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Abstract. Recently, an effective susceptibility propagation method for binary Markov random
fields based on a concept of diagonal consistency was proposed. This improved susceptibility
propagation is a powerful method and exhibits a robust performance for various types of network
structures. In this paper, a generalization of the improved susceptibility propagation using an
orthonormal function expansion is proposed in which any pairwise potential functions and multi-
valued random variables are acceptable. In the latter part of this paper, the proposed method
is applied to a direct problem and an inverse problem on a generalized sparse prior, which is a
recently proposed prior model for natural images.

1. Introduction
There is an increasing demand in the new interdisciplinary scientific fields that involve both
computer sciences and statistical physics [1, 2] for techniques that can be used to evaluate
local statistical quantities such as local magnetizations and local susceptibilities (covariances)
of Markov random fields (MRFs) with finite sizes.

Belief propagations (BPs) are one of the most popular message-passing types of algorithms
that are used to compute approximately the local magnetizations of MRFs [3]; they are
equivalent to the Bethe approximations [4] used in statistical physics [5, 6]. In the last
decade, a suitable message-passing technique called susceptibility propagation (SusP) (also called
variational linear response in the field of information sciences) was developed to compute the
local susceptibilities of MRFs [7–10]. In general, SusPs are constructed by combining BPs and
linear response methods.

Recently, the author presented an effective SusP for Ising models, referred to as improved
susceptibility propagation (I-SusP) using a concept of diagonal consistency [11]. Briefly, the
concept of diagonal consistency is as follows. In Ising models, the second-order moment, ⟨x2

i ⟩,
are trivially one because xi ∈ {+1,−1}. However, the variances obtained by SusPs are generally
not equal to one due to higher-order effects being neglected [12]. I-SusPs are obtained by
overcoming such a diagonal inconsistency problem. I-SusPs are reduced to normal SusPs on tree
systems and include the adaptive Thouless-Anderson-Palmer equation [13, 14] as a special case.
Almost simultaneously, a similar investigation of Ising models was presented by Raymond and
Ricci-Tersenghi [15], who considered not only the diagonal consistency but also an off-diagonal
consistency [16].
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The I-SusP is a powerful method and exhibits a robust performance for various types of
network structures. However, the original I-SusP can be applied to Ising models only. Thus, in
the present paper, a generalization scheme of I-SusP using an orthonormal function expansion
that was successfully used in a Bethe approximation for a general pairwise MRF [17] is proposed,
in which any pairwise potential functions and multi-valued random variables are acceptable.

The remainder of this paper is organized as follows. In section 2, a pairwise MRF and
its orthogonal function expansion using Chebyshev polynomials are introduced. In section 3,
a Gibbs free energy for the expanded pairwise MRF derived in the previous section and its
diagonal-block consistency are shown. The diagonal-block consistency plays the central role in
the proposed method. In section 4, by using the diagonal-block consistency, an I-SusP based
on the Bethe approximation for the expanded pairwise MRF is proposed. In section 5, the
proposed method is applied to generalized sparse priors and is numerically verified by some
results of numerical experiments. Generalized sparse priors are prior models for natural images
proposed in [18]. Finally, section 6 concludes the paper with some remarks.

2. Discrete Pairwise MRF and Orthogonal Function Expansion
Let us consider an undirected graph G = G(V,E) with n nodes, where V = {1, 2, . . . , n} is the
set of all nodes and E ⊂ V × V is the set of all undirected links (i, j) except self-connecting
links (i, i). Note that, although links (i, j) and (j, i) indicate the same undirected link, the set
E has both (i, j) and (j, i) as its elements. On the graph G, let us consider a pairwise MRF
with discrete random variables x = {xi ∈ {0, 1, . . . , q − 1} | i ∈ V } expressed by

PG(x) ∝ exp
( ∑

i∈V

θi(xi) +
1
2

∑

(i,j)∈E

w(i,j)(xi, xj)
)
, (1)

where the expressions {θi(xi)} and {w(i,j)(xi, xj)} are potential functions of nodes and links,
respectively. Because the graph is an undirected graph, relations w(i,j)(xi, xj) = w(j,i)(xj , xi)
are assumed. Relations w(i,j)(xi, xj) = w(i,j)(xj , xi) are not enforced, that is, w(i,j)(xi, xj) does
not have to be a symmetric function with respect to xi and xj.

Let us introduce an orthonormal set {φk(x) ∈ R | k = 0, 1, 2, . . . , q − 1} such that

q−1∑

x=0

φk(x)φl(x) = δk,l, (2)

where δk,l is the Kronecker delta. If the orthonormal set is a basis, we can expand a function
f(x) of an integer variable x ∈ {0, 1, . . . , q − 1} by using the orthonormal set as

f(x) =
q−1∑

k=0

αkφk(x), where αk :=
q−1∑

x=0

f(x)φk(x),

One possible choice of orthonormal set is the set of Chebyshev polynomials given in Appendix
A. We use the Chebyshev polynomials as the orthonormal set in this paper.

