai(z)±, b
j(w)±] = 0 for all i and j.

Then

:a1(z) · · · aM (z) :: b1(w) · · · bN (w) :=

min(M,N)∑
s=0

∑
i1<···<is,
j1 6=···6=js

±bai1bj1c · · · baisbjsc : a1(z) · · · aM (z)b1(w) · · · bN (w) :(i1,...,is;j1,...,js) .

Here the subscript (i1, . . . , is; j1, . . . , js) means that those factors ai(z), bj(w) with indices
i ∈ {i1, . . . , is}, j ∈ {j1, . . . , js} are to be omitted from the product : a1 · · · aMb1 · · · bN : and
when s = 0 we do not omit any factors. The plus or minus sign is determined as follows: each
permutation of an adjacent odd field changes the sign.

3. The Fock space F⊗
1
2 and representations of a∞ and d∞ with central charge 1

We recall the definitions and notation for the Fock space F⊗
1
2 and the double-infinite rank Lie

algebras a∞ and d∞ as in [Fre81], [DJKM81a], [Kac90], [Wan99b]; in particular we follow the
notation of [Wan99b], [Wan99a].

Consider a single odd self-local field φD(z), which we index in the form φD(z) =∑
n∈Z+ 1

2
φDn z

−n− 1
2 . The OPE of φD(z) is given by

φD(z)φD(w) ∼ 1

z − w
. (3.1)
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This OPE completely determines the commutation relations between the modes φDn , n ∈ Z+ 1
2 :

{φDm, φDn } = φDmφ
D
n + φDn φ

D
m = δm,−n1. (3.2)

and so the modes generate a Clifford algebra ClD . The field φD(z) is usually called a “neutral
fermion field”. Now ClD has basis consisting of 1 and the products φDi1φ

D
i2
· · ·φDik where

i1 < i2 < · · · < ik, ij ∈ Z + 1/2. We introduce a Z-grading dg on ClD by defining the
following degree of a basis element:

dg(1) = 0,

dg(φD
nk− 1

2

. . . φD
n2− 1

2

φD
n1− 1

2

) = #{i = 1, 2, . . . , k| ni = odd} −#{i = 1, 2, . . . , k| ni = even}.

Lemma 3.1 The Z-grading of ClD is an algebra grading. Furthermore, the operation left
multiplication by an element φDn ∈ CLD for any n ∈ Z + 1/2 is a homogenous operator on
CLD, of degree 1 if n = 2k + 1/2, and of degree −1 if n = 2k − 1/2 for some integer k.

Proof: For any pair φm, φn (m 6= n) we claim dg(φmφn) = dg(φnφm). If m 6= −n then
φmφn = −φnφm, and one of these expressions appears in the given basis so determines the
degree of both φmφn and φnφm. If m = −n, φmφn = 1 − φnφm, and again, either the left or
right hand side is a sum of basis vectors, since dg(1) = 0 the degree of φmφn and φnφm again
agree. Thus the Clifford algebra relation (3.2) is compatible with the definition of dg. Now it is
obvious from the definition of the grading that as an operator left multiplication by φDn ∈ CLD

is a homogeneous operator of the given degree. �
The Fock space of the field φD(z) is the highest weight module of ClD with vacuum vector

|0〉, so that φDn |0〉 = 0 for n > 0. It is denoted by F⊗
1
2 (see e.g. [DJKM81b], [FFR91], [KW94],

[Wan99a], [Wan99b], [KWY98]). F⊗
1
2 has basis

{φD−nk− 1
2

. . . φD−n2− 1
2

φD−n1− 1
2

|0〉, |0〉
∣∣ nk > · · · > n2 > n1 ≥ 0, ni ∈ Z, i = 1, 2, . . . , k} (3.3)

The space F⊗
1
2 has a Z2 grading given by k mod 2,

F⊗
1
2 = F

⊗ 1
2

0̄
⊕ F

⊗ 1
2

1̄
,

where F
⊗ 1

2

0̄
(resp. F

⊗ 1
2

1̄
) denote the even (resp. odd) components of F⊗

1
2 . This Z2 grading can

be extended to a Z≥0 grading L̃, called “length”, by setting

L̃(φD−nk− 1
2

. . . φD−n2− 1
2

φD−n1− 1
2

|0〉) = k. (3.4)

The space F⊗
1
2 can be given a super vertex algebra structure, as is known from e.g. [FFR91],

[KW94], [Kac98].

The Z grading dg on ClD induces a Z grading dg on F⊗
1
2 by assigning dg(|0〉) = 0 and

dg(φD−nk− 1
2

. . . φD−n2− 1
2

φD−n1− 1
2

|0〉) = #{i = 1, 2, . . . , k| ni = odd} (3.5)

−#{i = 1, 2, . . . , k| ni = even}.

Denote the space of homogenous elements of degree dg = n ∈ Z by F
⊗ 1

2

(n) , hence as vector spaces

we have

F⊗
1
2 = ⊕n∈ZF

⊗ 1
2

(n) . (3.6)
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Introduce also the special vectors vn ∈ F
⊗ 1

2

(n) defined by

v0 = |0〉 ∈ F
⊗ 1

2

(0 ) ; (3.7)

vn = φD−2n+1− 1
2

. . . φD−3− 1
2

φD−1− 1
2

|0〉 ∈ F
⊗ 1

2

(n) , for n > 0; (3.8)

v−n = φD−2n+2− 1
2

. . . φD−2− 1
2

φD− 1
2

|0〉 ∈ F
⊗ 1

2

(−n), for n > 0. (3.9)

Note that the vectors vn ∈ F
⊗ 1

2

(n) have minimal length L̃ = |n| among the vectors within F
⊗ 1

2

(n) ,

and they are in fact the unique (up-to a scalar) vectors minimizing the length L̃, such that the
index nk is minimal too.

The Lie algebra ā∞ (sometimes denoted ḡl∞ or just gl, see for instance [Wan99a], [Wan99b],
[KWY98]) is the Lie algebra of infinite matrices

ā∞ = {(aij)| i, j ∈ Z, aij = 0 for|i− j| � 0}. (3.10)

As usual denote the elementary matrices by Eij .

The algebra a∞ (often denoted also by ĝl∞ or ĝl) is a central extension of ā∞ by a central
element c, a∞ = ā∞ ⊕ Cc, with cocycle given by

C(A,B) = Trace([J,A]B), (3.11)

where the matrix J =
∑

i≤0Eii. In particular

C(Eij , Eji) = −C(Eji, Eij) = 1, if i ≤ 0, j ≥ 1

C(Eij , Ekl) = 0 in all other cases.

The commutation relations for the elementary matrices in a∞ are

[Eij , Ekl] = δjkEil − δliEkj + C(Eij , Ekl)c.

The non-central generators have generating series

EA(z, w) =
∑
i,j∈Z

Eijz
i−1w−j , (3.12)

and relations

[EA(z1, w1), EA(z2, w2)] = EA(z1, w2)δ(z2 − w1)− EA(z2, w1)δ(z1 − w2) (3.13)

+ ιz1,w2

1

z1 − w2
ιw1,z2

1

w1 − z2
c− ιw2,z1

1

z1 − w2
ιz2,w1

1

w1 − z2
c.

