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Abstract. We review some recent results concerning non-extremal and extremal stationary,
asymptotically flat black hole solutions in extended D = 4 supergravities, and their properties
with respect to the global symmetries of the theory. More specifically we refer to the effective
three-dimensional description of these solutions and their classification within orbits with respect
to the action of the global symmetry group, illustrating, for single-center solutions, the general
mathematical relation between the orbits of non-extremal and extremal black holes.

1. Introduction
The effective three-dimensional description [1] of (asymptotically flat) stationary solutions to
D = 4 supergravity theories have provided a valuable tool for their classification [2, 3, 4, 5, 6, 7,
8, 9, 10]. This approach consists in describing this kind of solutions as solutions to an effective
D = 3 Euclidean sigma-model which is formally obtained by reducing the D = 4 theory along
the time direction and dualizing the vector fields into scalars. The main advantage of such a
description, with respect to the D = 4 one, is that it makes a larger global symmetry group G
manifest. The set of all stationary solutions to the original four-dimensional theory is indeed
invariant with respect to the global symmetry group G of the Euclidean three-dimensional
sigma-model, which is the isometry group of its target space. Being G larger that the analogous
symmetry group of the parent D = 4 model, transformations can be used to generate new
solutions from known ones which were not available in four dimensions. This solution-generating
technique has been first used in order to construct non-extremal, rotating, electrically charged
black hole solutions coupled to scalar fields [2, 11] and, more recently, found application in the
context of subtracted geometry [12, 13, 14].

Stationary, asymptotically flat, black holes can therefore be conveniently classified in orbits
of with respect to the action of G. We shall restrict ourselves here to the single-center case.
General features of the solution like its rotation and extremality (related to the temperature)
are in particular associated with invariants of G. As far as the rotational property of the black
hole is concerned, this statement was proven in [15] by defining a matrix Qψ which, just like the
Noether charge matrix Q, lies in the Lie algebra g of G, and which vanishes if and only if the
solution is static. In terms of Q and Qψ the regularity condition for the black hole solution was
written in a G-invariant way. The matrix Qψ allows to easily infer how the angular momentum
J transforms under G. These tools were then applied in [16] in order to define the general
algebraic procedure for connecting the orbit of non-extremal solutions to those of extremal
ones. In particular, as far as extremal under-rotating and static black holes are concerned, this
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mechanism makes use of singular Harrison transformations and generalizes previous results in
the literature, related to specific electric-magnetic frames. We shall review this analysis below.

2. The D = 3 description of stationary solutions
Our original setting is D = 4 extended (i.e. N > 1), ungauged supergravity, whose bosonic
sector consists in ns scalar fields φr(x), nv vector fields AΛ

µ (x), Λ = 0, . . . , nv − 1, and the

graviton gµν(x), which are described by the following Lagrangian 1:

L4 = e

(
R

2
− 1

2
Grs(φ

t) ∂µφ
r ∂µφs +

1

4
IΛΣ(φr)FΛ

µν F
Σµν +

1

8 e
RΛΣ(φr) εµνρσ FΛ

µν F
Σ
ρσ

)
. (1)

A distinctive feature of supergravity models is that the scalar fields are described by a non-linear

sigma-model, namely they are coordinates of a Riemannian target-space M(4)
scal, with positive-

definite metric Grs(φ). We shall restrict our analysis to scalar manifolds which are homogeneous

symmetric, namely have the general form M(4)
scal = G4/H4, where G4 is a semi-simple, non-

compact Lie group and H4 its maximal compact subgroup. Notice, moreover, that the scalar
fields are non-minimally coupled to the vector fields through the (negative-definite) matrix
IΛΣ(φr) (which generalizes the inverse squared-coupling constants) and the matrix RΛΣ(φr)
(generalizing the theta-angle). The space-time metric of a stationary solution has the general
form:

ds2 = −e2U (dt+ ωi dx
i)2 + e−2U gij dx

i dxj , (2)