Using the orthonormal set of polynomials, we can expand the potential functions θi(xi) and
w(i,j)(xi, xj) as

θi(xi) =
q−1∑

k=0

u[i,k]φk(xi) and w(i,j)(xi, xj) =
q−1∑

k,l=0

J[i,k],[j,l]φk(xi)φl(xj), (3)
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respectively, where u[i,k] and J[i,k],[j,l] are constants given by

u[i,k] :=
q−1∑

xi=0

θi(xi)φk(xi) and J[i,k],[j,l] :=
q−1∑

xi,xj=0

w(i,j)(xi, xj)φk(xi)φl(xj), (4)

respectively. When the functional forms of the potential functions have been specified, the
values of the constants are identified uniquely via (4). By these definitions, J[i,k],[j,l] = J[j,l],[i,k]

are satisfied, but J[i,k],[j,l] ̸= J[i,l],[j,k] in general. By using the expansions in (3) and the relation
φ0(x) = 1/√q (see Appendix A), the MRF in (1) can be rewritten as

PG(x) = PG(x | h,J) =
1

Z(h,J)
exp

(
−H(x;h,J)

)
, (5)

where

H(x;h,J) := −
q−1∑

k=1

h[i,k]φk(xi) −
1
2

∑

(i,j)∈E

q−1∑

k,l=1

J[i,k],[j,l]φk(xi)φl(xj)

and the expression Z(h,J) is the partition function. The expression h[i,k] is defined by

h[i,k] := u[i,k] +
1
√

q

∑

j∈∂(i)

J[i,k],[j,0] = u[i,k] +
1
q

∑

j∈∂(i)

q−1∑

xi,xj=0

w(i,j)(xi, xj)φk(xi).

The notation ∂(i) is the set of nodes connecting to node i. In the expression in (5), the constant
terms are neglected because they have no influence on the probability. This rewritten expansion
of MRF is in the exponential family. Therefore, it can be found that we can obtain a distribution
in the exponential family that is equivalent to the pairwise MRF in (1) by using the orthonormal
expansion. In the following, we refer the distribution (5) as “the expanded pairwise MRF”.

3. Gibbs Free Energy and Diagonal-Block Consistency
In this section, we formulate a Gibbs free energy (GFE) and its diagonal-block consistency for
the expanded pairwise MRF. GFE representations and their diagonal-block consistencies are
important components for I-SusPs provided in section 4.

3.1. Gibbs Free Energy
Let us introduce a GFE, which is a dual form of the Helmholtz free energy (HFE) defined by
F (h,J) := − ln Z(h,J), in the following variational way. Let us define the variational function
with respect to a trial distribution Q(x):

F [Q] :=
∑

x

H(x)Q(x) +
∑

x

Q(x) ln Q(x), (6)

and consider the minimization of the variational function under the restrictions
∑

x

Q(x) = 1, and
∑

x

φk(xi)Q(x) = m[i,k].

These are the restrictions for normalizing and expectations, respectively. By using the Lagrange
multipliers, the constrained minimization of F [Q] leads to a GFE as follows:

G(m) := min
Q

extr
z,γ

{
F [Q] − z

( ∑

x

Q(x) − 1
)
−

∑

i∈V

γi

( ∑

x

φk(xi)Q(x) − m[i,k]

)}
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= −htm + max
γ

(
γtm + F (γ,J)

)
, (7)

where the notation “extr” denotes the extremum with respect to the assigned parameters and the
notation t is the transposition. In the GFE, we regard m = {m[i,k] | i ∈ V ; k = 1, 2, . . . , q − 1}
as the independent variables. Expression γ = {γi,k | i ∈ V ; k = 1, 2, . . . , q − 1} denote the
Lagrange multipliers for the constraints for the corresponding expectations. The expression
G(m) is the GFE of the present system and is regarded as a dual expression of the HFE by
the following reasoning. Suppose that m† are the values of m that minimize the GFE, i.e.,
m† = arg minmG(m), the following relations are satisfied:

G(m†) = F (h,J) and m†
[i,k] =

∑

x

φk(xi)PG(x | h,J) =: mex
[i,k]. (8)

This fact can be easily verified as follows. From the minimum condition of (7) with respect to
m, we obtain

−h[i,k] + γ∗
[i,k] = 0, (9)

where γ∗ are values of γ that satisfy the maximum conditions in (7), i.e., γ∗ = arg maxγ
(
γtm+

F (γ,J)
)
, and therefore, γ∗ satisfy relations

m[i,k] =
∑

x

φk(xi)PG(x | γ∗,J). (10)

Using (9) and (10), we arrive at the relations in (8).

3.2. Linear Response Relation and Diagonal-Block Consistency
It is known that the GFE satisfies a linear response relation that is obtained in the following
way. By differentiating (10) with respect to m[j,l], we obtain

δi,jδk,l =
∑

i′∈V

q−1∑

r=1

(
⟨φk(xi)φr(xi′)⟩γ∗ − m[i,k]m[i′,r]

)∂γ∗
[i′,r]

∂m[j,l]
, (11)

where notation ⟨· · ·⟩γ∗ denotes the expectation with respect to distribution PG(x | γ∗,J). Since
∂2G(m)/∂m[i,k]∂m[j,l] = ∂γ∗

[i,k]/∂m[j,l], (11) is collectively expressed by

H(m)−1 = χ(m), (12)

where n(q − 1) × n(q − 1) matrices H(m) and χ(m) are the Hessian matrix of the GFE and
the susceptibility matrix, respectively. They are defined by

[
H(m)

]
e(i,k),e(j,l)

:=
∂2G(m)

∂m[i,k]∂m[j,l]
,

[
χ(m)

]
e(i,k),e(j,l)

:= ⟨φk(xi)φl(xj)⟩γ∗ − m[i,k]m[j,l],

where e(i, k) := (i − 1)q + k and the notation [· · · ]a,b indicates the (a, b)-element of a matrix.
The relation in (12) is known as one type of linear response relation and always holds for any
m.