Here we used the formal delta function notation δ(z−w) :=
∑

n∈Z z
nw−n−1 = δ(w− z) (see e.g.

[Kac98], [FBZ04], [ACJ13]).
Further, a∞ has a triangular decomposition

a∞ = a−∞ ⊕ a0
∞ ⊕ a+

∞. (3.14)

Here a±∞ consists of correspondingly the strictly upper (strictly lower) triangular infinite
matrices; a0

∞ = gl0 ⊕ Cc where gl0 denotes the diagonal matrices.

XXIst International Conference on Integrable Systems and Quantum Symmetries (ISQS21) IOP Publishing
Journal of Physics: Conference Series 474 (2013) 012004 doi:10.1088/1742-6596/474/1/012004

6



The root system of a∞ is ∆ = {εi − εj | i, j ∈ Z, i 6= j} where εi ∈ (gl0)∗ is defined by
εi(Ejj) = δij (i, j ∈ Z). There is a conjugate linear, involutive anti-automorphism ω ∈ End(a∞)
defined by ω(Eij) = Eji and this is called “the compact anti-involution”.

For ¢∈ C and Λ ∈
⊕

i∈Z,i6=0(CEii)
∗, set

aλi := Λ(Eii)
aHi := Eii − Ei+1,i+1 + δi,0c
ahi := Λ(aHi) = aλi − aλi+1 + δi,0¢

Define aΛj ∈ (a0
∞)∗ by

aΛj(Eii) =


1, for 0 < i ≤ j,
−1, for j < i ≤ 0,

0, otherwise,
aΛj(c) = 0.

Define also aΛ̂0 ∈ (a0
∞)∗ by aΛ̂0(c) = 1, aΛ̂0(Eii) = 0 for i ∈ Z. Then the i-th fundamental weight

is
aΛ̂j =aΛj +aΛ̂0, i ∈ Z.

Let L(a∞;aΛ, ¢) = L(ĝl∞;aΛ, ¢) denote the highest weight a∞-module with highest weight Λ
and central charge ¢.

The algebra d̄∞ is defined as the subalgebra of ā∞, consisting of the infinite matrices
preserving the bilinear form D(vi, vj) = δi,1−j , i.e.,

d̄∞ = {(aij) ∈ ā∞| aij = −a1−j,1−i}. (3.15)

Denote by d∞ the central extension of d̄∞ by a central element c, d∞ = d̄∞⊕Cc, with the same
cocycle as for a∞, (3.11). The commutation relations for the elementary matrices in d∞ are
obtained using the relations in a∞: 1

[Eij , Ekl] = δjkEil − δliEkj + C(Eij , Ekl)c.

The generators for the algebra d∞ can be written in terms of these elementary matrices as:

{Ei,j − E1−j,1−i, i, j ∈ Z; and c}.

We can arrange the non-central generators in a generating series

ED(z, w) =
∑
i,j∈Z

(Eij − E1−j,1−i)z
i−1w−j . (3.16)

The generating series ED(z, w) obeys the following relations:

ED(z, w) = −ED(w, z)

and

[ED(z1, w1),ED(z2, w2)] = ED(z1, w2)δ(z2 − w1)− ED(z2, w1)δ(z1 − w2)

+ ED(w2, w1)δ(z1 − z2)− ED(z1, z2)δ(w1 − w2)

+ 2ιz1,w2

1

z1 − w2
ιw1,z2

1

w1 − z2
c− 2ιz2,w1

1

z2 − w1
ιw2,z1

1

w2 − z1
c

− 2ιz1,z2
1

z1 − z2
ιw1,w2

1

w1 − w2
c+ 2ιz2,z1

1

z1 − z2
ιw2,w1

1

w2 − w1
c.

1 Note that in [Kac90] the commutation relation [Eij , Ekl] = δjkEil − δliEkj + 1
2
C(Eij , Ekl)c is used instead.
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The assignment E(z, w) 7→: φD(z)φD(w) :, c 7→ 1
2IdF⊗

1
2

gives a representation of the Lie

algebra d∞ on F⊗
1
2 (see e.g. [DJKM81b], [KW94], [KWY98]), which we denote by r 1

2
. Further,

it is known (see e.g. [KW94], [KWY98], [Wan99a]) that as d∞ modules

F
⊗ 1

2

0̄
∼= L(d∞;dΛ̂0,

1

2
); F

⊗ 1
2

1̄
∼= L(d∞;dΛ̂1,

1

2
). (3.17)

where L(d∞;dΛ, ¢) denotes the highest weight d∞-module with highest weight dΛ and central
charge ¢. The highest weights are defined by the following, using the symmetry in d∞:

dΛ̂0(Ei,i − E1−i,1−i) = 0 for any i ∈ Z;

dΛ̂1(Ei,i − E1−i,1−i) = 1; for i = 1; dΛ̂1(Ei,i − E1−i,1−i) = 0 for i 6= 0, 1;

dΛ̂0(c) =d Λ̂1(c) =
1

2
.

As a d∞-module with central charge c = 1
2 F⊗

1
2 then decomposes as

F⊗
1
2 = F

⊗ 1
2

0̄
⊕ F

⊗ 1
2

1̄
∼= L(d∞;dΛ̂0,

1

2
)⊕ L(d∞;dΛ̂1,

1

2
),

Next we will show that F⊗
1
2 is also a module for a∞ (and thus d∞) with central charge c = 1.

Remark 3.2 It is well known (in the context of representation theory it was introduced by I.
Frenkel in [Fre81] and extensively used afterwards) that

F⊗
1
2 ⊗ F⊗

1
2 ∼= F⊗1 ;

where F⊗1 is the Fock space of 1 pair of two charged fermions. The two charged fermions are
the fields ψ+(z) and ψ−(z) with operator product expansions (OPEs):

ψ+(z)ψ−(w) ∼ 1

z − w
∼ ψ−(z)ψ+(w), ψ+(z)ψ+(w) ∼ 0 ∼ ψ−(z)ψ−(w)

where the 1 above denotes the identity map IdF⊗1 . The modes ψ+
n and ψ−n , n ∈ Z of the fields

ψ+(z) and ψ−(z), which we index as follows:

ψ+(z) =
∑
n∈Z

ψ+
n z
−n−1, ψ−(z) =

∑
n∈Z

ψ−n z
−n−1, (3.18)

form a Clifford algebra ClA with relations

{ψ+
m, ψ

−
n } = δm+n,−11, {ψ+

m, ψ
+
n } = {ψ−m, ψ−n } = 0. (3.19)

The Fock space F⊗1 is the highest weight representation of ClA generated by the vacuum vector
|0〉, so that ψ+

n |0〉 = ψ−n |0〉 = 0 for n ≥ 0 (see e.g. [Fre81], [KR87], [KW94], [Kac98] for more
details on F⊗1 ). It is well known (see e.g., [Kac98], [FBZ04], [LL04]) that F⊗1 has a structure
of a super vertex algebra (i.e., with a single point of locality at z = w in the OPEs); this vertex
algebra is often called “charged free fermion vertex algebra”. It is also well known (introduced
by I. Frenkel, [Fre81]; and [DJKM81a]) and extensively used (e.g., [KR87], [FFR91], [Kac90],
[Wan99b], [Wan99a] among many others) that F⊗1 is a module for the a∞ algebra, moreover

F⊗1 ∼= ⊕n∈ZL(a∞;aΛ̂n, 1).
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This isomorphism has often been referred to as equivalent to the well known charged free boson-
fermion correspondence (an isomorphism between the super vertex algebra on F⊗1 and the
super vertex algebra of the rank one odd lattice). Here we are concerned with a more subtle
point: a boson-fermion correspondence is not just an equivalence of Lie algebra representations,
but an isomorphism of appropriate field theories (or vertex algebra structures). As shown and
used by I. Frenkel ([Fre81]) one has

F⊗1 ∼= F⊗
1
2 ⊗ F⊗

1
2 ,

which is implemented by

φ1(z) =
1√
2

(
ψ+(z) + ψ−(z)

)
, φ2(z) =

i√
2

(
ψ+(z)− ψ−(z)

)
.