where i, j = 1, 2, 3 label the spatial coordinates and U, ωi, gij are all functions of xi. Since the
seminal work by Breitenlohner, Gibbons and Maison [1], it is known that stationary solutions
to the D = 4 theory are solutions to an effective sigma model defined on an Euclidean three-
dimensional space, formally obtained by first reducing the four-dimensional model along the
time direction, and then dualizing the D = 3 vector fields into scalars. The scalar fields of this
effective model φI(xi) are n = 2 + ns + 2nv and comprise, besides the original four-dimensional
scalars φr(xi), the warp function U , the scalar a dual to the vector ωi(x

j) and the 2nv scalars
ZM = (ZΛ, ZΛ). The precise relation between the scalars a, ZM and the four-dimensional fields
is:

AΛ = AΛ
0 (dt+ ω) +AΛ

(3) , AΛ
(3) ≡ A

Λ
i dx

i , (3)

FM =

(
FΛ
µν

GΛµν

)
dxµ ∧ dxν

2
= dZM ∧ (dt+ ω) + e−2UCMNM(4)NP

∗3dZP , (4)

da = −e4U ∗3dω −ZTCdZ , (5)

where CMN is the (2nv) × (2nv) symplectic invariant, antisymmetric matrix, ω = ωi dx
i, ∗3 is

the Hodge operation in the D = 3 Euclidean space, FΛ
µν are the vector field strengths and GΛµν

their magnetic-duals. The symmetric, symplectic negative-definite matrix M(4)NP is built out
of I = (IΛΣ), R = (RΛΣ) as follows:

M(4)MN =

(
(I +RI−1R)ΛΣ −(RI−1)Λ

Γ

−(I−1R)∆
Σ I−1 ∆Γ

)
. (6)

The effective sigma-model Lagrangian has the general form:

L3 = e3

(
R3

2
− 1

2
GIJ(φK) ∂iφ

I ∂iφJ
)
, (7)

1 Here we adopt the notations and conventions of [15, 16] (in particular we use the “mostly plus” convention and
8πG = c = ~ = 1).
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where R3 = R[gij ] and e3 =
√

det(gij). The scalars φI(xi) span a new manifold Mscal, which

is homogeneous symmetric if and only if M(4)
scal is. Therefore, in our analysis, it can then be

expressed as Mscal = G/H, where G is the (semisimple) isometry group and H is a maximal
subgroup of G. This target manifold is pseudo-Riemannian and its metric GIJ(φK) reads:

1

2
GIJ(φK) ∂iφ

I ∂iφJ = ∂iU∂
iU +

1

2
Grs ∂iφ

r ∂iφs +
1

2
e−2U ∂iZTM(4) ∂

iZ+

+
1

4
e−4U (∂ia+ ZTC∂iZ)(∂ia+ ZTC∂iZ) , (8)

its negative-signature directions being related to the scalar fields ZM . This feature defines H
as a suitable non-compact real form of the maximal compact subgroup of G.

Spherically-symmetric, asymptotically -flat black hole solutions are described in this setting
by geodesics φI = φI(τ) on Mscal, in which the affine parameter τ ≤ 0 is a harmonic function
of the radial coordinate r. Let us first review the geodesic description of static solutions and
then move to the description of more general ones. A geodesic is uniquely defined by its initial

Figure 1. A geodesic on Mscal defined by its
initial data.

Figure 2. Action of G on a geodesic.

data: an initial point φ0 = (φI0) at radial infinity, corresponding to the limit τ → 0−, and an
“initial velocity vector” Q in the tangent space Tφ0(Mscal) to the manifold in φ0, see Fig. 1.
The global symmetry group of the effective three-dimensional theory is the isometry group G,
whose action on a geodesic (φ0, Q) can be described as follows: Using G/H we can freely move
the initial point φ0 over the manifold, to a new point φ′0 with “velocity vector” Q′; then, for a
fixed initial point φ′0, we can still act on the initial velocity vector Q′ using the stability group
H of φ′0, acting on Tφ′0(Mscal), see Fig. 2. Since the action of G/H on φ0 is transitive, we can

always fix φ0 to coincide with the origin O (defined by the vanishing values of all the scalars) and
then classify the orbits of the geodesics under the action of G (i.e. in maximal sets of solutions
connected through the action of G) in terms of the orbits of the velocity vector Q ∈ TO(Mscal)
under the action of H.