By using the relations in (10) and the orthonormal set, one-variable marginal distributions
of PG(x | γ∗,J), Pi(xi | γ∗,J) :=

∑
x\{xi} PG(x | γ∗,J), can be expanded as Pi(xi | γ∗,J) =
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q−1+
∑q−1

k=1 m[i,k]φk(xi). Therefore, because ⟨φk(xi)φl(xi)⟩γ∗ =
∑q−1

xi=0 φk(xi)φl(xi)Pi(xi | γ∗,J),
the diagonal-blocks in χ(m) are explicitly expressed in terms of m as

[
χ(m)

]
e(i,k),e(i,l)

= v(i)
k,l(mi) − m[i,k]m[i,l], (13)

where v(i)
k,l(mi) := δk,l/q +

∑q−1
r=1 m[i,r]Tk,l,r and Tk,l,r :=

∑q−1
x=0 φk(x)φl(x)φr(x). From (12) and

(13), we find that the relations
[
H(m)−1

]
e(i,k),e(i,l)

= v(i)
k,l(mi) − m[i,k]m[i,l] (14)

are also ensured for any m. Relations in (14) are referred to as diagonal-block consistency in
this paper.

Although the diagonal-block consistency holds in the true GFE, the diagonal-block
consistency can be broken if one employs an approximate scheme such as a mean-field
method [12]1. A basic concept of I-SusP is that the diagonal-block consistency is enforced
in an approximate scheme, which is always kept in the exact scheme.

4. Improved Susceptibility Propagation for Pairwise MRF
In this section, an explicit formulation of I-SusP based on the Bethe approximation for (1) is
proposed. First, a general scheme of I-SusP is introduced in section 4.1 in accordance with
[11]. An explicit formulation of I-SusP based on a Bethe approximation is then derived in the
subsequent sections.

4.1. Scheme of Improved Susceptibility Propagation
Let us suppose an approximated GFE formed by

G0(m) := −htm + max
γ

(
γtm + F0(γ,J)

)
, (15)

and consider a minimization of the GFE. When F0(γ,J) is the true HFE, G0(m) is equal to the
true GFE.

The scheme of I-SusP can be described as follows. First, with controllable parameters Λ, we
extend an approximated GFE, G0(m), by adding an extra term as

G1(m,Λ) := G0(m) − 1
2

∑

i∈V

q−1∑

k,l=1

Λ[i,k],[i,l]

(
v(i)
k,l(mi) − m[i,k]m[i,l]

)
. (16)

The extra term is added so that the extended approximate GFE enables to satisfy diagonal-
block consistency2. In the I-SusP on Ising systems, it is known that this extra term eventually
behaves as an Onsager reaction term [11, 15]. The goal of I-SusP is to minimize the extended
approximate GFE in (16) with respect to m with searching values of Λ that satisfy relations

[
H1(m,Λ)−1

]
e(i,k),e(i,l)

= v(i)
k,l(mi) − m[i,k]m[i,l], (17)

where H1(m,Λ) is the Hessian matrix of G1(m,Λ) defined by

[
H1(m,Λ)

]
e(i,k),e(j,l)

:=
∂2G1(m,Λ)
∂m[i,k]∂m[j,l]

.

1 Although the investigations of the breaking in [12] addressed only the Ising case, it is expected that they can
be expanded to other cases involving the multi-valued case presented in this paper.
2 In [15], this term was introduced as the Lagrange multipliers.
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Relations (17) correspond to the diagonal-block consistency in (14).
One can solve the I-SusP by using the following way. When m = m̂(Λ), where m̂(Λ) :=

arg minmG1(m,Λ), relations (17) can be rewritten as

χ̂[i,k],[i,l](Λ) = v(i)
k,l(m̂i(Λ)) − m̂[i,k](Λ)m̂[i,l](Λ), (18)

where χ̂[i,k],[j,l](Λ) := ∂m̂[i,k](Λ)/∂h[j,l] (see (B.2) in Appendix B). Therefore, the framework of
I-SusP is summarized as follows:

STEP 1 Given Λ, minimize G1(m,Λ) with respect to m: m̂(Λ) = arg minmG1(m,Λ)
STEP 2 For the given Λ and m̂(Λ), compute χ̂[i,k],[j,l](Λ) = ∂m̂[i,k](Λ)/∂h[j,l].
STEP 3 Solve (18) with respect to Λ.
STEP 4 Repeat from STEP1 to STEP3 until convergence.

Equation (18) is termed the diagonal-block matching equation in this paper, because it leads
to the matching of the diagonal-blocks of the susceptibilities obtained by an approximation with
those obtained by an exact evaluation. Note that, because the parameters Λ are treated as
independent variables in (18), the derivatives of Λ with respect to h are zero in the right hand
side of (18). An alternative interpretation of the diagonal-block consistency in (17) and the
diagonal-block equation was provided in Appendix C.

When G0(m) = G(m), parameters Λ automatically vanish because the diagonal-block
consistency always holds in the true GFE (see Appendix C). However, if G0(m) is an approximate
GFE that breaks the diagonal-block consistency, parameters Λ remain to enforce the diagonal-
block consistency.

4.2. Minimization of Extended Bethe-Gibbs Free Energy
In this section, we construct the extended GFE, G1(m,Λ), by using a Bethe free energy, and
subsequently, we derive a message-passing equation for minimization G1(m,Λ) with respect to
m.