In today’s language we would say that this fields map generates an isomorphism of super vertex
algebras, a fact which is extensively used by many authors (e.g., [FFR91], [MTZ08], [Bar11]
among many). But as we will show below, as a∞ modules

F⊗1 ∼= F⊗
1
2 ∼= ⊕n∈ZL(a∞;aΛ̂n, 1).

In other words, as vector spaces and as a∞ modules F⊗
1
2 and F⊗1 are indistinguishable. On the

other hand, in the case of F⊗1 the boson-fermion correspondence (of type A) is an isomorphism
of super vertex algebras, requiring locality only at z = w (see e.g., [Kac98]). But, in the case

of F⊗
1
2 the boson-fermion correspondence (of type D-A) is an isomorphism of twisted vertex

algebras, requiring locality at both z = w and z = −w (see [Ang12], [ACJ13]).

We obtain a representation of a∞ on F⊗
1
2 by introducing fields arising from a 2-point local

twisted vertex algebra:

Proposition 3.3 Let

φ+DA(z) =
φD(z)− φD(−z)

2
, φ−DA(z) =

φD(z) + φD(−z)
2

. (3.20)

The assignment zE(z2, w2) 7→: φ+DA(z)φ−DA(w) :, c 7→ Id
F⊗

1
2

gives a representation of the

Lie algebra a∞ on F⊗
1
2 with central charge c = 1.

Proof: We will use Wick’s Theorem. We have φ+DA(z) =
∑

n∈Z φ
D
−2n+ 1

2

z2n−1 and φ−DA(z) =∑
n∈Z φ

D
−2n− 1

2

z2n, thus the modes φ+DA(z) (resp. φ−DA(z)) are the operator coefficients of

φD(z) in front of odd (resp. even) powers of the formal variable z. Hence, since φD(z) obeys
the second condition of Wick’s theorem, φ+DA(z) and φ−DA(z) obey it too. We also have

φ+DA(z)φ+DA(w) ∼ 0, φ−DA(z)φ−DA(w) ∼ 0; (3.21)

φ+DA(z)φ−DA(w) ∼ 1

2

(
1

z − w
+

1

z + w

)
∼ z

z2 − w2
; (3.22)

φ−DA(z)φ+DA(w) ∼ 1

2

(
1

z − w
− 1

z + w

)
∼ w

z2 − w2
; (3.23)

hence the first condition of Wick’s theorem is also satisfied. Thus from Wick’s theorem we have

: φ+DA(z1)φ−DA(w1) :: φ+DA(z2)φ−DA(w2) :

∼ z1

z2
1 − w2

2

: φ−DA(w1)φ+DA(z2) : +
z2

w2
1 − z2

2

: φ+DA(z1)φ−DA(w2) :

+
z1

z2
1 − w2

2

z2

w2
1 − z2

2

.
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Hence

[: φ+DA(z1)φ−DA(w1) :, : φ+DA(z2)φ−DA(w2) :]

= z1δ(z
2
1 − w2

2) : φ−DA(w1)φ+DA(z2) : +z2δ(z
2
2 − w2

1) : φ+DA(z1)φ−DA(w2) :

+ ιz1,w2

z1

z2
1 − w2

2

ιw1,z2

z2

w2
1 − z2

2

− ιw2,z1

z1

z2
1 − w2

2

ιz2,w1

z2

w2
1 − z2

2

;

and we use the fact that : φ−DA(w)φ+DA(z) := − : φ+DA(z)φ−DA(w) :. �

We will denote this new representation on F⊗
1
2 by r1. Since d∞ is a subalgebra of a∞, we

have the following

Corollary 3.4 F⊗
1
2 is a module for d∞ with central charge c = 1 via the restriction of the

representation r1.

If we introduce a normal ordered product : φDmφ
D
n : on the modes φDm of the field φD(z),

compatible with the normal ordered product of fields (Definition 2.3), we have to have

: φD(z)φD(w) :=
∑

m,n∈Z+1
2

: φD−m− 1
2

φD−n− 1
2

: zmwn,

and thus

: φD−m− 1
2

φD−n− 1
2

:=


φD−m− 1

2

φD−n− 1
2

for m+ n 6= 1

φD−m− 1
2

φD−n− 1
2

− 1 = −φD−n− 1
2

φD−m− 1
2

for m+ n = −1, n ≥ 0,

φD−m− 1
2

φD−n− 1
2

for m+ n = −1,m ≥ 0.

(3.24)

Hence the well known representation r 1
2

of d∞ on F⊗
1
2 with central charge c = 1

2 is defined by

r 1
2
(Em,n − E1−n,1−m) =: φD−m+1/2φ

D
n− 1

2

:

for all m,n ∈ Z. Now Proposition 3.3 gives us a new representation r1 of a∞ on F⊗
1
2 given by

r1(Em,n) =: φD−2m+ 1
2

φD
2n− 1

2

: . (3.25)

for all m,n ∈ Z. Hence by restriction the representation of d∞ on F⊗
1
2 with central charge

c = 1 is
r1(Em,n − E1−n,1−m) :=: φD−2m+ 1

2

φD
2n− 1

2

: − : φD2n−3/2φ
D
−2m+3/2 : .

for all m,n ∈ Z.

Proposition 3.5 (The upper triangular elements annihilate vn) For all n ∈ Z, a+
∞vn = 0.

Proof: We need to prove that for any k ≥ 1 and any i, n ∈ Z, r1(Ei,i+k)vn = 0. We have
r1(Ei,i+k) =: φD−2i+ 1

2

φD
2i+2k− 1

2

:. We start with n = 0, v0 = |0〉. There are two cases: The case

of 2i + 2k > 0 is trivial. In the case 2i + 2k ≤ 0, then : φD−2i+ 1
2

φD
2i+2k− 1

2

:= −φD
2i+2k− 1

2

φD−2i+ 1
2

.

But −2i ≥ 2k ≥ 2, hence

r1(Ei,i+k)v0 = r1(Ei,i+k)|0〉 = −φD
2i+2k− 1

2

φD−2i+ 1
2

|0〉 = 0.
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We continue with n > 0, where vn = φD−2n+1− 1
2

. . . φD−3− 1
2

φD−1− 1
2

|0〉. Again, there are two cases:

first we will consider the case when 2i+ 2k ≤ 0:

r1(Ei,i+k)φD−2n+1− 1
2

. . . φD−3− 1
2

φD−1− 1
2

|0〉 = −φD
2i+2k− 1

2

φD−2i+ 1
2

φD−2n+1− 1
2

. . . φD−3− 1
2

φD−1− 1
2

|0〉.