As we consider more general stationary solutions, they are clearly no longer described by
geodesics on the scalar manifold, since the scalars φI will also depend on the angular coordinates.
We shall focus our attention on axisymmetric, single-center black holes, for which the scalar
fields will be functions of r and θ only: φI = φI(r, θ). Nevertheless, the solution will still be
characterized by a unique point φ0 at radial infinity (“initial point”):

φI0 = lim
r→∞

φI(r, θ) , (9)

and by an “initial velocity” vector Q. By the same token, we can fix φ0 ≡ O and classify these
solutions according to the action of H on Q ∈ TO(Mscal).
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This tangent space at the origin is isomorphic to subspace K (the coset space) of the Lie
algebra g of G, complement to the Lie algebra H of H: TO(Mscal) ∼ K. The space K, in turn,
is the carrier of a representation of H with respect to its adjoint action: H−1 KH ⊂ K, which
realizes the action of the isotropy group H on the tangent space. Therefore the “initial velocity”
vector Q should be viewed as a matrix in K. In fact, Q is the Noether charge matrix of the
solution:

Q =
1

4π

∫
S2

∗3J , (10)

J = Ji dx
i being the Noether current. The explicit form of J is given by the standard theory of

sigma models on coset manifolds:

Ji ≡
1

2
∂iφ

IM−1∂IM , (11)

whereM(φI) = L(φI)ηL(φI)† is an H-invariant symmetric matrix built out of the representative
L(φI) of G/H at the point φI . The involution defining the subalgebra H of H in g is
defined in terms of an H-invariant real metric η as follows: h ∈ H ⇔ η h† η = −h (here
we work in some matrix representation of G). The components of Q along a suitable basis
{KA} = {K0, K•, Kr, KΛ, K

Λ} of K ∼ TO(Mscal) are the physical quantities characterizing
the solution at spatial infinity, namely the ADM mass MADM , the NUT-charge nNUT , the
D = 4 scalar charges Σr and the electric and magnetic charges qΛ, p

Λ:

Q ∝MADM K0 + ΣrKr + nNUT K• + pΛKΛ + qΛK
Λ ∈ K .

Notice that the angular momentum J does not appear in this expansion.

2.1. Angular Momentum and Duality
In [15] we posed the question: Can we describe, just as all the other physical quantities, the
angular momentum as a suitable component of some characteristic vector Qψ in the tangent
space? In other words: Can we describe the angular momentum in terms of quantities which
are intrinsic to the D = 3 sigma-model? The answer was given by defining Qψ as the following
K-valued matrix:

Qψ = − 3

4π

∫
S∞2

ψ[iJj] dx
i ∧ dxj =

3

8π

∫
S∞2

gϕϕ Jθdθdϕ ∝J K• + · · · ∈ K , (12)

ψ = ∂ϕ being the angular Killing vector of the axisymmetric solution. Qψ is a matrix in the
coset space which describes the rotation of the solution. This quantity, as we review below, is
important since it allows to easily derive the action of G on J .

2.2. Action of G on a Solution
Being G the global symmetry of the D = 3 model, if φI(xi) is a solution, the configuration
φ′I(xi), obtained by acting on it by means of an element g of G, is still a solution. Let us denote
the g-transformed φ′ = (φ′I) of the point φ = (φI) by φ′ = g ? φ. The (non-linear) relation
between φ′I and φI follows from basic coset-space geometry:

∀g ∈ G : M(g ? φ) = D[g]M(φ)D[g]† , (13)

where D[g] is the matrix associated with g in the chosen representation of G. Equation (13) can
be used to devise a solution generating technique [2, 11] in order to construct new stationary

XXIst International Conference on Integrable Systems and Quantum Symmetries (ISQS21) IOP Publishing
Journal of Physics: Conference Series 474 (2013) 012002 doi:10.1088/1742-6596/474/1/012002