In the context of the Bethe approximation based on the cluster variational method presented
in [17], the HFE, F (h,J), is approximated by F (h,J) ≈ F0(h,J) = minz FB(z | h,J), where

FB(z | h,J)

:= min
ξ

(
− htz − 1

2

∑

(i,j)∈E

q−1∑

k,l=1

J[i,k],[j,l]ξ[i,k],[j,l] +
∑

i∈V

(
1 − |∂(i)|

) q−1∑

xi=0

Pi(xi | zi) lnPi(xi | zi)

+
1
2

∑

(i,j)∈E

q−1∑

xi,xj=0

P(i,j)(xi, xj | zi,zj) lnP(i,j)(xi, xj | zi,zj)
)

(19)

is the Bethe free energy for (5) expressed by the moment representation. Marginal distributions
Pi(xi | zi) and P(i,j)(xi, xj | zi,zj) are defined by Pi(xi | zi) = q−1 +

∑q−1
k=1 z[i,k]φk(xi) and

P(i,j)(xi, xj | zi,zj) :=
1
q2

+
1
q

q−1∑

k=1

(
z[i,k]φk(xi) + z[j,k]φk(xj)

)
+

q−1∑

k,l=1

ξ[i,k],[j,l]φk(xi)φl(xj),

respectively [17]. It is noteworthy that the minimization of the Bethe free energy with respect
to z can be done without any constraints, because, by the properties of the present orthogonal
set and by the fact that φ0(x) is a constant, marginal distributions Pi(xi | zi) and P(i,j)(xi, xj |
zi,zj) always satisfy the normalization and reducibility conditions, i.e.,

∑q−1
xi=0 Pi(xi | zi) = 1,
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∑q−1
xi,xj=0 P(i,j)(xi, xj | zi,zj) = 1, and

∑q−1
xj=0 P(i,j)(xi, xj | zi,zj) = Pi(xi | zi). These can be

verified by using the relation

q−1∑

x=0

φk(x) =
√

qδk,0. (20)

This is one of merits of the orthonormal expansion employed in this paper.
By employing the Bethe free energy as F0(γ,J) in (15), expression G0(m), namely the Bethe-

Gibbs free energy, is expressed as

G0(m) = −htm + max
γ

(
γtm + min

z
FB(z | γ,J)

)
.

The maximum condition of the right hand side of this equation with respect to γ leads to
m = z∗, where z∗ are the values of z that minimize FB(z | γ,J). By using this relation we can
reach G0(m) = FB(m | h,J). Therefore, the extended Bethe-Gibbs free energy corresponding
to (16) is expressed as

G1(m,Λ) = FB(m | h,J) − 1
2

∑

i∈V

q−1∑

k,l=1

Λ[i,k],[i,l]

(
v(i)
k,l(mi) − m[i,k]m[i,l]

)
(21)

in this case.
In the following, let us derive a message-passing equation to minimize G1(m,Λ) with respect

to m. The minimum conditions of (21) with respect to m yield

− H[i,k] +
(
1 − |∂(i)|

) q−1∑

xi=0

φk(xi) lnPi(xi | mi) +
1
q

∑

j∈∂(i)

q−1∑

xi,xj=0

φk(xi) lnP(i,j)(xi, xj | mi,mj) = 0,

(22)

where

H[i,k] := h[i,k] +
1
2

q−1∑

a,b=1

Λ[i,a],[i,b]Ta,b,k −
q−1∑

a=1

Λ[i,k],[i,a]m[i,a].

The minimum conditions in FB(m | h,J) with respect to ξ lead to

−J[i,k],[j,l] +
q−1∑

xi,xj=0

φk(xi)φl(xj) lnP(i,j)(xi, xj | mi,mj) = 0. (23)

By combining (23) with (22), we arrive at the message-passing equation expressed by

M(k)
j→i =

q−1∑

xi=0

φk(xi) ln
q−1∑

xj=0

exp
(
Hj→i(xi, xj)

)
, (24)

where Hj→i(xi, xj) :=
∑q−1

a=1

(
H[j,a] +

∑
r∈∂(j)\{i} M

(a)
r→j

)
φa(xj) +

∑q−1
a,b=1 J[i,a],[j,b]φa(xi)φb(xj).

The expression M(k)
j→i denotes a message from node j to node i.
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By using solutions to the message-passing equation, the values of m that minimize the
extended Bethe free energy (21) are expressed by

m[i,k] =
1
Zi

q−1∑

xi=0

φk(xi) exp
{ q−1∑

a=1

(
H[i,a] +

∑

j∈∂(i)

M(a)
j→i

)
φa(xi)

}
, (25)

where expression Zi is the normalizing constant defined by

Zi :=
q−1∑

xi=0

exp
{ q−1∑

a=1

(
H[i,a] +

∑

j∈∂(i)

M(a)
j→i

)
φa(xi)

}
.

Equations (24) and (25) are obtained by similar manipulations presented in [17]. The details of
these derivation are described in Appendix D. By solving (24) and (25), we obtain the values
of m that minimize (21) for a given Λ. Note that solutions to (24) and (25) are equivalent to
those to the usual BP if Λ = 0 are fixed.

4.3. Improved Susceptibility Propagation using Bethe Approximation
In this section, we derive the the diagonal-block equation corresponding to (18) for (21).

