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Abstract. The labeled-unlabeled classification problem in semi-supervised learning is studied
via statistical-mechanics approach. We analytically investigate performance of a learner with
an equal-weight mixture of two symmetrically-located Gaussians, performing posterior mean
estimation of the parameter vector on the basis of a dataset consisting of labeled and unlabeled
data generated from the same probability model as that assumed by the learner. Under the
assumption of replica symmetry, we have analytically obtained a set of saddle-point equations,
which allows us to numerically evaluate performance of the learner. On the basis of the analytical
result we have observed interesting phenomena, in particular the coexistence of good and bad
solutions, which may happen when the number of unlabeled data is relatively large compared
with that of labeled data.

1. Introduction

In the basic framework of classification problems, one is given a dataset of labeled data
Dl = {(xµ, yµ) : µ = 1, . . . , L}, where x

µ and yµ are the feature vector and the class label
of datum µ, respectively, and infers the rule of the classification underlying the dataset Dl. This
framework is categorized as supervised learning in learning theory, because one can regard that a
supervisor has provided the class labels yµ on the basis of the features xµ. Although classification
problems have mainly been studied as supervised learning, it might not be reasonable to expect
in real-world classification problems that a dataset containing a sufficient number of labeled data
is available. In some applications only human experts can serve as the supervisor providing the
class labels in the dataset. In some other cases it is very expensive and/or time-consuming to
obtain the class labels. Hence, a typical situation in this respect is that only a limited number
of labeled data are available, whereas a relatively larger number of unlabeled data are easily
obtained. In the era of “big data,” one should face with such a situation more than before, in
a wide variety of applications. Classification problems in such situations are generically called
labeled-unlabeled classification problems [1].

One may consider two extreme strategies for a labeled-unlabeled classification problem. One
extreme is to just ignore unlabeled data and to make use of available labeled data only in
learning. This strategy is of course not optimal in typical problem settings, since unlabeled data
may provide some additional information about the underlying classification rule. The other
extreme is first to perform learning on labeled data, to estimate labels for unlabeled data on the
basis of the result of the learning, and then to perform learning using the labeled data as well as
the unlabeled data accompanied with the estimated labels. The process may be iterated until
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convergence is achieved. This strategy can be problematic if only a few number of labeled data
are available so that the result of the initial learning, on the basis of which one estimate labels
of unlabeled data, is unreliable.

Several methods have been proposed to deal with labeled-unlabeled classification problems.
Readers are referred to surveys [1, 2] and a book [3] for reviews of these methods. They have
been tested empirically, often with significant performance gains compared with the extreme
strategy of ignoring unlabeled data, and in some cases performing almost as good as the fully-
supervised cases. To the author’s knowledge, however, there are only a few analytical studies
in the literature on the theoretical upper limit of how well one can utilize unlabeled data in
labeled-unlabeled classification problems.

In this paper we report some results of our preliminary analysis on the labeled-unlabeled
problem. We focus on the problem with two classes, and assume that the classes are represented
with multivariate Gaussian distributions. In contrast to the standard asymptotic theory in
statistics, where one fixes the dimension of the feature space and takes the limit of large numbers
of data [4, 5], we study in this paper the case where the dimension of the feature space tends to
infinity proportionally to the numbers of labeled and unlabeled data, which is a typical problem
setting in the framework of the statistical-mechanics approach to information processing [6, 7].

2. Formulation

We consider the two-class labeled-unlabeled classification problem defined as follows. We assume
that feature vectors of positively- and negatively-labeled data are generated from N -dimensional
Gaussian distributions centered at N−1/2

w0 and −N−1/2
w0, respectively, where w0 ∈ R

N . The
covariance matrices of these Gaussian distributions are assumed to be equal to λ−1

0 I, where I
denotes the identity matrix. The dataset of labeled data is given by

Dl = {(xµ, yµ) ∈ R
N × {−1, 1} : µ = 1, . . . , L}, (1)

where x
µ ∈ R

N and yµ ∈ {−1, 1} denote the feature vector and the class label of datum
µ, respectively. The feature vector x

µ is assumed to have been generated according to the
conditional distribution p(xµ|yµ) = N (yµN−1/2

w0, λ
−1
0 I). The dataset of unlabeled data is

Du = {xµ ∈ R
N : µ = 1, . . . , U}, (2)

where x
µ is assumed to have been generated according to the distribution p(xµ) =

∑

y=±1(1/2)N (yN−1/2
w0, λ

−1
0 I). All the labeled and unlabeled data are assumed independent.

