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Abstract. We present a detailed introduction to the discrete-time quantum walk problem,
in close analogy with the classical ordinary and persistent random walk. This approach
facilitates a uniform application of the renormalization group that highlights similarities and
differences between the classical and the quantum walk problem. Specifically, we discuss the
renormalization group treatment for the mean-square displacement of a walker starting from a
single site on the 1d-line for ordinary and persistent random walks and the quantum walk. We
outline the significance of universality for quantum walks and the control this might provide for
quantum algorithms. We use our RG method to verify that all 2-state quantum walks on the
1d-line are in the same universality class.

1. Introduction
A renormalization group (RG) treatment [1] of quantum walks (QW) holds significant promise
for a better understanding of search algorithms for quantum computing [4, 5, 6, 7] or of quantum
transport phenomena [3]. Much numerical and analytical work has been done to extract
properties of QW in specific networks and lattice, typically with specific settings for the quantum
coin, for a recent overview see [2]. Surprisingly little attention has been paid to categorizing
asymptotic properties of QW in their relation with inherent symmetries of the quantum problem.
For example, from the existing work it may stand to reason that a QW starting from a single
site of a translational-invariant lattice may have a mean-square displacement (MSD) of〈

r2
〉
∼ t

2
dw (1)

with an exponent dw = 1, describing ballistic spread in all directions, but a formal proof of
such a statement has not yet been attempted. While it seems clear that quantum interference
effects are the cause of this rapid spread, the strength and limits of such a causal relation
have not been tested. Unlike for a stochastic classical random walk, the unitary description
of a QW immediately entails additional internal degrees of freedom (the “coin” space) whose
dimensionality depends on the neighborhood degrees in the lattice, which may vary for different
lattices (square, triangular, or hexagonal, for instance) even within the same spatial dimension.
This raises the question as to why there would be such a uniform result for dw. More
generally: What are the relevant parameters that determine universality classes [1] in QW
and other quantum transport problems? Much of the work on QW has been driven by a
computer science perspective that have lead to very strong results, for instance, regarding QW
as a universal computing framework [7], similar to well-known results for random walks in
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classical computation, or on optimizing search performance. We hope to contribute to the basic
understanding of QW by connecting asymptotic scaling properties to symmetries and dynamics
of the process, the ultimate tenants of control physicists have historically derived from RG.

In the following, we first review many of the technical details of the RG formalism as applied
to RW. Then, we observe that the classical subject of persistent random walks (PRW) can
be formulated (as a 2nd-order Markov process) in a manner identical to a QW on the same
geometry. We explore the RG formalism for these PRW at length so that our QW discussion
significantly shortens. Finally, we demonstrate how this RG approach carries over to QW and
highlight some of the important new aspects that inevitably arise when extending the RG into
the complex plane. We then reproduce with the RG the familiar exponent dw = 1 for QW on
the 1d-line.

2. General Formulation of the Walk Problem
The generic master-equation for a discrete-time walk with a coin, whether classical or quantum,
is

|Ψ(t+ 1)〉 = U |Ψ(t)〉 , U = S (C ⊗ I) , (2)

where the time-evolution operator (or propagator) U is written in terms of the “shift” operator
S and the “coin” C [2]. In the d-dimensional site-basis |~n〉, we can describe the state of the
system in terms of the site amplitudes ψ~n,t = 〈~n|Ψ(t)〉, simply the probability density to be at
that site for a classical walk, but representing in the quantum walk a vector in coin-space with
each component holding the amplitude for transitioning out of site ~n along one of its edges.
Application of the coin C entangles these components, with subsequent redistribution of the
walk to neighboring sites by the shift operator S, based on those amplitudes. The general shift
operator for a homogeneous nearest-neighbor walk on the line is

S =
∑
~n

d∑
µ=1

{P ⊗ |~n− êµ〉 〈~n|+Q⊗ |~n+ êµ〉 〈~n|+R⊗ |~n〉 〈~n|} (3)

with the shift matrices P , Q, and R for moving left or right, or not at all. From (2), we get