Now since it is impossible to have −2i + 1
2 = −(−2l + 1 − 1

2) for any l ∈ Z, φD−2i+ 1
2

will

anticommute with any φD−2l+1− 1
2

, and thus φD−2i+ 1
2

φD−2n+1− 1
2

. . . φD−3− 1
2

φD−1− 1
2

|0〉 = 0.

Next let 2i+ 2k > 0, then : φD−2i+ 1
2

φD
2i+2k− 1

2

:= φD−2i+ 1
2

φD
2i+2k− 1

2

, and

r1(Ei,i+k)φD−2n+1− 1
2

. . . φD−3− 1
2

φD−1− 1
2

|0〉 = φD−2i+ 1
2

φD
2i+2k− 1

2

φD−2n+1− 1
2

. . . φD−3− 1
2

φD−1− 1
2

|0〉.

Now φD
2i+2k− 1

2

is an operator annihilating the vacuum, and unless we have 2i + 2k − 1
2 =

−(−2l + 1 − 1
2) for some 1 ≤ l ≤ n, l ∈ Z, then it will anticommute with any of the

φD−2l+1− 1
2

, 1 ≤ l ≤ n, and thus φD
2i+2k− 1

2

φD−2n+1− 1
2

. . . φD−3− 1
2

φD−1− 1
2

|0〉 = 0. If, on the other

hand 2i+ 2k − 1
2 = −(−2l + 1− 1

2) for some 1 ≤ l ≤ n, l ∈ Z, then we have

r1(Ei,i+k)φD−2n+1− 1
2

. . . φD−3− 1
2

φD−1− 1
2

|0〉

= φD−2i+ 1
2

φD
2i+2k− 1

2

φD−2n+1− 1
2

. . . φD−2l+1− 1
2

. . . φD−1− 1
2

|0〉

= ±φD−2i+ 1
2

φD−2n+1− 1
2

. . . ̂φD−2l+1− 1
2

φD−2l+3− 1
2

. . . φD−1− 1
2

|0〉;

here ̂φD−2l+1− 1
2

denotes the fact that φD−2l+1− 1
2

is absent. But then from 2i + 2k − 1/2 =

−(−2l+1− 1
2), we have i+k = l and−2i+ 1

2 = −2l+2k+1− 1
2 , and we know from k ≥ 1 that either

−2l+ 3− 1
2 ≤ −2i+ 1

2 ≤ −1− 1
2 , or −2i+ 1

2 ≥
1
2 . If −2i+ 1

2 ≥
1
2 (i.e., k ≥ l), then since φD−2i+ 1

2

anticommutes with all φD−2l+1− 1
2

, we have φD−2i+ 1
2

φD−2n+1− 1
2

. . . ̂φD−2l+1− 1
2

φD−2l+3− 1
2

. . . φD−1− 1
2

|0〉.

If on the other hand −2l+ 3− 1
2 ≤ −2i+ 1

2 ≤ −1− 1
2 , then that means φD−2i+ 1

2

= φD−2l1+1− 1
2

for

1 ≤ l1 ≤ l − 1 and

φD−2i+ 1
2

φD−2n+1− 1
2

. . . ̂φD−2l+1− 1
2

φD−2l+3− 1
2

. . . φD−1− 1
2

|0〉

= φD−2i+ 1
2

φD−2n+1− 1
2

. . . ̂φD−2l+1− 1
2

φD−2l+3− 1
2

. . . φD−2l1+1− 1
2

. . . φD−1− 1
2

|0〉

= φD−2l1+1− 1
2

φD−2n+1− 1
2

. . . ̂φD−2l+1− 1
2

φD−2l+1− 1
2

. . . φD−2l1+1− 1
2

. . . φD−1− 1
2

|0〉

= ±φD−2n+1− 1
2

. . . ̂φD−2l+1− 1
2

φD−2l+1− 1
2

. . . φD−2l1+1− 1
2

φD−2l1+1− 1
2

. . . φD−1− 1
2

|0〉 = 0;

since φD−2l1+1− 1
2

φD−2l1+1− 1
2

= 0.

Consider now v−n = φD−2n+2− 1
2

. . . φD−2− 1
2

φD− 1
2

|0〉, n > 0. Again, first we consider the case

2i+ 2k > 0, when : φD−2i+ 1
2

φD
2i+2k− 1

2

:= φD−2i+ 1
2

φD
2i+2k− 1

2

.

r1(Ei,i+k)φD−2n+2− 1
2

. . . φD−2− 1
2

φD− 1
2

|0〉 = φD−2i+ 1
2

φD
2i+2k− 1

2

φD−2n+2− 1
2

. . . φD−2− 1
2

φD− 1
2

|0〉.

Now since it is impossible to have 2i + 2k − 1
2 = −(−2l + 2 − 1

2) for any l ∈ Z, φD
2i+2k− 1

2

will

anticommute with any φD−2l− 1
2

, and thus φD
2i+2k− 1

2

φD−2n+2− 1
2

. . . φD−2− 1
2

φD− 1
2

|0〉 = 0.
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Next, let 2i+ 2k ≤ 0, then : φD−2i+ 1
2

φD
2i+2k− 1

2

:= −φD
2i+2k− 1

2

φD−2i+ 1
2

, and

r1(Ei,i+k)φD−2n+2− 1
2

. . . φD−2− 1
2

φD− 1
2

|0〉 = −φD
2i+2k− 1

2

φD−2i+ 1
2

φD−2n+2− 1
2

. . . φD−2− 1
2

φD− 1
2

|0〉.

Now φD−2i+ 1
2

is an operator annihilating the vacuum, and unless we have −2i+ 1
2 = −(−2l− 1

2)

for some 1 ≤ l ≤ n− 1, l ∈ Z, then it will anticommute with any of the φD−2l− 1
2

, 1 ≤ l ≤ n− 1,

and thus φD−2i+ 1
2

φD−2n+2− 1
2

. . . φD−2− 1
2

φD− 1
2

|0〉 = 0. If, on the other hand −2i+ 1
2 = −(−2l− 1

2) for

some 1 ≤ l ≤ n− 1, l ∈ Z, then we have

r1(Ei,i+k)φD−2n+2− 1
2

. . . φD−2− 1
2

φD− 1
2

|0〉

= −φD
2i+2k− 1

2

φD−2i+ 1
2

φD−2n+2− 1
2

. . . φD−2l+2− 1
2

. . . φD− 1
2

|0〉

= ±φD
2i+2k− 1

2

φD−2n+2− 1
2

. . . φ̂D−2l− 1
2

φD−2l+2− 1
2

. . . φD− 1
2

|0〉.