By differentiating (25) with respect to h[j,l], we obtain

χ̂[i,k],[j,l] =
q−1∑

a=1

(
δi,jδa,l −

q−1∑

b=1

Λ[i,a],[i,b]χ̂[i,b],[j,l] +
∑

r∈∂(i)

∂M(a)
r→i

∂h[j,l]

)(
v(i)
k,a(mi) − m[i,k]m[i,a]

)
, (26)

where χ̂[i,k],[j,l] = ∂m[i,k]/∂h[j,l]. The derivatives of messages are obtained by solving

∂M(k)
j→i

∂h[u,v]
=

q−1∑

a=1

(
δj,uδa,v −

q−1∑

b=1

Λ[j,a],[j,b]χ̂[j,b],[u,v] +
∑

r∈∂(j)\{i}

∂M(a)
r→j

∂h[u,v]

)

×
q−1∑

xi=0

φk(xi)

∑q−1
xj=0 φa(xj) exp

(
Hj→i(xi, xj)

)

∑q−1
xj=0 exp

(
Hj→i(xi, xj)

) . (27)

Equation (27) is obtained by differentiating (24) with respect to h[u,v]. By letting i = j in (26)
and by using the relation in (18), i.e., χ̂[i,k],[i,l] = v(i)

k,l(mi) − m[i,k]m[i,l], we have

q−1∑

a,b=1

Λ[i,a],[i,b]

[
νi

]
b,l

[
νi

]
k,a

=
q−1∑

a=1

[
νi

]
k,a

∑

j∈∂(i)

∂M(a)
j→i

∂h[i,l]
, (28)

where (q − 1) × (q − 1) matrix νi is defined by
[
νi

]
k,l

:= v(i)
k,l(mi) − m[i,k]m[i,l]. In the I-SusP

based on the Bethe approximation, (28) corresponds to the diagonal-block matching equation
in (18). Relations in (28) are collectively expressed as νiΛiνi = Ki, where (q − 1) × (q − 1)
matrices Λi and Ki are defined by

[
Λi

]
k,l

:=Λ [i,k],[i,l] and
[
Ki

]
k,l

:=
q−1∑

a=1

(
v(i)
k,a(mi) − m[i,k]m[i,a]

) ∑

j∈∂(i)

∂M(a)
j→i

∂h[i,l]
,
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respectively. Therefore, we obtain

Λi = ν−1
i Kiν

−1
i . (29)

By this equation, we can obtain the values of Λ that satisfy the diagonal-block matching equation
in (28).

By simultaneously solving (24)–(27), and (29), we obtain solutions to the proposed I-SusP
based on the Bethe approximation. It is noteworthy that the I-SusP is reduced to a usual SusP
if Λ = 0 are fixed.

5. Application to Generalized Sparse Priors for Natural Images
An image prior model using MRF, called the generalized sparse prior, which takes the form

θi(xi) = 0, w(i,j)(xi, xj) = −αij|xi − xj|p (30)

was proposed [18], where αij = αji. This image prior includes some conventional image priors
as special cases, because it is reduced to Q-Ising image priors when p = 2 and is reduced to
Q-Potts priors when p → 0. By changing the value of p, we can adjust the smoothness, the
flatness, and the appearance frequency of edges in images. It is believed that values of p near
0.5 are appropriate for natural images.

In the following, let us consider a direct problem and an inverse problem on the generalized
sparse prior on an L × L grid system, in which interaction parameters α are independently
drawn from Gaussian p(αij | σ) := (

√
2πσ2)−1 exp(−α2

ij/2σ
2) and the flatness parameter p is

set to 0.5.

5.1. Direct Problem on Generalized Sparse Priors
Given α = {αij} and p, in order to compute statistical quantities on a generalized sparse prior,
let us apply the I-SusP proposed in the previous section to the generalized sparse priors.
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Figure 1. Plots of results of the direct problem on the generalized sparse priors when L = 3.
(a): Comparison of local magnetizations obtained by the I-SusP with ones obtained by the BP.
(b): Comparison local susceptibilities obtained by the I-SusP with those obtained by the BP.
Each plot is averaged over 1000 trials.

In figure 1, mean absolute errors (MAEs) of magnetizations and susceptibilities between true
values and values obtained by approximate methods against σ are plotted when L = 3. We see
that the proposed I-SusP overcomes the normal SusP.
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5.2. Inverse Problem using Observations Generated from Generalized Sparse Priors
In this section, let us solve an inverse problem, the so called inverse Ising problem, using the I-
SusP without specifying the functional forms of potential functions {θi(xi)} and {w(i,j)(xi, xj)}.
That is, we consider a non-parametric learning in this section.

Suppose that M data points, D = {x(µ) | µ = 1, 2, . . . ,M}, are given. The aim of the inverse
problem on which we focus in this section is to find the values of parameters h and J that
maximize the log-likelihood function

lD(h,J) :=
1
M

M∑

µ=1

ln PG(x(µ) | h,J). (31)

The derivatives of the log-likelihood function with respect to h and J are

∆h[i,k]
(h,J) :=

∂lD(h,J)
∂h[i,k]

= ⟨φk(xi)⟩D −
∑

x

φk(xi)PG(x | h,J)

and

∆J[i,k],[j,l]
(h,J) :=

∂lD(h,J)
∂J[i,k],[j,l]