U =
∑
~n

d∑
µ=1

{A⊗ |~n− êµ〉 〈~n|+B ⊗ |~n+ êµ〉 〈~n|+M ⊗ |~n〉 〈~n|} (4)

with A = PC, B = QC, and M = RC.
In a quantum walk, the “hopping” operators A, B, and M are constrained by the requirement

of unitary propagation, I = U†U , which results in the conditions in coin-space,

Id = A†A+B†B +M †M, 0 = A†M +M †B = A†B. (5)

As C is unitary, these conditions equally apply to P , Q, and R. They can not be satisfies by
scalars (except for trivial cases). The algebra in (5) requires at least two-dimensional matrices,
and the common interpretation is that the dimension c of the coin space has to match the degree
of each site, i.e., each component of the site amplitudes ψ~n,t refers to the transmission along a
specific edge [2]. Thus, on a d-dimensional hypercubic lattice the coin-space dimension is c = 2d
(or c = 2d+ 1 to allow for a component for remaining at the same site).

In a typical discussion of QW on the 1d -line, most authors simply choose trivial shift matrices

that satisfy (5), such as P =
(

1 0
0 0

)
, Q =

(
0 0
0 1

)
, and R =

(
0 0
0 0

)
and explore some

version(s) of the most general unitary coin, in this case,

C =

( √
ρ

√
1− ρ eiφ√

1− ρ eiθ −√ρ ei(φ+θ)

)
. (6)
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Figure 1. Depiction of the hopping operators for a quantum walk on a 1d-ladder. Each “rung”
of the ladder is labeled by a consecutive site-index n while the upper and lower rail is labeled “-”
and “+”, respectively. Note that each vertex has degree 3, while the dashed loops are meant to
indicate a hopping that remains at a site. Thus, the wavefunction on each site has either three
or four components.

In general, the algebra in (5) is not limited to its lowest-ranked representatives (here, c = 2).
It is not obvious that any higher-dimensional matrices obeying (5) would yield new universality
classes, of course.

Classical RW are also represented by the propagator U in (4). In that case, the condition in
(5) does not apply and we merely require U to be stochastic, i.e.,

A+B +M = C, (7)

where the coin C must be a stochastic matrix. In fact, (7) is satisfiable with scalars, say,
A = p (1− q), B = (1− p) (1− q), and M = q, in which case S = 1. We note that the
stochasticity constraint on U in (7) can be satisfied also by higher-dimensional matrices. For
example, using the stochastic coin on the 1d-line,

C =
(

ρ 1− σ
1− ρ σ

)
, 0 ≤ ρ, σ ≤ 1, (8)

together with the basic shift matrices P , Q, and R (as above) reproduces the well-studied
persistent RW [8, 9]. For this 2nd-order Markov process it is known that the freedom in the
parameters ρ and σ does not provide a distinct universality from the ordinary RW, i.e., it behaves
diffusive or ballistic for ρ = σ or ρ 6= σ, respectively.

To illustrate the questions regarding universality in QW, consider the walk on a 1d-ladder,
as shown in figure 1: We have in the site-basis |n,±〉 for the shift operator,

S =
∑
n

{O |n,+〉 〈n,−|+ P |n+ 1,−〉 〈n,−|+Q |n− 1,−〉 〈n,−|+R |n,−〉 〈n,−|

+T |n,−〉 〈n,+|+ U |n+ 1,+〉 〈n,+|+ V |n− 1,+〉 〈n,+|+W |n,+〉 〈n,+|} ,

=
∑
n

{[
R O
T W

]
|n〉 〈n|+

[
P 0
0 U

]
|n+ 1〉 〈n|+

[
Q 0
0 V

]
|n− 1〉 〈n|

}
, (9)

ELC International Meeting on Inference, Computation, and Spin Glasses (ICSG2013) IOP Publishing
Journal of Physics: Conference Series 473 (2013) 012018 doi:10.1088/1742-6596/473/1/012018

3



where the first row of the matrix correspond to “|−〉”. Allowing even for two distinct coins for
the upper and lower rail-sites,

C =
[
C− 0
0 C+

]
, (10)

we obtain the propagator U in (4) with

M =
[
RC− OC+

TC− WC+

]
, A =

[
PC− 0

0 UC+

]
, B =

[
QC− 0

0 V C+

]
. (11)

For U to be unitary, A, B, and M again should satisfy (5). It appears from the degree-3 vertices
of the 1d-ladder that the hopping operators in S should be at least 3× 3 matrices (or 4× 4, in
case that R 6= 0 and W 6= 0 in figure 1 and an amplitude is needed for remaining at a site),
which would make A, B, and M each 6 × 6 (or 8 × 8 ) matrices. Does a QW on this ladder
always renormalize into the same universality class of the ordinary 2-state QW on a line? Can
coins C± be devised such that the loops along the ladder alter the asymptotic scaling?