But then from −2i+ 1/2 = −(−2l − 1
2), we have i = −l and 2i+ 2k − 1

2 = 2k − 2l − 1
2 , and we

know from i+ k ≤ 0 that −2l+ 2− 1
2 ≤ 2i+ 2k− 1

2 ≤ −
1
2 . That means φD

2i+2k− 1
2

= φD−2l1− 1
2

for

0 ≤ l1 ≤ l − 1 and

φD
2i+2k− 1

2

φD−2n+2− 1
2

. . . φ̂D−2l− 1
2

φD−2l+2− 1
2

. . . φD− 1
2

|0〉

= φD
2i+2k− 1

2

φD−2n+2− 1
2

. . . φ̂D−2l− 1
2

φD−2l+2− 1
2

. . . φD−2l1− 1
2

. . . φD− 1
2

|0〉

= φD−2l1− 1
2

φD−2n+2− 1
2

. . . φ̂D−2l− 1
2

φD−2l+2− 1
2

. . . φD−2l1− 1
2

. . . φD− 1
2

|0〉

= ±φD−2n+2− 1
2

. . . φ̂D−2l− 1
2

φD−2l+2− 1
2

. . . φD−2l1− 1
2

φD−2l1− 1
2

. . . φD− 1
2

|0〉 = 0;

since φD−2l1− 1
2

φD−2l1− 1
2

= 0. �

Lemma 3.6 (Calculating the weights) For all i, n ∈ Z, r1(Eii)vn = aΛ̂n(Eii)vn.

Proof: We want to prove

r1(Ei,i)v0 = 0 · v0;

r1(Ei,i)vn = 1 · vn for 0 < i ≤ n; r1(Ei,i)vn = 1 · vn, for i > n ≥ 1;

r1(Ei,i)vn = 0 · vn for i ≤ 0, n > 0;

r1(Ei,i)v−n = −1 · v−n for − n+ 1 ≤ i ≤ 0; r1(Ei,i)v−n = 0 · v−n for − n+ 1 > i > 0;

r1(Ei,i)v−n = 0 · v−n for i > 0, n > 0.

We have

r1(Ei,i) =: φD−2i+ 1
2

φD
2i− 1

2

: =

φ
D
−2i+ 1

2

φD
2i− 1

2

, for i > 0,

−φD
2i− 1

2

φD−2i+ 1
2

, for i ≤ 0

For n = 0, v0 = |0〉, and r1(Ei,i) =: φD−2i+ 1
2

φD
2i− 1

2

:, and it is clear that r1(Ei,i)|0〉 = 0.

Let n > 0 and vn = φD−2n+1− 1
2

. . . φD−3− 1
2

φD−1− 1
2

|0〉. If i > 0, φD
2i− 1

2

from r1(Ei,i) will anticommute
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with any φD−2l+1− 1
2

in vn, except for l such that −2l+ 1− 1
2 = −(2i− 1

2), i.e., l = i. In the case

there exist an l such that l = i, then

r1(Ei,i)vn = r1(Ei,i)φ
D
−2n+1− 1

2

. . . φD−3− 1
2

φD−1− 1
2

|0〉

= φD−2i+ 1
2

φD
2i− 1

2

φD−2n+1− 1
2

. . . φD−2l+1− 1
2

. . . φD−1− 1
2

|0〉

= (−1)n−lφD−2i+ 1
2

φD−2n+1− 1
2

. . . φD
2i− 1

2

φD−2l+1− 1
2

. . . φD−1− 1
2

|0〉

= (−1)n−lφD−2l+1− 1
2

φD−2n+1− 1
2

. . . ̂φD−2l+1− 1
2

. . . φD−1− 1
2

|0〉

= φD−2n+1− 1
2

. . . φD−2l+1− 1
2

. . . φD−1− 1
2

|0〉 = vn

Hence r1(Ei,i)vn = vn for i ≤ 0 when n ≥ i (i.e., exist an l such that l = i), and r1(Ei,i)vn = 0
for i ≤ 0 when n < i.

If i ≤ 0, then r1(Ei,i) = −φD
2i− 1

2

φD−2i+ 1
2

and φD−2i+ 1
2

will anticommute with any φD−2l+1− 1
2

in

vn, as it is impossible to have −2l + 1− 1
2 = −(−2i+ 1

2). Hence r1(Ei,i)vn = 0 for i ≤ 0.

Let n > 0 and v−n = φD−2n+2− 1
2

. . . φD−2− 1
2

φD− 1
2

|0〉. If i ≤ 0, φD−2i+ 1
2

from r1(Ei,i) will

anticommute with any φD−2l+2− 1
2

in v−n, except for l such that −2l + 2 − 1
2 = −(2i + 1

2),

i.e., l = −i− 1. In the case there exist an l such that l = −i− 1, then

r1(Ei,i)vn = r1(Ei,i)φ
D
−2n+2− 1

2

. . . φD−2− 1
2

φD− 1
2

|0〉

= −φD
2i− 1

2

φD−2i+ 1
2

φD−2n+2− 1
2

. . . φD−2l+2− 1
2

. . . φD− 1
2

|0〉

= −(−1)n−lφD
2i− 1

2

φD−2n+2− 1
2

. . . φD−2i+ 1
2

φD−2l+2− 1
2

. . . φD− 1
2

|0〉

= −(−1)n−lφD−2l+2− 1
2

φD−2n+2− 1
2

. . . ̂φD−2l+2− 1
2

. . . φD− 1
2

|0〉

= −φD−2n+2− 1
2

. . . φD−2l+2− 1
2

. . . φD− 1
2

|0〉 = vn

Hence r1(Ei,i)v−n = −v−n for i ≤ 0 when n ≥ −i− 1 (i.e., exist an l such that l = −i− 1), and
r1(Ei,i)v−n = 0 for i ≤ 0 when n < −i− 1.

If i > 0, then r1(Ei,i) = φD−2i+ 1
2

φD
2i− 1

2

and φD
2i− 1

2

will anticommute with any φD−2l+2− 1
2

, as it

is impossible to have −2l + 2− 1
2 = −(2i− 1

2). Hence r1(Ei,i)v−n = 0 for i > 0. �

Proposition 3.7 For any n ∈ Z, F
⊗ 1

2

(n) is an a∞-submodule of F⊗
1
2 and F

⊗ 1
2

(n) = U(a−∞)vn.

Proof: First, F
⊗ 1

2

(n) is an a∞-submodule of F⊗
1
2 as r1(Eij) is a homogenous operator acting on

F⊗
1
2 of degree 0 with respect to the grading given in Lemma 3.1 and in (3.5). Then certainly

that gives us U(a−∞)vn ⊆ F
⊗ 1

2

(n) . The proof that F
⊗ 1

2

(n) = U(a−∞)vn is similar for each n ∈ Z, thus

we will show it only for n = 0. Let v ∈ F
⊗ 1

2

(0 ) , without loss of generality here we can assume

v is homogeneous, i.e. v = φD−nk− 1
2

. . . φD−n2− 1
2

φD−n1− 1
2

|0〉. Since v ∈ F
⊗ 1

2

(0 ) , we have k = 2l and

precisely half of the indexes n1, n2, . . . , nk are even, the other half are odd. Thus we can write
after eventual use of the anticommutation relations in ClD

v = ±φD−no
l−

1
2

φD−ne
l−

1
2

· · ·φD−no
1−

1
2

φD−ne
1−

1
2

|0〉,
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i.e., we have rearranged the factors in pairs, so that the indexes in the pairs are nes and nos, and
we have nol > · · · > no1, nel > · · · > ne1. Hence we have nes = 2qs for some qs ∈ Z and nos = 2ps−1
for some ps ∈ Z. Thus

v = ±φD−no
l−

1
2

φD−ne
l−

1
2

· · ·φD−no
1−

1
2

φD−ne
1−

1
2

|0〉 = ±r1(Epl,−ql) · · · r1(Ep1,−q1 |0〉;

which proves that F
⊗ 1

2

(0 ) = U(a−∞)v0. The proof that F
⊗ 1

2

(n) = U(a−∞)vn is very similar for the

other n ∈ Z and we will omit it. �

Proposition 3.8 For any n ∈ Z, F
⊗ 1

2

(n) is an irreducible submodule for the representation r1 of

a∞ inside F⊗
1
2 . Moreover for any n ∈ Z, F

⊗ 1
2

(n)
∼= L(a∞;aΛ̂n, 1).