4



solutions from known ones. In particular, from eq.s (11), (10) and (12), it follows that, under a
global symmetry transformation g, J, Q, Qψ transform through the adjoint action:

J → (D[g]−1)† J D[g]† ; Q → (D[g]−1)†QD[g]† ; Qψ → (D[g]−1)†QψD[g]† . (14)

Recall now that, having fixed φ0 = O, G was broken to H, so that the action of G on a solution
amounts to an action of H on the tangent space quantities: Q, Qψ. The above properties allow
us to infer the physical features of the transformed solution (including the angular momentum,
by virtue of (12)), without having to directly solve the matrix equation (13).

Moreover, in light of eq.s (14), we can characterize the rotational property of a black hole in
the effective D = 3 description by the following G-invariant statement:

Static solution ⇔ Qψ = 0 . (15)

The presence of a non-vanishing Qψ is a characteristic of the G-orbits of rotating solutions and
therefore one cannot generate rotation on a static D = 4 solution using G !

Using Q and Qψ one can recast the regularity condition of a rotating solution in a G-invariant
form. Consider the Kerr-Newman solution to Einstein-Maxwell theory:

ds2 =
∆̃

ρ2
(dt+ ω)2 − ρ2

∆̃

(
∆̃

∆
dr2 + ∆̃dθ2 + ∆ sin2 θdϕ2

)
(16)

where

∆ = (r −m)2 − c2 ,

c2 = m2 − 1

2
(q2 + p2)− α2 ,

∆̃ = ∆− α2 sin2 θ ,

ρ2 = r2 + α2 cos2 θ ,

ω = α sin2 θ
ρ2 − ∆̃

∆̃
dϕ , (17)

where m, q, p are the mass and the electric and magnetic charges while the angular momentum
is given by J = mα. The vector potential A0 is given by

A0 = (−q r + pα cos θ)
dt

ρ2
+ +[−p (α2 + r2) cos θ + q α r sin2 θ]

dϕ

ρ2
. (18)

This solution is regular provided the following condition is satisfied:

m2 − 1

2
(q2 + p2) ≥ α2 . (19)

In this case Q and Qψ are diagonalizable matrices and one finds that:

k

2
Tr(Q2) = m2 − p2 + q2

2
; Tr(Q2

ψ) =
J 2

m2
Tr(Q2) ,

where k is a representation-dependent constant. Using the above relations we can rewrite the
regularity condition (19) in the following form:

k

2
Tr(Q2) ≥

Tr(Q2
ψ)

Tr(Q2)
, (20)

which, in light of the transformation properties (14), is manifestly G-invariant. This means that
it is satisfied by all the solutions in the same G orbit as the regular KN one. Equality in eq.
(19), or (20), holds for the extremal solutions (i.e, with vanishing Hawking temperature).
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3. Extremal Limits
In [16] we addressed the problem of defining a general mechanism for connecting the orbit of
non-extremal Kerr (or Kerr-Newman) solutions to the orbits of the known extremal ones. The
regularity bound (20) can be saturated while keeping both sides non-vanishing (e.g. Q and Qψ
diagonalizable just as in the Kerr-Newman case). The resulting solution exhibits an ergo-sphere
and is dubbed extremal over-rotating. The bound can alternatively be saturated in a non-trivial
way, by letting both sides of the inequality vanish separately. The resulting solutions can either
be extremal static (see for instance [17] and references therein) or extremal under-rotating (i.e.
rotating with no ergo-sphere) [18, 19, 20, 21, 22].

These limits to extremal (under-rotating or static) solutions have been considered in the
literature in specific contexts: Heterotic theory [11, 23]; Kaluza-Klein supergravity [18, 19].
In [16] we defined a general geometric prescription for connecting the non-extremal Kerr-orbit
to the extremal static or under-rotating ones, in a way which is frame-independent (i.e. does
not depend on the particular string theory and compactification yielding the four-dimensional
supergravity). This procedure makes use of singular Harrison transformations by means of
which an Inönü–Wigner contraction on the matrices Q and Qψ is implemented, resulting in the

nilpotent matrices Q(0) and Q
(0)
ψ associated with extremal static or under-rotating black holes.