The fundamental quantity of interest for any walk is the amplitude ψ~n,t = 〈~n|Ψ(t)〉 to be at
site ~n at time t [10]. Starting from some initial condition (IC) ψ~n,t=0, the time-evolution of the
walk is governed by the master equation in (2), which now reads

ψ~n,t+1 =
∑
~m

U~n,~mψ~m,t (12)

with U~n,~m = 〈~n| U |~m〉, for discrete “hops” from connected sites during a single time-step. To
eliminate the aspect of time from this dynamic process in preparation for an RG treatment, we
introduce generating functions (i.e., discrete Laplace transforms), here given by

ψ̃~n (z) =
∞∑

t=0

ψ~n,tz
t. (13)

We typically suppress the argument z unless it appears explicitly. For simplicity, we merely
consider IC localized at the origin, ψ~n,0 = δ~n,0, where δ~n,~m is the Kronecker symbol. Applying
(13) to the master equation in (12) obtains

ψ̃~n = δ~n,0 + z
∑
~m

U~n,~mψ̃~m. (14)

3. RG for a Classical Random Walk
For RW on a line, (12) with (4) reduces to

ψ̃n = δn,0 + zqψ̃n + z (1− q) pψ̃n−1 + z (1− q) (1− p) ψ̃n+1, (15)

where we have allowed for a probability q to remain at a given site and a bias p for jumps to
the right, i.e., 1− p for jumps to the left. The RG start from (15) [11, 10], written for any even
n 6= 0:

ψ̃n−1 = akψ̃n−2 +mkψ̃n−1 + bkψ̃n =
ak

1−mk
ψ̃n−2 +

bk
1−mk

ψ̃n,

ψ̃n = akψ̃n−1 +mkψ̃n + bkψ̃n+1, (16)

ψ̃n+1 = akψ̃n +mkψ̃n+1 + bkψ̃n+2 =
ak

1−mk
ψ̃n +

bk
1−mk

ψ̃n+2,
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defining a0 = z (1− q) p, b0 = z (1− q) (1− p), and m0 = zq as the “raw” hopping parameters.
Eliminating algebraically all odd-site amplitudes (for . . . , n − 3, n − 1, n + 1, n + 3 . . .) and
identifying in the remaining relations the renormalized hopping parameters,

ψ̃n = ak+1ψ̃n−2 +mk+1ψ̃n + bk+1ψ̃n+2, (17)

we obtain the RG-flow recursions

ak+1 =
a2

k

1−mk
, bk+1 =

b2k
1−mk

, mk+1 = mk +
2akbk

1−mk
. (18)

The fixed points (FP) arising from this RG-flow for k ∼ k+1 →∞ are (a∗, b∗,m∗) = (0, 0,m∗),
(1−m∗, 0,m∗), or (0, 1−m∗,m∗) for any value of m∗ (presumably on the unit interval). The
2nd and 3rd FP yield the ballistic solutions for z → 1, with dw = 1 easily obtained from the
eigenvalues of the Jacobian

J =
∂ (ak+1, bk+1,mk+1)

∂ (ak, bk,mk)

∣∣∣∣
k→∞

=


2a∗

1−m∗ , 0, 2b∗

1−m∗

0, 2b∗

1−m∗ ,
2a∗

1−m∗

(a∗)2

(1−m∗)2
, (b∗)2

(1−m∗)2
, 1 + 2a∗b∗

(1−m∗)2

 , (19)