Proof: This proof uses the uniqueness property of the contragradient Hermitian symmetric
form on the Verma module V (a∞;aΛ̂n, 1) (see [Jan79], [Kac90] or [MP95]). For a more direct,
but calculational proof the reader can see the Appendix. It is well known that one can define ω
the conjugate linear involutive anti-automorphism on ClD by ω(φDm) = φD−m for all m ∈ Z + 1

2

and ω(1) = 1. Recall the module F⊗
1
2 is defined to be the induced module

F⊗
1
2 = ClD ⊗C1⊗ClD+

C|0〉

whereby 1|0〉 = |0〉 and ClD +|0〉 = 0. The conjugate linear involutive anti-automorphism (or
antilinear antiautomorphism) ω : ClD → ClD defined by ω(φn) = φ−n gives rise to a non-

degenerate positive definite form 〈 | 〉 defined on F⊗
1
2 whereby

〈Xv |w〉 = 〈v |ω(X)w〉

for all v, w ∈ F⊗
1
2 and X ∈ ClD . Observe that F⊗

1
2 (n) ⊥ F⊗

1
2 (m) for m 6= n.

It is straightforward to check that

ω(r1(Em,n)) = r1(En,m) = r1(ω(Em,n)). (3.26)

Thus ω defined on ClD agrees with the compact anti-involution defined on a∞ given earlier.

We have from Proposition 3.5, Lemma 3.6, and Proposition 3.7 that F
⊗ 1

2

(n) is a highest weight

a∞-module. By the universal mapping property of Verma modules there exists an a∞-module

homomorphism π : V (a∞;aΛ̂n, 1) → F
⊗ 1

2

(n) sending the highest weight vector vaΛ̂n
of the Verma

module V (a∞;aΛ̂n, 1) to vn in F
⊗ 1

2

(n) . Moreover the Hermitian symmetric ω-contragradient

form 〈 , 〉 on F
⊗ 1

2

(n) pulls back to a Hermitian symmetric form ( , ) on the Verma module

V (a∞;aΛ̂n, 1). In other words

(uvaΛ̂n
, u′vaΛ̂n

) := 〈π(uvaΛ̂n
), π(u′vaΛ̂n

)〉 = 〈r1(u)vn, r1(u′)vn〉. (3.27)

for all u, u′ ∈ a∞. By (3.26), we have

(XuvaΛ̂n
, u′vaΛ̂n

) = 〈r1(X)r1(u)vn, r1(u′)vn〉
= 〈r1(u)vn, ω(r1(X))r1(u′)vn〉
= 〈r1(u)vn, r1(ω(X)u′)vn〉
= (uvaΛ̂n

, ω(X)u′vaΛ̂n
)
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Hence ( , ) is contragradient with respect to ω.
Now it is known that there is a unique contragradient Hermitian symmetric form on the

Verma module V (a∞;aΛ̂n, 1) with (vaΛ̂n
, vaΛ̂n

) = 〈vn, vn〉 and its radical is precisely the unique

maximal submodule V (a∞;aΛ̂n, 1) of V (a∞;aΛ̂n, 1) (see [Jan79], [Kac90] or [MP95]). So

0 = (V (a∞;aΛ̂n, 1), u′vaΛ̂n
) := 〈π(V (a∞;aΛ̂n, 1)), π(u′vaΛ̂n

)〉 (3.28)

for all u′ ∈ U(a∞). Since 〈 , 〉 is nondegenerate and π is surjective one must have

V (a∞;aΛ̂n, 1) ⊆ kerπ. Thus L(a∞;aΛ̂n, 1) = V (a∞;aΛ̂n, 1)/V (a∞;aΛ̂n, 1) ∼= F⊗
1
2 (n). �

Remark 3.9 An alternative proof of the irreducibility of F
⊗ 1

2

(n) can be given as follows. In

[Ang12] we considered the Heisenberg algebra HZ, which is a subalgebra of a∞ represented by

hn 7→
∑
i∈Z

Ei,i+n

In [Ang12] we prove that each F
⊗ 1

2

(n) is irreducible under HZ. Since HZ is a subalgebra of a∞,

then F
⊗ 1

2

(n) is irreducible under a∞.

The previous three propositions can now be combined in the following

Theorem 3.10 As a∞ modules with central charge c = 1 F
⊗ 1

2

(n)
∼= L(a∞;aΛ̂n, 1) and F⊗

1
2

decomposes into irreducible submodules as follows:

F⊗
1
2 ∼= ⊕n∈ZL(a∞;aΛ̂n, 1).

Hence F⊗
1
2 ∼= F⊗1 as a∞ modules with central charge c = 1.

Here F⊗1 denotes the fermionic Fock space of the charged free fermions (see Remark 3.2 above,
after [Fre81], [KR87], [KW94], [Kac98], [KWY98], [Wan99a]).

Since F⊗
1
2 ∼= F⊗1 as a∞ modules with central charge c = 1, we can use Theorem 3.2 of

[Wan99b] to get the decomposition of the irreducible central charge c = 1
2 d∞ modules F

⊗ 1
2

0̄
and

F
⊗ 1

2

1̄
in terms of the new d∞ central charge c = 1 action:

Corollary 3.11 As d∞ modules with central charge c = 1 we have

F
⊗ 1

2

(n)
∼= L(d∞;ddΛ̂n, 1) for n 6= 0 F

⊗ 1
2

(0 )
∼= L(d∞;ddΛ̂0, 1)⊕ L(d∞;ddΛ̂det, 1); (3.29)

where for n 6= 0 F
⊗ 1

2

(n) has highest weight vector vn, and F
⊗ 1

2

(0 ) decomposes into two irreducible

highest weight modules, with highest weight vectors v0 and ṽ0 = φD− 3
2

φD− 1
2

|0〉 ∈ F
⊗ 1

2

(0 ) (note ṽ0 is

not a highest weight vector for the a∞ action, only the d∞ action). Thus as d∞ modules with
central charge c = 1

F⊗
1
2 =

(
⊕n∈Z

n6=0
L(d∞;ddΛ̂n, 1)

)⊕(
L(d∞;ddΛ̂0, 1)⊕ L(d∞;ddΛ̂det, 1)

)
,

and

F
⊗ 1

2

1̄
= ⊕n∈ZL(d∞;ddΛ̂2n−1, 1);

F
⊗ 1

2

0̄
=

(
⊕n∈Z

n6=0
L(d∞;ddΛ̂2n, 1)

)⊕(
L(d∞;ddΛ̂0, 1)⊕ L(d∞;ddΛ̂det, 1)

)
.
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Here, as in [Wan99b], the highest weights ddΛ̂n are obtained from the restrictions of aΛ̂n, except

for ddΛ̂det which is defined by

ddΛ̂det(Ei,i − E1−i,1−i) = 2; for i = 1, ddΛ̂det(Ei,i − E1−i,1−i) = 0 for i 6= 0, 1.