= ⟨φk(xi)φl(xj)⟩D −
∑

x

φk(xi)φl(xj)PG(x | h,J),

respectively, where ⟨· · ·⟩D is a sample average of given data points. Because the log-likelihood
function (31) is a concave function with respect to the parameters, a maximum point of the
log-likelihood can be found by a gradient ascent method:

hnew
[i,k] = hold

[i,k] + η∆h[i,k]
(hold,Jold), (32)

Jnew
[i,k],[j,l] = Jold

[i,k],[j,l] + η∆J[i,k],[j,l]
(hold,Jold), (33)

where η is a small positive constant.
To apply the I-SusP to the inverse problem, the derivatives are approximated by

∆h[i,k]
(h,J) ≈ ∆app

h[i,k]
(h,J) := ⟨φk(xi)⟩D − mi,k, (34)

∆J[i,k],[j,l]
(h,J) ≈ ∆app

J[i,k],[j,l]
(h,J) := ⟨φk(xi)φl(xj)⟩D −

(
χ̄[i,k],[j,l] + mi,kmj,l

)
, (35)

where m and χ̄ are solutions to the I-SusP. By solving (24)–(27), (29), and (32) and (33) with
the approximations in (34) and (35), we can solve the inverse problem by using the I-SusP for
the given data set D. If Λ = 0 are fixed, we can obtain solutions based on the SusP. In the
following, results of the inverse problem using data points generated from the generalized sparse
priors are shown.

In figure 2, MAEs between true biases h and interactions J and those obtained by
approximate methods are plotted for q = 3 and q = 4 when L = 3. Here, instead of sampled
expectations, true statistical values of the generalized sparse priors are used, namely, we consider
an identical case where M → ∞. The results of the BP in these plots are obtained by using a
non-iterative method proposed in [17]. The results obtained by the SusP are poor and nearly
the same as those obtained by the BP in the region of large σ. In contrast, the results obtained
by the I-SusP are improved for the whole region.

Results of the inverse problem when L = 8 and q = 3 for σ = 0.4 and σ = 0.8 are shown in
table 1. In these experiments, M = 10000 data points, that are generated by using the Markov
chain Monte Carlo (MCMC) method on the generalized sparse priors, are used. We can see that
the I-SusP gives the best results.
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Figure 2. Plots of results of the inverse problem on the generalized sparse priors when L = 3.
(a) and (c): MAEs of biases obtained by the BP, the SusP, and the I-SusP when q = 3 and
q = 4, respectively. (b) and (d): MAEs of interactions obtained by the BP, the SusP, and the
I-SusP when q = 3 and q = 4, respectively. Each plot is averaged over 1000 trials.

Table 1. Results of the inverse problem on the generalized sparse priors when L = 8 and q = 3.
M = 10000 data points generated by using MCMC method on the generalized sparse prior are
used. Each value is averaged over 30 trials.

σ MAE of biases MAE of interactions
BP 0.4 0.0153 0.0262

0.8 0.0197 0.0417
SusP 0.4 0.0153 0.0248

0.8 0.0295 0.0365
I-SusP 0.4 0.0152 0.0246

0.8 0.0184 0.0278

6. Conclusion and Discussion
In this paper, the generalization scheme of I-SusP using the orthogonal expansion was proposed
in which any pairwise potential functions and multi-valued random variables are acceptable.
Moreover, the proposed I-SusP is applied to the direct and the inverse problems on generalized
sparse priors for natural images. The constraints of diagonal-block consistencies improved the
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performances of the algorithms and yielded results that surpass those obtained by conventional
methods.

Although the orthogonal expansion using Chebyshev polynomials employed in this paper
should not be the only possible choice for a generalization, it enables us to reach moment
representations of free energies as presented in (19) and can make subsequent manipulations
clear. This could help us in future developments, especially in inverse problems, as it helped us
in inverse problems of the normal BP level [17].

In the usual SusP scheme, we first solve the BP ((24) and (25) with Λ = 0), and obtain
solutions to the BP. These solutions are the values of the local magnetizations and the messages.
Subsequently, to obtain the susceptibilities, we solve the SusP ((26) and (27) with Λ = 0) by
using the solutions of the BP. Therefore, in the conventional scheme shown in figure 3 (a),
the results of the SusP have no effect on the BP. In contrast, the scheme of I-SusP shown in

Belief Propagation:  m, '

(a) (b)

Figure 3. Illustration of schemes of (a) normal SusP and (b) I-SusP.

figure 3 (b) includes feedback from the SusP to the BP through parameters Λ. This feedback
marks a significant difference between the scheme of conventional SusP and the scheme of I-SusP.
It is noteworthy that the computational cost of solving the I-SusP is the same as that of solving
the usual SusP, because the diagonal-block matching equation in (29) does not contribute to the
order of the total computational cost.

One of the most interesting future applications is a direct and an inverse problem in the deep
Boltzmann machine [19, 20], which is a Boltzmann machine with a hierarchical structure and
one of the most important learning models in the recent machine learning field.
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Appendix A. Chebyshev Polynomials
One possible choice of orthonormal set is given by [21]

φk(x) := (−1)kψk(x)

√
(2k + 1)[(q − 1)!]2

(q + k)!(q − k − 1)!
(A.1)

for x = 0, 1, . . . , q−1 and k = 0, 1, . . . , q−1, where {ψk(x) | k = 0, 1, . . . , q−1} are the Chebyshev
polynomials in the discrete range given by

ψk(x) :=
k∑

l=0

(−1)l
(

k

l

)(
k + l

l

)
x!(q − l − 1)!