(From the exact solution one finds that in this case the FP value m∗ depends in the initial values
for the RG-flow, 1−m∗ = |a0 − b0|z=1, which can not be obtained from the local analysis near
FP.) The indeterminedness of m∗ in the 1st FP is peculiar. In fact, only two possible values
for m∗ can be obtained. For any |z| < 1, only the trivial solution m∗ = 0 can be reached. For
z = 1, ak + bk +mk = 1 for all k and starting from symmetric initial values a0 = b0, both remain
identical and vanish together, ak ≡ bk → 0, and mk → m∗ = 1. Since both numerators and
denominators in the Jacobian vanish, a correlated solution has to be constructed that “peals
off” the leading behaviour to glance into the boundary layer. Using ak ≡ bk ∼ Akα

k and
mk ∼ 1−Mkα

k assuming large k and |α| < 1, results in

Ak+1 =
A2

k

αMk
, Mk+1 =

1
α
Mk −

2A2
k

αMk
(20)

with a single FP that self-consistently determines A∗

M∗ = α = 1
2 . The Jacobian of these recursions

at its FP gives λ = 4 as the largest eigenvalue, i.e., dw = 2 for the diffusive solution. In this
formulation, even if we start with vanishing self-term, q = 0, initially, the self-term ultimately
dominates, reflecting the fact that in diffusion the renormalized domain of size L = 2k outgrows
the walk such that almost all hops remain within that domain.

We can conclude that the RG projects the salient, asymptotic properties of the walk into
two universality classes (for any 0 ≤ q < 1): ballistic motion, either to the left (p < 1

2) or right
(p > 1

2), or diffusion (p = 1
2), each characterized by a distinct exponent dw. Each class reflects

a fundamental (a)symmetry of the process.

4. Persistent Random Walks
The persistent random walk (PRW) [9, 8] on a 1d-line is a well-studied process with many
applications. On the line, persistence (or, anti-persistence) have a clear, intuitive meaning that
can be described with a single parameter. PRW is a very useful precursor for the study of QW.
In fact, we find that PRW is isomorph to QW up to the point when observables are considered.
Then, of course, the difference between a dissipative stochastic process with direct probabilistic
interpretation and one evolving a wave-function unitarily becomes very noticeable. But both are
discrete processes in time and space described by a master equation that evolves a state variable
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with internal degrees of freedom. In fact, as a 2nd-order Markov process [9], a PRW requires two
separate pieces of initial conditions, for location and preferred direction, similar in structure to
a Schroedinger wave-function in QW. The quantum coin-matrix in the QW has its equivalent
here in a stochastic matrix driving the PRW. But the requirements for a stochastic matrix leads
to very different physics than for a unitary coin. The results for the PRW on 1d-lines provide
hardly any new results compared to the ordinary RW studied above. On other lattices, such as
the Hanoi networks [12], quite interesting and novel results can be achieved for PRW, though.

We will label the state variable describing a PRW also as ψn,t with the understanding that
it now represents a 2-component vector. Say, the upper component, ψ+

n,t, refers to a walker
with the preference to step to the right in the next time-step, and the lower component, ψ−n,t,
indicates a left-hop preference. The value of each component describes the probability of finding
a walker at that site n and time t in state “±”, and the total probability of finding a walker
there, irrespective of preference, is simply the sum of the two, pn,t = ψ+

n,t + ψ−n,t. Otherwise,
the formalism above leading to the master equation (14) for the generating function applies
unchanged, providing us again with the basis of our RG-analysis. However, due to the internal
structure of our state variable, the renormalizable quantities describing the effective hopping
probabilities between domains now possess matrix form, and we will have to reconcile with the
fact that our RG-flow equations will take on the form of non-linear matrix recursions.

Ignoring a possible left-right bias here, we consider a walker coming from the left (right) to
have a probability ρ to continue to move right (left), and a probability 1− ρ to reverse direction
in the next step. For ρ > 1

2 (ρ < 1
2) the walker exhibits persistence (anti-persistence), and for

ρ = 1
2 becomes again an ordinary unbiased RW without memory. The master equations then

read:

ψ̃+
n = zρψ̃+

n−1 + z (1− ρ) ψ̃−n−1 + δn,0ψ̃
+
IC ,

ψ̃−n = z (1− ρ) ψ̃+
n+1 + zρψ̃−n+1 + δn,0ψ̃

−
IC , (21)

where ψ̃IC (with ψ̃+
IC + ψ̃−IC = 1) represents the IC of the PRW, which we place again at the

origin. Initially, before RG, ψ̃+
n (ψ̃−n ) only depends on hops from its left (right) neighbor; it is

that inflow which induces the “+” (“−”) state. (21) is conveniently rewritten in matrix notation
as