The learner in our labeled-unlabeled classification problem assumes an equal-weight mixture
of symmetrically-located Gaussian distributions:

p(x, y|w) = p(x|y,w)p(y),

p(x|y,w) =

(

λ

2π

)N/2

e−λ‖x−yN−1/2
w‖2/2,

p(y) =
1

2
, y ∈ {−1, 1}, (3)

where w ∈ R
N is the parameter vector of the model assumed by the learner. The learner is

supposed to estimate w on the basis of the dataset of labeled and unlabeled data D = Dl ∪Du.
This is the formulation of the labeled-unlabeled classification problem we discuss in this paper.
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3. Replica analysis

The likelihood function of the parameter w given the dataset of labeled and unlabeled data D
is

p(D | w) =

(

λ

2π

)N(L+U)/2
∏

µ∈Dl

e−λ‖xµ−yµN−1/2
w‖2/2

×
∏

µ∈Du

[

1

2

(

e−λ‖xµ−N−1/2
w‖2/2 + e−λ‖xµ+N−1/2

w‖2/2
)

]

. (4)

We also assume that the learner has as the prior distribution of the parameter vector w the
Gaussian distribution N (0, κ−1I), where κ−1 = ‖w0‖2/N . The posterior distribution of w given
the dataset D is thus given via the Bayes formula as

p(w | D) =
p(w)p(D | w)

∫

p(w′)p(D | w′) dw′
. (5)

Quantities of our interest are those represented as posterior means

E
w|D[f(w)] =

∫

f(w) p(w | D) dw. (6)

Such quantities include the squared error of the posterior mean estimate of w0. Those posterior
means also depend on the dataset D used by the learner. Since the dataset D is assumed to
be generated randomly in our problem setting, the posterior means are also random quantities.
We are thus interested in their averages over randomness of the dataset D, that is,

ED[Ew|D[f(w)]] =

∫∫

f(w) p(w | D)p(D | w0) dw dD

=

∫

∫

f(w) p(w)p(D | w) dw
∫

p(w′)p(D | w′) dw′
p(D | w0) dD. (7)

Analytically evaluating the averages with respect to the randomness of the dataset D poses
the major challenge. We adopt the statistical-mechanics approach and apply the replica method,
in which we evaluate

Ξn = ED

[(∫

p(w)p(D | w) dw

)n]

. (8)

The dataset D serves as the quenched randomness in our problem. The standard prescription of
the replica method is that one evaluates the free energy1 averaged over the randomness of the
dataset D as

F = lim
N→∞

ED

[

1

N
log

∫

p(w)p(D | w) dw

]

= lim
N→∞

1

N
lim
n→0

∂ log Ξn

∂n

= lim
n→0

∂

∂n
lim

N→∞

1

N
log Ξn, (9)

where in the last equality we have interchanged the order of the operations on n and the
thermodynamic limit N → ∞, assuming that this interchange does not affect the end result.

1 Note that in the definition above the overall sign is reversed from the conventional physics definition of “free
energy”. This does not affect the following analysis.
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We then evaluate limN→∞(1/N) log Ξn via the saddle-point method. In evaluating this quantity
we temporarily assume that n is a natural number and rewrite Ξn as

Ξn =

∫

· · ·

∫ n
∏

a=1

[p(wa)p(D | wa)]p(D | w0) dD
n
∏

a=1

dwa

=

∫

· · ·

∫

(

∫ n
∏

a=0

p(D | wa) dD

)

n
∏

a=0

p(wa) dwa, (10)

where we have formally introduced p(w0) to make the resulting formula symmetric in the replica
index a. One can use as p(w0) the “true prior” if one is interested in quantities which are further
averaged over randomness of w0.

Let W = (w0,w1, . . . ,wn). A key observation is that the quantity

∫ n
∏

a=0

p(D | wa) dD, (11)

appearing in the integrand of (10), depends on W only through its normalized Gram matrix
Q = N−1W TW . Omitting details of derivations, we have

lim
N→∞

1

N
log Ξn = sup

Q
[G(Q)− I(Q)] (12)

as the result of applying the saddle-point method, where

G(Q) = −
α+ α′

2
trQΛ + α

1TΛQΛ1

2(λ0 + nλ)
+ α′ log





1

2n+1

∑

s∈{−1,1}n+1

es
TΛQΛs/2(λ0+nλ)



 , (13)

I(Q) = sup
Q̃





∑

a≤b

Q̃abQab +
n
∑

a=1

Q̃0aQ0a − logM(Q̃)



 , (14)

M(Q̃) = E

(

e
∑

a≤b Q̃abwawb+
∑n

a=1
Q̃0aw0wa

)

, (15)

and where we let α = L/N , α′ = U/N , and Λ = diag(λ0, λ, . . . , λ). The expectation in the
last equation is taken over (w1, . . . , wn) ∼ N (0, λ−1I). We have also introduced Q̃ as the
(n+ 1)× (n+ 1) symmetric order-parameter matrix conjugate to the Gram matrix Q.