Γ(x − l + 1)(q − 1)!
, (A.2)
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where Γ(x) is the gamma function. The Chebyshev polynomials (A.2) are also given by the
recursion formula

(k + 1)(q − 1 − k)ψk+1(x) = −(2x − q + 1)(2k + 1)ψk(x) − k(q + k)ψk−1(x),

starting from ψ0(x) = 1 and ψ1(x) = 1 − 2x/(q − 1). From (A.1) and (A.2), we have

φ0(x) = 1/
√

q,φ 1(x) =
√

3(2x − q + 1)/
√

q(q2 − 1),

and so on.

Appendix B. Linear Response Relation for Approximate GFEs
For m = {m[i,k] | i ∈ V ; k = 1, 2, . . . , q − 1}, let us consider a function expressed in the form

Ĝ(m) = −htm + ĝ(m).

It is to be noted that this expression includes all the GFEs (G(m), G0(m), and G1(m)) presented
in this paper. At a minimum of the function, from its extremal condition, relations

−h[i,k] +
∂ĝ(m)
∂m[i,k]

∣∣∣∣
m=m⋆

= 0 (B.1)

hold, where m⋆ := arg minm Ĝ(m). By differentiating (B.1) with respect to h[j,l], we obtain

δi,j =
∑

r∈V

q−1∑

a=1

∂2ĝ(m)
∂m[i,k]∂m[r,a]

∣∣∣∣
m=m⋆

∂m⋆
[r,a]

∂h[j,l]
=

∑

r∈V

q−1∑

a=1

∂2Ĝ(m)
∂m[i,k]∂m[r,a]

∣∣∣∣∣
m=m⋆

∂m⋆
[r,a]

∂h[j,l]
.

This expression indicates that the relation

Ĥ−1 = χ⋆ (B.2)

holds, where matrix Ĥ denotes the Hessian matrix of Ĝ(m) defined by

[
Ĥ(m)

]
e(i,k),e(j,l)

:=
∂2Ĝ(m)

∂m[i,k]∂m[j,l]

∣∣∣∣∣
m=m⋆

,

and matrix χ⋆ is defined by [χ⋆]e(i,k),e(j,l) := ∂m⋆
[i,k]/∂h[j,l].

Appendix C. Variational Interpretation of Diagonal-Block Equation
The diagonal-block matching equation in (18) is introduced to overcome the diagonal-block
inconsistency problem. Here, we provide an alternative interpretation of the equation.

First, we define a measure of closeness between two positive definite symmetric matrices, A
and B, in terms of the Kullback-Leibler divergence as

D(A||B) :=
∫ ∞

−∞
dx N (x | A) ln

N (x | A)
N (x | B)

,

where N (x | Σ) ∝ exp(−2−1xtΣx) represents the multivariate zero-mean Gaussian with the
covariance matrix Σ−1. From the properties of the Kullback-Leibler divergence, D(A||B) ≥
0 and D(A||B) = 0 if and only if A = B is ensured. Let us consider the quantity
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D(H(m)||H1(m,Λ)), where H(m) is the Hessian matrix of true GFE defined in section 3.2 and
H1(m,Λ) is the Hessian matrix of G1(m,Λ) defined in (4.1). Minimizing D(H(m)||H1(m,Λ))
corresponds to minimizing the distance 3 between the true Hessian matrix and Hessian matrix
H1(m,Λ).

The minimum conditions of D(H(m)||H1(m,Λ)) with respect to Λ are

v(i)
k,l(mi) − m[i,k]m[i,l] =

[
H1(m,Λ)−1

]
e(i,k),e(i,l)

, (C.1)

where we use the fact that
[
H(m,Λ)−1

]
e(i,k),e(i,l)

= v(i)
k,l(mi) − m[i,k]m[i,l] holds for any m in

(14). The minimum conditions in (C.1) correspond to (17) for any m. When m = m̂(Λ),
upon using (B.2), (C.1) yields (18). Therefore, we can reinterpret the diagonal-block matching
equation as the condition of minimization of distance between the true Hessian matrix and its
approximation in terms of the Kullback-Leibler divergence at m = m̂(Λ).

When G0(m) = G(m), minimization of D(H(m)||H1(m,Λ)) obviously leads to Λ = 0
because H1(m,Λ) = H(m,Λ) + Λ, where Λ is the diagonal-block matrix defined by
[Λ]e(i,k),e(j,l) := δi,jΛ[i,k],[i,l].

Appendix D. Derivation of Message-Passing Equation in (24)
As mentioned in section 4.2, the one-variable and the two-variable marginal distributions are
expressed as

Pi(xi | mi) =
1
q

+
q−1∑

k=1

m[i,k]φk(xi), (D.1)

P(i,j)(xi, xj | mi,mj) =
1
q2

+
1
q

q−1∑

k=1

(
m[i,k]φk(xi) + m[j,k]φk(xj)

)
+

q−1∑

k,l=1

ξ[i,k],[j,l]φk(xi)φl(xj).