ψ̃n = Mψ̃n +Aψ̃n−1 +Bψ̃n+1 + δn,0ψ̃IC (22)

with “raw” hopping matrices

A0 = z

(
ρ 1− ρ
0 0

)
, B0 = z

(
0 0

1− ρ ρ

)
, (23)

and M0 = 0 before renormalization, k = 0. Notice that A and B are different but do not express
a bias as in (15). It is more revealing to decompose these matrices further and write

Ak = PkC, Bk = QkC, Mk = RkC (24)

with initially

P0 = z

(
1 0
0 0

)
, Q0 = z

(
0 0
0 1

)
, R0 = z

(
0 0
0 0

)
(25)

and the stochastic “coin” matrix C in (8) (choosing σ = ρ), where each column sums to unity.
Separating the generalized hopping matrices Pk, Qk, Rk as the renormalizable quantities from the
coin C will prove convenient to determine scalar recursion relations describing the RG-flow. The
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same procedure will apply also for the coin operator in QW below. Clearly, different coins may
lead to different RG-flows, which is exactly the purpose of the RG: discriminating universality
classes amongst the coins. For PRW on the 1d-line, the RG confirms that there are no new
universality classes beyond those of an ordinary RW. Note that the most general stochastic coin
in 1d has to be a 2× 2 real matrix with two constraints on the rows, leaving room for at most
two free parameters. By fixing σ = ρ, we already eliminated the directional asymmetry that
leads to ballistic motion discussed for RW in section 3 for p 6= 1

2 .
As in section 3, to apply RG we write (22) as

ψ̃n−1 = Mkψ̃n−1 +Akψ̃n−2 +Bkψ̃n,

ψ̃n = Mkψ̃n +Akψ̃n−1 +Bkψ̃n+1, (26)
ψ̃n+1 = Mkψ̃n+1 +Akψ̃n +Bkψ̃n+2.

Again, solving for the central site yields

ψ̃n = Mk+1ψ̃n +Ak+1ψ̃n−2 +Bk+1ψ̃n+2 (27)

with the RG-flow

Ak+1 = Ak (I −Mk)
−1Ak,

Bk+1 = Bk (I −Mk)
−1Bk, (28)

Mk+1 = Mk +Ak (I −Mk)
−1Bk +Bk (I −Mk)

−1Ak,

applying M0 = 0 and (23). The key realization here is not to explore the FP of these matrix
recursions directly. Instead, trial-and-error suggests that the RG-flow can be parameterized as

Pk =
(
ak 0
0 0

)
, Qk =

(
0 0
0 ak

)
, Rk =

(
0 bk
bk 0

)
. (29)

Then, one iteration of the RG-flow in (28) provides a closed set of exact recursions:

ak+1 =
ρa2

k

(1− bk) [1− (1− 2ρ)bk]
,

bk+1 = bk +
a2

k [1− ρ− (1− 2ρ) bk]
(1− bk) [1− (1− 2ρ)bk]

. (30)

These recursions have only two FP, (a∗, b∗) ∈
{
(0, b∗) ,

(
ρ

2ρ−1 ,
1−ρ
1−2ρ

)}
. The 2nd FP is physical

only for ρ = 0 or ρ = 1 but not for any other value of ρ in between. It is important that
we set ρ = 0 or ρ = 1 both, in the FP and the Jacobian, before we evaluate the Jacobian at
the respective FP, since this FP is not physical on any open set of its analytic continuation.
For ρ = 1 the Jacobian at this FP provides a degenerate eigenvalue, λ = 2, because the PRW
starts with a given direction from the IC and can never reverse direction, i.e., it moves in a
trivial, lock-step manner ballistically with dw = 1. On the other hand, for ρ = 0, the totally
anti-persistent walk should remain forever vacillating in a confined domain around its IC. Here,
it is essential to evaluate the Jacobian for ρ = 0 first before we apply the FP; only then do we
get the eigenvalues λ = 1, 0, suggesting that the walk maintains its initial position.