Proof: Follows directly from Theorem 3.2 of [Wan99b] and Theorem 3.10. �

4. Appendix
For readers who would like to see a more computational proof of Proposition 3.8 we present one
below.

Alternate proof of Proposition 3.8: First we will prove that the action of a∞ on F⊗
1
2 will

preserve the Z grading gd; that will show that each F
⊗ 1

2

(n) is a submodule for the r1 action of a∞

on F⊗
1
2 . Then we will show that the submodule F

⊗ 1
2

(n) is irreducible.

Let v = φD−nk− 1
2

. . . φD−n2− 1
2

φD−n1− 1
2

|0〉 be any homogeneous vector in F
⊗ 1

2

(n) . We have

r1(Ep,q) =: φD−2p+ 1
2

φD
2q− 1

2

: =

φ
D
−2p+ 1

2

φD
2q− 1

2

, unless q ≤ 0 and 2q − 1
2 = −(−2p+ 1

2)

−φD
2q− 1

2

φD−2p+ 1
2

, otherwise.

Consider first the case when −(2q − 1
2) = −2p+ 1

2 and q ≤ 0. Then −2p+ 1
2 > 0, and in

r1(Ep,q)v = −φD
2q− 1

2

φD−2p+ 1
2

φD−nk− 1
2

. . . φD−n2− 1
2

φD−n1− 1
2

|0〉

φD−2p+ 1
2

will either anticommute with all φD−ns− 1
2

, s = 1, . . . , k, in which case r1(Ep,q)v = 0 as

φD−2p+ 1
2

|0〉 = 0; or otherwise we will have −2p+ 1
2 = −(−ns − 1

2), for some s = 1, . . . , k. In that

case we also have −ns − 1
2 = 2q − 1

2 and

r1(Ep,q)v = −φD
2q− 1

2

φD−2p+ 1
2

φD−nk− 1
2

. . . φD−ns− 1
2

. . . φD−n1− 1
2

|0〉

= ±φD
2q− 1

2

φD−nk− 1
2

. . . φ̂D−ns− 1
2

. . . φD−n1− 1
2

|0〉

= ±φD−nk− 1
2

. . . φD−ns− 1
2

. . . φD−n1− 1
2

|0〉.

This shows that in both cases when −(2q − 1
2) = −2p + 1

2 we have if v ∈ F
⊗ 1

2

(n) then

r1(Ep,q)v ∈ F
⊗ 1

2

(n) .

Next, consider the case when −(2q − 1
2) 6= −2p+ 1

2 , but still q ≤ 0, which implies again that

r1(Ep,q) = −φD
2q− 1

2

φD−2p+ 1
2

(anticommutation) and again we consider the possible cases for

r1(Ep,q)v = −φD
2q− 1

2

φD−2p+ 1
2

φD−nk− 1
2

. . . φD−n2− 1
2

φD−n1− 1
2

|0〉.

The first case is when p < 0 and φD−2p+ 1
2

anticommutes with all φD−ns− 1
2

, s = 1, . . . , k, in which

case r1(Ep,q)v = 0. The second case is again as above when −2p + 1
2 = −(−ns − 1

2), for some
s = 1, . . . , k. We again have

r1(Ep,q)v = −φD
2q− 1

2

φD−2p+ 1
2

φD−nk− 1
2

. . . φD−ns− 1
2

. . . φD−n1− 1
2

|0〉

= ±φD
2q− 1

2

φD−nk− 1
2

. . . φ̂D−ns− 1
2

. . . φD−n1− 1
2

|0〉.
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In other words, we have “removed” φD−ns− 1
2

with even index ns = 2p. Now since q < 0, we either

have 2q− 1
2 = −nt − 1

2 for some t = 1, . . . , k, t 6= s in which case again we have r1(Ep,q)v = 0 as

φD−2q− 1
2

φD−2q− 1
2

= 0. Or otherwise we have “added” φD−nt− 1
2

with even index nt = −2q, which

doesn’t change the degree dg, as we have “removed” an even index ns = 2p and “added” an

even index nt = −2q. Thus in all cases when q < 0 we have if v ∈ F
⊗ 1

2

(n) then r1(Ep,q)v ∈ F
⊗ 1

2

(n) .

Lastly, let q ≥ 1. Similar argument as above show that either r1(Ep,q)v = 0, or

r1(Ep,q)v = φD−2p+ 1
2

φD
2q− 1

2

φD−nk− 1
2

. . . φD−nt− 1
2

. . . φD−n1− 1
2

|0〉

= ±φD−2p+1− 1
2

φD−nk− 1
2

. . . φ̂D−nt− 1
2

. . . φD−n1− 1
2

|0〉;

where 2q− 1
2 = −(−nt− 1

2) for some t = 1, . . . , k, t 6= s. Thus nt = 2q−1 and we have “removed”

an odd index nt. Now if −2p+ 1− 1
2 < 0, we are “adding” back an odd index −2p+ 1. If, on

the other hand −2p+ 1− 1
2 > 0, then either we get 0, or we remove also an even index. Thus

as a summary, in all cases we either remove an odd (even) index and add an odd (even) index
back; we remove both an odd and an even index; or we get 0. Hence in all cases the action of

r1(Ep,q) will preserve the grading. Hence each F
⊗ 1

2

(n) is a submodule for the representation r1 of

a∞ on F⊗
1
2 .

Further, from the observations above we can summarize the action r1 on F⊗
1
2 as follows. We

have 3 nontrivial cases: in case 1 r1(Ep,q) acting on a homogeneous vector v “adds” two factors
φD−ns1−

1
2

and φD−ns2−
1
2

, so that one of the indexes ns1 , ns2 is even , the other is odd (we will

call it for short “adding an even and an odd index”). In case 2, we replace a factor φD−ns1−
1
2

with another factor φD−ns2−
1
2

, where either both factors ns1 , ns2 are even, or both factors ns1 ,

ns2 are odd (we will call it for short “replacing even with even index” and “replacing odd with
odd index”). And case 3 is when we “remove” two factors φD−ns1−

1
2

and φD−ns2−
1
2

, so that one

of the indexes ns1 , ns2 is even , the other is odd (“removing an even and an odd index”). Not
that “adding an index” that is already present, or “removing an index” that was absent, will of
course produce the 0 vector.

Now we want to prove that for each n ∈ Z F
⊗ 1

2

(n) is an irreducible module for a∞. This will

be done in two steps. The first step is to prove that each vector in F
⊗ 1

2

(n) can be generated from

the ”n-th vacuum vector” vn, i.e., F
⊗ 1

2

(n) = U(a−∞)vn. The second step is to prove that for any

vector v ∈ F
⊗ 1

2

(n) , we have vn ∈ U(a∞)v.