(D.2)

Since relations
∑q−1

xj=0 P(i,j)(xi, xj | mi,mj) = Pi(xi | mi) always hold, relations

q−1∑

xi=0

φk(xi) lnPi(xi | mi) =
q−1∑

xi=0

φk(xi) ln
q−1∑

xj=0

P(i,j)(xi, xj | mi,mj) (D.3)

also hold.
We can express (22) as

−H[i,k] +
q−1∑

xi=0

φk(xi) lnPi(xi | mi) −
∑

j∈∂(i)

M(k)
j→i = 0, (D.4)

where

M(k)
j→i :=

q−1∑

xi=0

φk(xi) lnPi(xi | mi) −
1
q

q−1∑

xi,xj=0

φk(xi) lnP(i,j)(xi, xj | mi,mj). (D.5)

3 This measure is generally not a distance in a precise mathematical sense, because D(A||B) ̸= D(B||A).
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Without loss of generalities, we can rewrite Pi(xi | mi) as

Pi(xi | mi) = exp
(
lnPi(xi | mi)

)
∝ exp

( q−1∑

k=1

c[i,k]φk(xi)
)
, (D.6)

where c[i,k] :=
∑Q−1

xi=0 φk(xi) lnPi(xi | mi) and relation φ0(xi) = 1/√q is used. Substituting
(D.6) in (D.4) and using (20), we get

c[i,k] = H[i,k] +
∑

j∈∂(i)

M(k)
j→i. (D.7)

Therefore, from (D.6) and (D.7), Pi(xi | mi) is expressed as

Pi(xi | mi) =
1
Zi

exp
{ Q−1∑

k=1

(
H[i,k] +

∑

j∈∂(i)

M(k)
j→i

)
φk(xi)

}
, (D.8)

where Zi is the normalization constant. On the other hand, from (D.1) and (20), relations

q−1∑

xi=0

φk(xi)Pi(xi | mi) = m[i,k] (D.9)

should always hold. Combining (D.8) with (D.9), we arrive at (25).
In the following, we derive an alternative expression of the two-variable marginal distribution

in a similar way to above derivation. Without loss of generalities, we can rewrite P(i,j)(xi, xj |
mi,mj) as

P(i,j)(xi, xj | mi,mj) = exp
(
lnP(i,j)(xi, xj | mi,mj)

)

∝ exp
( 1
√

q

q−1∑

k=1

d[i,k],[j,0]φk(xi) +
1
√

q

q−1∑

l=1

d[i,0],[j,l]φl(xj) +
q−1∑

k,l=1

d[i,k],[j,l]φk(xi)φl(xj)
)
, (D.10)

where d[i,k],[j,l] :=
∑q−1

xi,xj=0 φk(xi)φl(xj) lnP(i,j)(xi, xj | mi,mj). From (23), we find

d[i,k],[j,l] = J[i,k],[j,l] (D.11)

for 1 ≤ k ≤ q − 1 and 1 ≤ l ≤ q − 1. Using (D.4), (D.5), and the definition of d[i,k],[j,l], we get

M(k)
j→i =

q−1∑

xi=0

φk(xi) lnPi(xi | mi) −
1
√

q

q−1∑

xi,xj=0

φk(xi)φ0(xj) lnP(i,j)(xi, xj | mi,mj)

= H[i,k] +
∑

j∈∂(i)

M(k)
j→i −

1
√

q
d[i,k],[j,0]. (D.12)

Similarly, we can obtain

M(l)
i→j = H[j,l] +

∑

i∈∂(j)

M(l)
i→j −

1
√

q
d[i,0],[j,l]. (D.13)
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From (D.10)–(D.13), we find

P(i,j)(xi, xj | mi,mj) =
1

Z(i,j)
exp

{ q−1∑

k=1

(
H[i,k] +

∑

r∈∂(i)\{j}

M(k)
r→i

)
φk(xi)

+
q−1∑

l=1

(
H[j,l] +

∑

r∈∂(j)\{i}

M(l)
r→j

)
φl(xj) +

Q−1∑

k=1

Q−1∑

l=l

J (k,l)
(i,j) φk(xi)φl(xj)

}
,

(D.14)

where Z(i,j) is the normalization constant.
Substituting (D.8) and (D.14) in (D.3) and using (2) and (20), we can reach the message-

passing equation in (24).
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[10] Mézard M and Mora T 2009 Journal of Physiology-Paris 103 107–13
[11] Yasuda M and Tanaka K 2013 Phys. Rev. E 87 012134
[12] Yasuda M and Tanaka K 2007 J. Phys. A: Math. and Theor. 40 9993–10007
[13] Opper M and Winther O 2001 Phys. Rev. Lett. 86 3695–9
[14] Opper M and Winther O 2001 Phys. Rev. E 64 056131
[15] Raymond J and Ricci-Tersenghi F 2013 In IEEE ICC’13 - Workshop on Networking across disciplines:

Communication Networks, Complex Systems and Statistical Physics (NETSTAT) (ICC’13 - IEEE ICC’13
Workshop NETSTAT)

[16] Raymond J and Ricci-Tersenghi F 2013 Phys. Rev. E 87 05211
[17] Yasuda M, Kataoka S and Tanaka K 2012 J. Phys. Soc. Jpn. 81 044801
[18] Tanaka K, Yasuda M and Titterington D M 2012 J. Phys. Soc. Jpn. 81 114802
[19] Salakhutdinov R and Hinton G E 2009 Proceedings of the 12th International Conference on Artificial

Intelligence and Statistics (AISTATS 2009) (Clearwater Beach, FL) pp 448–55
[20] Salakhutdinov R and Hinton G E 2012 Neural Computation 24 1967–2006
[21] Morita T 1993 J. Phys. Soc. Jpn. 62 4218–23

ELC International Meeting on Inference, Computation, and Spin Glasses (ICSG2013) IOP Publishing
Journal of Physics: Conference Series 473 (2013) 012006 doi:10.1088/1742-6596/473/1/012006

16