The first FP contains the trivial case z < 1 for b∗ = 0. The general indeterminacy of b∗ hints
at the possibility of a scaling Ansatz again, as in section 3. With ak ∼ αka′k and bk ∼ 1− αkb′k
for α < 1 and k → ∞ we get a′k+1 = (a′k)

2 / (2αb′k) and b′k+1 = b′k − a′k+1, which has an FP at

a′∗ = b′∗ and α = 1
2 , independent of ρ, and its Jacobian J ′ = ∂

(
a′k+1, b

′
k+1

)
/∂ (a′k, b

′
k) has the

desired diffusive eigenvalues, λ = 4, 1. Thus, we arrive at the well-known result that a PRW has
the same universality classes as the ordinary RW on a line.
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5. Quantum Walks on a Line
Quantum walks (QW) are isomorph to PRW, but fundamentally differ in two respects: (1)
Instead of a stochastic matrix, the evolution in a QW is driven by a unitary coin; (2) while
asymptotic large-time behaviour of observables in ordinary walks are obtained in the limit of
real z → 1 from the generating functions, in QW observables typically result from integrals of
the modulo-square of generating functions over the unit circle in the complex-z plane. While
the first point provides conceptual challenges – and a much richer phenomenology – for QW, the
integral in the second point is the main source of technical problems in the RG-analysis of QW:
Instead of one FP, it seems that we have to study a wide-ranging set of asymptotic behaviours
for the RG-flow anywhere near that circle. Those asymptotic behaviours may be grouped into
a finite set of classes, yet, in some of those the RG-flow does not converge but remains forever
oscillatory in a seemingly chaotic fashion. Interestingly, all of these features are already present
for QW on a 1d-line.

In close correspondence to the discussion of the PRW in section 4, we have the master
equations for the QW in terms of generating functions

ψ̃n = Mψ̃n +Aψ̃n−1 +Bψ̃n+1 + δn,0ψIC (31)

with
Ak = PkC, Bk = QkC, Mk = RkC, (32)

where initially

P0 = z

(
1 0
0 0

)
, Q0 = z

(
0 0
0 1

)
, R0 = z

(
0 0
0 0

)
(33)

with the most general quantum “coin” given in (6).
The RG-analysis is formally identical to that already discussed in section 4. Starting from the

same master equations in (26), we arrive at the same RG-flow equations in (28). Evolving those
recursions from the initial conditions numerically for a few iterations (initially, for a conveniently
chosen coin, such as Hadamard: ρ = 1

2 , φ = θ = 0), a recursive pattern emerges that suggest a
similar Ansatz to that in (29):

Pk =
(
ak 0
0 0

)
, Qk =

(
0 0
0 −ak

)
, Rk =

(
0 bk
bk 0

)
, (34)

the minute difference being due to having a unitary instead of a stochastic coin. We attain
the initial values a1 =

√
ρz2, b1 =

√
1− ρz2 only after the first RG-step, the general behaviour

ensuing thereafter. The resulting recursions are quite similar in appearance to the corresponding
(30) for PRW and read

ak+1 =
√
ρa2

k

1− 2
√

1− ρbk + b2k
,

bk+1 = bk +
(
bk −

√
1− ρ

)
a2

k

1− 2
√

1− ρbk + b2k
(35)

for general ρ and φ = θ = 0. In any case, however, ak and bk in general are complex variables
that need to satisfy additional unitarity constraint which derive from (5).

In figure 2 we plot the modulo-square of the (1,1)-element of Ak (essentially, |ak|2), evolving
the RG-flow recursions in (35) up to k = 4, starting with z = eiα. It demonstrates the
complicated, oscillatory dependence on z of the renormalized quantities. In figure 3 we show
the corresponding poles of that expression in the complex-z plane. A similar plot for PRW has
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Figure 2. Plot of
∣∣∣A(k)

1,1

(
eiα
)∣∣∣2 as a function of α = arg (z) , 0 ≤ α ≤ 2π, for k = 1, 2, 3, and

4. Note that the function is periodic with period π and has significant support only between
−π

4 < α < π
4 and its periodic iteration.
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Figure 3. Plot of the poles of A(k)
1,1 (z) in the complex-z plane for k = 1, 2, 3, and 4. Note

that the poles cluster between −π
4 < arg z < π

4 and its periodic iteration, just outside and ever
closer to the unit circle. Since A∗ (z) = A

(
1
z

)
, the modulus has also a corresponding set of

mirror-poles on the inside of the circle.

a set of entirely real poles that accumulate on the positive real axis just above, and ever closer
to, z = 1 [10]. Thus, while in the classical case a fixed-point analysis near z → 1 suffices, in QW
we have to study the RG-flow on extensive parts of the unit circle in the complex-z plane.