The function G(Q) represents the exponent of the integrand (11) in terms of the Gram matrix
Q. Large-deviations theory [8] tells us that the rate function I(Q) is obtained via the Legendre
transform of the cumulant generating function logM(Q̃) for the multivariate Gaussian random
variable (w1, . . . , wn) ∼ N (0, λ−1I).

The saddle-point conditions are

Q̃aa = −(α+ α′)
λ(λ0 + (n− 1)λ)

2(λ0 + nλ)
, (16)

Q̃0a =
λ0λ

λ0 + nλ

(

α+ α′

∑

s∈{1,−1}n+1 s0sae
s
TΛQΛs/2(λ′

0
+nλ)

∑

s∈{1,−1}n+1 es
TΛQΛs/2(λ′

0
+nλ)

)

, (17)

Q̃ab =
λ2

λ0 + nλ

(

α+ α′

∑

s∈{1,−1}n+1 sasbe
s
TΛQΛs/2(λ′

0
+nλ)

∑

s∈{1,−1}n+1 es
TΛQΛs/2(λ′

0
+nλ)

)

, (18)

Qab = 〈wawb〉, (19)
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where 〈· · · 〉 is defined as

〈· · · 〉 :=
E

[

(· · · )e
∑

a≤b Q̃abwawb+
∑n

a=1
Q̃0aw0wa

]

E

[

e
∑

a≤b Q̃abwawb+
∑n

a=1
Q̃0aw0wa

] . (20)

In order to proceed further we make the assumption of replica symmetry (RS), where
we assume that the order parameters are invariant under permutations of replica indices
a = 1, . . . , n. We introduce RS order parameters by letting

Qaa = p, Qab = q, Q0a = m,

Q̃aa = p̃, Q̃ab = q̃, Q̃0a = m̃. (21)

Under the RS assumption one has

F = −
(α+ α′)λ

2

(

λ0 − λ

λ0
p+

λ

λ0
q

)

+ αλm+ α′

√

λ0

2πq

∫

e−
λ0
2q

(z−m)2 log coshλz dz

−mm̃− pp̃+
1

2
qq̃ +

1

2

m̃2 + κq̃

κ(κ− 2p̃+ q̃)
+

1

2
log

(

κ

κ− 2p̃+ q̃

)

. (22)

The saddle-point equations for the RS order parameters are

∂mF = αλ+ α′λ

√

λ0

2πq

∫

e
−

λ0
2q

(z−m)2
tanhλz dz − m̃ = 0, (23)

∂pF = −
(α+ α′)λ(λ0 − λ)

2λ0
− p̃ = 0, (24)

∂qF = −
(α+ α′)λ2

2λ0
+

α′λ2

2λ0

√

λ0

2πq

∫

e
−

λ0
2q

(z−m)2
(1− tanh2 λz) dz +

q̃

2
= 0, (25)

∂m̃F = −m+
m̃

κ(κ− 2p̃+ q̃)
= 0, (26)

∂p̃F = −p+
m̃2 + κq̃

κ(κ− 2p̃+ q̃)2
+

1

κ− 2p̃+ q̃
= 0, (27)

∂q̃F =
q

2
−

1

2

m̃2 + κq̃

κ(κ− 2p̃+ q̃)2
= 0. (28)

In the following of this paper we focus on the case where the learner assumes the true noise
variance, that is, where λ0 = λ holds. One has p̃ = 0 under this condition. Rescaling the RS
order parameters as λm → m, λq → q, m̃/λ → m̃, and q̃/λ → q̃, in order to simplify the
argument, the saddle-point equations take the following simple form:

m̃ = α+ α′

√

1

2πq

∫

e−(z−m)2/2q tanh z dz, (29)

q̃ = α+ α′

√

1

2πq

∫

e−(z−m)2/2q tanh2 z dz, (30)

m =
a2m̃

1 + aq̃
, q =

a3m̃2 + a2q̃

(1 + aq̃)2
, (31)
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Figure 1. Mean-squared errors of posterior-mean estimates.

where we have let a = λ/κ, which represents the signal-to-noise ratio of the problem. The
normalized mean-squared error of the posterior mean estimate w against w0 is given in terms
of a saddle-point solution as

E =
q − 2m+ a

a
. (32)

Specifying the signal-to-noise ratio a, as well as the normalized numbers of labeled and
unlabeled data α and α′, one can numerically solve the above saddle-point equations to evaluate
the theoretical performance of the labeled-unlabeled classification problem in terms of the
normalized mean-squared error. This is the main result of this paper.