The proof that F
⊗ 1

2

(n) = U(a−∞)vn is done in Proposition 3.7. Finally, we prove step 2, i.e.,

for any vector v ∈ F
⊗ 1

2

(n) , we have vn ∈ U(a∞)v. Let v ∈ F
⊗ 1

2

(n) , not necessary homogeneous:

v =
∑

hk chkv
hk, where vhk are homogeneous vectors,

vhk = φD−nk− 1
2

. . . φD−n2− 1
2

φD−n1− 1
2

|0〉, ck ∈ C.

It is clear that by the operation “adding an even and an odd index” we can reduce v only to a
linear combination of homogeneous elements with minimal possible length L̃ among the vhk by
the following two steps: we would “add an even and an odd index” starting from the already
existing indexes in the vector vhk with the largest length L̃ (which will annihilate it), and then
we would remove the same combination back (which will bring the elements with lower length
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back to their original length). This is always possible, as any two lengths within F
⊗ 1

2

(n) differ

always by an even number; and we always have at least two differing elements φD−nk− 1
2

between

the homogeneous elements with the two consecutive lengths, as well as two differing elements
φD−nk− 1

2

between homogeneous elements with same lengths. Now among the remaining different

vectors vhk with minimal possible length L̃ we can use the operations of “replacing even index
with even” and “replacing odd index with odd” until only a single vhk with largest index nk
being the minimal possible remains. We will show how this algorithm on an example: consider

a vector v ∈ F
⊗ 1

2

(0 ) that will illustrate these 3 steps,

v = φD−7− 1
2

φD−4− 1
2

φD−3− 1
2

φD−2− 1
2

|0〉+ φD−5− 1
2

φD−3− 1
2

φD−2− 1
2

φD−0− 1
2

|0〉

+ φD−8− 1
2

φD−5− 1
2

|0〉+ φD−6− 1
2

φD−1− 1
2

|0〉+ φD−5− 1
2

φD−4− 1
2

|0〉+ φD−9− 1
2

φD−8− 1
2

|0〉.

We have Step 1:

E4,−2v = φD−7− 1
2

φD−4− 1
2

v = φD−7− 1
2

φD−4− 1
2

φD−7− 1
2

φD−4− 1
2

φD−3− 1
2

φD−2− 1
2

|0〉

+ φD−7− 1
2

φD−4− 1
2

φD−5− 1
2

φD−3− 1
2

φD−2− 1
2

φD−0− 1
2

|0〉

+ φD−7− 1
2

φD−4− 1
2

φD−8− 1
2

φD−5− 1
2

|0〉+ φD−7− 1
2

φD−4− 1
2

φD−6− 1
2

φD−1− 1
2

|0〉

+ φD−7− 1
2

φD−4− 1
2

φD−5− 1
2

φD−4− 1
2

|0〉+ φD−7− 1
2

φD−4− 1
2

φD−9− 1
2

φD−8− 1
2

|0〉

= φD−7− 1
2

φD−4− 1
2

φD−5− 1
2

φD−3− 1
2

φD−2− 1
2

φD−0− 1
2

|0〉

+ φD−7− 1
2

φD−4− 1
2

φD−8− 1
2

φD−5− 1
2

|0〉+ φD−7− 1
2

φD−4− 1
2

φD−6− 1
2

φD−1− 1
2

|0〉

+ φD−7− 1
2

φD−4− 1
2

φD−9− 1
2

φD−8− 1
2

|0〉;

Step 2:

E−2,4E4,−2v = φD
4+ 1

2

φD
7+ 1

2

φD−7− 1
2

φD−4− 1
2

v

= φD
4+ 1

2

φD
7+ 1

2

φD−7− 1
2

φD−4− 1
2

φD−5− 1
2

φD−3− 1
2

φD−2− 1
2

φD−0− 1
2

|0〉

+ φD
4+ 1

2

φD
7+ 1

2

φD−7− 1
2

φD−4− 1
2

φD−8− 1
2

φD−5− 1
2

|0〉

+ φD
4+ 1

2

φD
7+ 1

2

φD−7− 1
2

φD−4− 1
2

φD−6− 1
2

φD−1− 1
2

|0〉

+ φD
4+ 1

2

φD
7+ 1

2

φD−7− 1
2

φD−4− 1
2

φD−9− 1
2

φD−8− 1
2

|0〉

= φD−5− 1
2

φD−3− 1
2

φD−2− 1
2

φD−0− 1
2

|0〉

+ φD−8− 1
2

φD−5− 1
2

|0〉+ φD−6− 1
2

φD−1− 1
2

|0〉+ φD−9− 1
2

φD−8− 1
2

|0〉;

We repeat Step 1:

E3,−1E−2,4E4,−2v = φD−5− 1
2

φD−2− 1
2

E−2,4E4,−2v

= φD−5− 1
2

φD−2− 1
2

φD−5− 1
2

φD−3− 1
2

φD−2− 1
2

φD−0− 1
2

|0〉

+ φD−5− 1
2

φD−2− 1
2

φD−8− 1
2

φD−5− 1
2

|0〉+ φD−5− 1
2

φD−2− 1
2

φD−6− 1
2

φD−1− 1
2

|0〉

+ φD−5− 1
2

φD−2− 1
2

φD−9− 1
2

φD−8− 1
2

|0〉

= φD−5− 1
2

φD−2− 1
2

φD−6− 1
2

φD−1− 1
2

|0〉+ φD−5− 1
2

φD−2− 1
2

φD−9− 1
2

φD−8− 1
2

|0〉.

XXIst International Conference on Integrable Systems and Quantum Symmetries (ISQS21) IOP Publishing
Journal of Physics: Conference Series 474 (2013) 012004 doi:10.1088/1742-6596/474/1/012004

18



We repeat Step 2:

E−1,3E3,−1E−2,4E4,−2v = φD−6− 1
2

φD−1− 1
2

|0〉+ φD−9− 1
2

φD−8− 1
2

|0〉.

Finally Step 3:

E1,5E−1,3E3,−1E−2,4E4,−2v = φD−1− 1
2

φD
9+ 1

2

φD−6− 1
2

φD−1− 1
2

|0〉+ φD−1− 1
2

φD
9+ 1

2

φD−9− 1
2

φD−8− 1
2

|0〉

= φD−8− 1
2

φD−1− 1
2

|0〉.

Hence similarly we can reduce any potentially nonhomogeneous vector v we started with to
a homogeneous vector vhk by successive action of r1(Epq). Thus we consider the homogeneous

vector vhk = φD−nk− 1
2

. . . φD−n2− 1
2

φD−n1− 1
2

|0〉. If vhk has length L̃(vhk) > |n|, then L̃(vhk) = |n|+2l

and we can use the the operation of “removing an even and an odd index” l times in succession
until we get a vector of minimal length L̃ = |n|. After that we just have to eventually “replace
some even indexes with even” and “replace some odd indexes with odd” to produce the highest

weight vector vn. Hence, we have proved that vn ∈ U(a∞)v for any v ∈ F
⊗ 1

2

(n) , which since

F
⊗ 1

2

(n) = U(a−∞)vn proves that F
⊗ 1

2

(n) is an irreducible highest weight module for a∞. The highest

weights are calculated in Lemma 3.6, and that proves Proposition 3.8. �
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