We now focus on the analysis of the recursions in (35) for unimodular z and asymptotically
for large k. As figures 2 and 3 reveal, a FP-analysis for some fixed limiting value, such as
z → 1 for the ordinary RW, appears to be insufficient. Rather, we have to confront the
behaviour of the RG-flow over the entire circle of α = arg (z). Since (35) do not explicitly
contain z, it is straightforward to apply a conventional FP analysis, which result in the FP
(a∗, b∗) =

{
(0, b∗) ,

(√
ρ,
√

1− ρ
)}

. The 2nd FP can be reached only for one single value of z,
namely that at α = 0. As for ordinary RW above, the first FP requires a more extensive scaling
Ansatz.

For α = 0 (or z → 1) we are apparently conducting the analysis typical for an ordinary RW.
Yet, this turns out to be a “sweet-spot” at the center of the quantum domain, where the phases
of the renormalized quantities evolves the least with the RG index k; in fact, the phase remains
zero. Although the FP itself possesses an interesting explicit ρ-dependence, the Jacobian matrix
and its eigenvalues at this FP are independent of ρ. The eigenvalue λ = 2 is degenerate but
otherwise resembles the known result for QW on a 1d-line, dw = 1. However, for α 6= 0 such a
traditional fixed-point analysis is useless, and we have developed a more sophisticated approach
that confirms that dw = 1 over the entire oscillatory regime.

Exactly at the edges of the oscillatory regime, i.e., at α = (2j + 1)π
4 for ρ = 1

2 , we touch
on the first FP in the same singular manner we also encountered for RW: The scaling Ansatz
ak ∼ iεka′k and bk ∼ 1+i√

2
− εkb′k, near the pole of the denominator, leads to the new system,

εa′k+1 = (a′k)
2 / (2b′k) and εb′k+1 = b′k−a′k+1. Its FP provides ε = 1

2 and a′∗ = b′∗, and a Jacobian
with eigenvalues of λ = 4, 1. This isolated incidence of diffusive behaviour does not seem to
affect the known true scaling. The entire discussion for this special case looks very much similar
to the typical analysis for ordinary RW but here represents only a vanishingly small set of all
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options for the QW.
For π

4 < α < 3π
4 at ρ = 1

2 , and the other rapidly decaying regimes, no such scaling Ansatz will
balance the vanishing numerator with a cancellation from the denominator of the ak-recursion.
Instead, the denominator simply approaches a complex constant and both ak and bk phase-lock
with a phase difference of α, apparently. The Ansatz ak ∼ δke

iµ with vanishing δk for large k
leads to δk+1 ∼ δ2k while bk ∼ −eiµ remains a constant (with µ undetermined, but see below).
The exponentially decaying solution, δk ∼ e−c2k

/
(
2 + 2

√
2 cosµ

)
, provides no eigenvalue (or

λ = 0) while the constant bk-solution has λ = 1, i.e., there is no large-scale quantum transport
in this entire sector of α. Any other domain for α simply reiterates these results due to the
periodicity in α→ α+ π.

Finally, it should be pointed out that the generic picture for the 1d-behaviour remains
unaltered for different choices of the quantum coin in (6). While figure 2 was generated with
the Hadamard coin, ρ = 1

2 , φ = θ = 0, it is easy to show that any variation in either phase, φ
or θ, merely rotates the unit circle (i.e., offsets α), whereas a variation in ρ alters the sizes of
either type of domain without changing the behaviours within those. In all cases, our analysis
reproduces the well-know fact [2] that dw = 1 for the MSD in the QW is universal, unaffected
by any variation in the coin parameters. Notice, that for either ρ → 0 or ρ → 1, the domains
degenerate and either cover the entire circle or squeeze into a point, respectively, and special
behaviour may arise.

Our presentation here has been largely focused on method and no new results have been
produced, as we have only demonstrated our method to the well-known cases of RW, PRW, and
QW on the 1d-line. However, we are currently extending our analysis to more complicated cases,
such a Sierpinski gaskets, where the exact RG-flow can be found and interesting new phenomena
may arise due to the lack of translational invariance, which is bound to affect the universality
class.
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