4. Numerical evaluations

We have numerically evaluated the normalized mean-squared error of the posterior mean
estimate w using the analytical result presented in the previous section. The result is
summarized in figure 1. One can observe in these figures that w0 can be estimated accurately
when α′ is small. As α′ increases, mean-squared error becomes even smaller, implying that
unlabeled data are utilized in learning. Let us define utility r of unlabeled data as a function of
(α, α′) as

r =
∂E

∂α′

/

∂E

∂α
, (33)

that is, the utility of unlabeled data represents how effective an unlabeled datum is in reducing
the mean-squared error in comparison with a labeled data. The utility of unlabeled data in the
small-α′ regime depends on the signal-to-noise ratio a, in such a way that the utility approaches
0 and 1 as a becomes smaller and larger, respectively. One can show that when aα ≫ 1 and
α′ ≪ 1 the utility of unlabeled data is given by

r = f(a) =

∫
√

a

2π
e−a(z−1)2/2 tanh az dz. (34)

The shape of the function f(a) is depicted in figure 2. It shows that the utility is close to 1
when the signal-to-noise ratio a is 10 or larger, and that it drops below 0.1 when a is less than
0.1.

One can also observe in figure 1 that coexistence of good and bad solutions occurs when α
is small and α′ is large enough. Indeed, in the α-α′ plane, there is a “spinodal” line α′ = α′

c(α),
below which only a solution with good performance exists, and above which the coexistence of
good and bad solutions takes place. It should be noted that in figure 1 only the bad solution is

ELC International Meeting on Inference, Computation, and Spin Glasses (ICSG2013) IOP Publishing
Journal of Physics: Conference Series 473 (2013) 012001 doi:10.1088/1742-6596/473/1/012001

6



r

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01  0.1  1  10

a

Figure 2. Utility r of unlabeled data as a function of the signal-to-noise ratio a.
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Figure 3. Slope and intercept of asymptotic of spinodal line when α and α′ are large enough,
versus the signal-to-noise ratio a. Red and green curves represent the slope and the intercept,
respectively.

shown where the coexistence occurs. With perturbation analysis, one can show that the spinodal
line has the following asymptotic form for small enough α:

α′
c(α) =

1

a2

(

1 +
√

8a(a+ 1)α
)

(35)

This asymptotic formula for the spinodal line tells us that, even when L = o(N), that is, when
the number of labeled data is vanishingly small compared with the dimension of the feature
space, the coexistence of multiple solutions does not occur when α′ < 1/a2. It also shows that a
small increase in α from 0 causes a significant increase in the critical α′ value, above which the
coexistence of multiple solutions occurs. Indeed, the increase is superlinear, being proportional
to α1/2.

When α and α′ are large enough, on the other hand, one can show, again via perturbation
analysis, that the spinodal line is asymptotically linear. In figure 3 we show the slope and the
intercept of the asymptotic spinodal line as a function of a. Details of the perturbation analysis
will be presented elsewhere.
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5. Summary and outlook

We have reported some results of our preliminary statistical-mechanics-based analysis on the
labeled-unlabeled classification problem. In our analysis we have dealt with the simplest setting,
in which a learner with the equal-weight mixture of two symmetrically-located Gaussians is
assumed. Even in this simplest setting we have observed interesting phenomena, in particular
the coexistence of good and bad solutions, which may happen when the number of unlabeled
data is relatively large compared with that of labeled data. We have obtained explicit expressions
describing asymptotic behaviors of the spinodal line that marks the boundary between the region
with the coexistence and the region without it.

On the basis of the basic results presented so far, one can pose several problems to be explored.
First of all, the unequal-weight case, in which a learner is to estimate the class weights as well as
the class centers, should be explored to make the setting a bit more realistic. Another interesting
problem would be to study the case where unlabeled data are generated from a probability model
which is similar to but not the same as that for labeled data. The utility of unlabeled data would
decrease as the probability model of unlabeled data becomes less similar to that of labeled data.
It would also be important to consider the multi-class problem as well. From the viewpoint of
statistical-mechanics analysis, it is necessary to study stability of the RS assumption in order to
see if the RS assumption is valid. Finally, algorithms to efficiently solve the labeled-unlabeled
classification problem should be studied as well, in view of practical applications.
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