Harrison transformations [1] are H-transformations which play a special role in the solution
generating techniques: They are not present among the global symmetries of the D = 4 theory
and have the distinctive property of switching on electric or magnetic charges when acting on
neutral solutions (like the Kerr or Schwarzshild ones). Their generators (JM ) = (JΛ, JΛ) in H
are in one-to-one correspondence with the electric and magnetic charges (PM ) = (pΛ, qΛ) and
are non-compact (i.e. are represented, in a suitable basis, by hermitian matrices). The space
Span(JM ) generated by {JM} is the coset space of the symmetric manifold H/Hc, Hc being
the maximal compact subgroup of H, and thus it is the carrier of a representation of Hc (the
same representation in which the charges PM transform with respect to Hc). More specifically
Hc = U(1)E × H4, where U(1)E is an Ehlers transformation, and H4 is the maximal compact
subgroup of G4.

In [16] we considered the maximal abelian subalgebra (MASA) of the space Span(JM ). This
is a subspace whose generators J(N) = {J`}`=1,...,p are defined by the normal form of the electric
and magnetic charges, i.e. the minimal subset of charges into which the charges of the most
general solution can be rotated by means of Hc. Its dimension p is therefore just the rank

of the coset H/Hc. In the maximal supergravity, for example, p = rank
(

SO∗(16)
U(8)

)
= 4, the

same being true for the half-maximal theory, p = rank
(

SO(6,2)×SO(2,6+n)
SO(2)2×SO(6)×SO(6+n)

)
= 4, and for the

N = 2 symmetric models with rank-3 scalar manifold in D = 4 (for this class of theories, p =
rank +1). The simplest representative of the latter class of models is the STU one, which is
a consistent truncation of all the others, besides being a truncation of the maximal and half-
maximal theories. Therefore its space J(N) is contained in the spaces of Harrison generators of
all the above mentioned symmetric models. As a consequence of this, for the sake of simplicity,
we can restrict ourselves to the simplest STU model since the G-orbits of non-extremal and
extremal regular solutions to the broad class of symmetric models mentioned above have a
representative in the common STU truncation. As for the restricted number ofN = 2 symmetric

models for which the rank ofM(4)
scal is less than 3, the following discussion has a straightforward

generalization. Depending on the symplectic frame, i.e. on the higher-dimensional origin of the
four-dimensional theory, this normal form can consist of different kinds of charges. If the D = 4
supergravity originates from a dimensional reduction of a D = 5 theory on a circle, one normal
form is {p0, qi} and another is {q0, p

i}, i = 1, . . . , p− 1.
The procedure devised in [16] consists in first acting on the Kerr solution, given by eq.s

(16),(17),(18) with p = q = 0, by means of a Harrison transformation generated by J(N), of the
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form:

O = exp

(
p−1∑
`=0

log(β`)J`

)
. (21)

The resulting solution is a non-extremal, rotating one, coupled to scalar fields, with charges in
the normal form. In the Heterotic model where the normal form consists of two electric and
two magnetic charges, this solution was first constructed in [2]. This construction reviewed here

applies to any symplectic frame. If we denote by Q(K), Q
(K)
ψ the matrices Q, Qψ pertaining to

the Kerr solution
Q(K) = 2mK H0 , Q

(K)
ψ = 2 JK K• , (22)

mK , JK being the mass and the angular momentum of the solution, the corresponding matrices
for the transformed one are readily computed from (14):

Q′ = O−1 †Q(K)O† ; Q′ψ = O−1 †Q
(K)
ψ O† . (23)

We refer to [16] for the precise dependence of the mass, angular momentum and charges of the
new solution on mK , JK and β`. The next step is to rescale the Harrison parameters β` > 0
and the original angular momentum JK as follows:

β` = (mK)σ` α` ; JK = m2
K Ω , (24)

where σ` = ±1, and send mK → 0 while keeping α` and Ω fixed. Although this is clearly a
singular limit for the Harrison transformation, the resulting limiting solution is well defined.
The normal-form charges in the limit will only depend on α` and on the signs σ` and the effect
on Q′ and Q′ψ is, as anticipated above, an Inönü–Wigner contraction yielding nilpotent matrices:

{Q′, Q′ψ}
mK→0−→ {Q(0), Q

(0)
ψ } nilpotent . (25)

As a consequence of this Tr(Q′2) as well as Tr(Q′2ψ ) will both vanish in this limit. However
the latter quantity vanishes “faster” than the former and this guarantees that both sides of the
regularity bound (20) vanish separately. The resulting solution is therefore extremal. Let us
illustrate this in some more detail.

Four-dimensional black hole solutions can be classified in orbits with respect to the global
symmetry group G4 in D = 4 (which are clearly smaller than the G-orbits in the D = 3
description, being G larger than G4). This group acts on the D = 4 fields as a generalized
electric-magnetic duality, which respect to which the electric and magnetic charges transform
in some characteristic symplectic representation. Among the G-invariant quantities labeling
these orbits, the most important is the quartic invariant I4(pΛ, qΛ) which only depends on the
electric and magnetic charges and totally characterizes the geometry near the horizon of the
extremal static solutions, by virtue of the attractor mechanism [24, 25]2. Being the horizon area
proportional to

√
|I4|, regular extremal solutions can either have I4 > 0 or I4 < 0. In the whole

class of supergravities mentioned above, which have the STU one as a consistent truncation, the
former solutions can either be supersymmetric (BPS) or non-supersymmetric, while the latter
can only be non-supersymmetric. The sign of I4 in the limiting solution depends on the signs
σ`. We distinguish between two relevant cases.

2 For a classification of extremal solutions with respect to G4 see [26].
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Case 1. Only for the choices of σ` yielding I4 < 0, we have a residual angular momentum given
by:

J =
Ω

2

√
|I4(p, q)| 6= 0 . (26)

It is apparent, from the above expression, that the angular momentum, though not G-invariant,
is invariant, as expected, under the action of the global symmetry group G4 in four-dimensions.
Indeed I4(p, q) is G4-invariant and Ω, pertaining to a Kerr solution, is G4-invariant as well.
The resulting solution is a non-BPS extremal under-rotating black hole. It is important to
emphasize here that, in this limit, we find the most general solution of this class modulo action
of G (generating solution with respect to G).

We also find that the degree of nilpotency of Q
(0)
ψ is one unit less than that of Q(0). This

explains why Tr(Q′2ψ ) vanishes faster than Tr(Q′2), as mentioned above.

Case 2. For choices of σ` yielding I4 > 0, we have no residual rotation, i.e. Q
(0)
ψ = 0, and the

limiting solution is either BPS or extremal non-BPS static. Q(0) is nilpotent and non-vanishing.
Also in this case we find the generating solutions of these classes of black holes with respect to
G.

Singular non-extremal limit. There is an other kind of limit we can consider, which consists in
keeping JK/mK , instead of JK/m

2
K , fixed. In this case we only have finite limits for I4 > 0.

The matrices Q(0) and Q
(0)
ψ of the limiting solution are still both nipotent, though they have now

the same degree. As a consequence of this, while in the limit the left hand side of (20) vanishes,
the right hand side stays finite. Therefore the resulting solution, violating the regularity bound
(20), is singular. This class of black holes comprises the rotating BPS ones studied, for instance,
in [27].

4. Conclusions
We have reviewed a general mechanism for retrieving, in the effective D = 3 description, all the
extremal limits, including the (nilpotent) G-orbits of regular single-center extremal static and
under-rotating solutions from that of non-extremal regular solutions (the Kerr solution). The
procedure does not depend on the particular symplectic frame in which the electric and magnetic
charges of the four-dimensional supergravity are defined. A valuable tool in this analysis was
the matrix Qψ, first introduced in [15], which encodes the rotation-properties of the black hole
and allows to infer the transformation properties of the angular momentum under G without
having to explicitly derive the new solution.
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