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Abstract. High-angle annular dark field scanning transmission electron microscopy has been 
successfully used for composition evaluation in various material systems. In this work, the 
quantitative applicability of this method to GeSi/Si heterostructures was studied. Reference 
images were simulated by frozen lattice multislice simulations for different Ge concentrations 
accounting for static atomic displacements and biaxial strain due to pseudomorphic growth. 
Specimen thickness and composition are obtained by comparison of simulated and normalised 
experimental intensities. The measured thickness of a pure Si wedge specimen is compared to 
thickness determined from Pendellösung fringes in dark field micrographs. The deviation is 
below 10 nm coinciding with the accuracy of prior works. The composition of a GeSi-layer 
structure was measured in a calibration sample of known concentration and good agreement is 
found. Two-dimensional concentration maps of a GeSi/Si transistor structure were created. 
Measured concentrations agree with nominal values. However, strain fields in the Si lead to a 
variation of the image intensity causing an artificial fluctuation of the measured concentrations 
of ±4%. 

1.  Introduction 
Germanium-Silicon (GeSi) heterostructures are of technological importance for modern 
semiconductor devices, e.g. metal-oxide semiconductor field effect transistors (MOSFETs) [1] that are 
widely used in modern electronics. Hence, the measurement of the Ge concentration is of high interest 
in those systems. The evaluation of the chemically sensitive high-angle annular dark field (HAADF) 
signal of scanning transmission electron microscopy (STEM) has been successfully used for accurate 
chemical composition measurement at Ångström resolution within many other material systems such 
as InGaN, SiGaAs, AlGaN or GaNAs [2-5]. 

In this work the applicability of quantitative HAADF-STEM for composition evaluation was 
studied in GeSi/Si heterostructures [6] by investigation of several specimens of this material system. 

2.  Simulation of reference images 
To get reference data for evaluation of the measured HAADF-intensities, STEM-images were 
simulated by frozen lattice multislice simulations conducted with the STEMsim Software [7]. 
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A supercell laterally consisting of 7×7 orthorhombic unit cells in [110] zone axis was used with a 
numerical grid of 2100×1500 pixels. 

The mean square thermal displacements used in these simulations to account for thermal diffuse 
scattering (TDS) were derived from density functional theory calculations as described in reference 
[8]. Static atomic displacements caused by the different covalent radii of Ge and Si, which have 
influence on the diffuse signal [9], were computed with an empirical potential suggested by Tersoff 
[10]. With this potential, the supercells for the simulations were relaxed by energy minimization with 
the LAMMPS software [11]. Furthermore, to account for the biaxial strain due to pseudomorphic 
growth of GeSi layers on bulk Si, the supercells were strained according to the results of elasticity 
theory calculations. Thus, various effects were taken into account whereas prior works assumed a 
Rutherford scattering model [6]. 

These simulations were executed for various specimen thicknesses and Ge concentrations, where 
for each concentration twenty individual supercell configurations with statistically distributed atoms 
and thermal displacements were used. The non-uniform sensitivity of the HAADF-detector, which was 
used in the experiments, was also considered. Thus, a dataset of HAADF-intensities was obtained as a 
function of specimen thickness and Ge concentration and was used as a reference in the evaluation of 
the experimental data. 

3.  Experimental procedure 
The specimens used in this work were, except for the purchased calibration sample in section 4.2, 
prepared as lamellae with a focused ion beam (FIB) and treated with low energy Ar ion milling to 
remove amorphous surface layers [12]. The experimental investigation was performed with a FEI 
Titan 80/300 (S)TEM. To ensure comparability to the reference simulations, the measured HAADF-
intensities are normalised with respect to the incident electron beam intensity, that were measured by 
scanning the focused beam directly over the detector as described in reference [13]. 

The specimen thickness is then determined from regions of known composition, in most cases of 
pure Si, by comparison with the reference. For regions with unknown concentration the thickness is 
polynomial inter- or extrapolated, respectively. Using the resulting thickness map and the measured 
intensities local compositions are determined for the entire STEM image [2]. 

4.  Results 

4.1.  Thickness determination in a pure Si wedge sample 

To validate the thickness measurement by HAADF-STEM with the simulated reference, a wedge 
specimen of pure Si was FIB-prepared in [110] zone axis and micrographs were acquired by HAADF-
STEM and by dark-field conventional transmission electron microscopy (DF-CTEM) with the (004)-
beam under imaging conditions that allowed the detection of Pendellösung thickness contrast fringes. 
From these fringes the specimen thickness was determined by comparison with Bloch-wave 
simulations conducted for the same sample orientation as used for the acquisition. 

Figure 1 shows a comparison of the measured specimen thickness from both methods. The values 
from HAADF-STEM show a good agreement with those from DF-CTEM; the deviation is below  
10 nm. This coincides with the accuracy of prior works on quantitative STEM comparing simulations 
and experiment, e.g. reference [5]. 

4.2.  Concentration evaluation of a calibration sample 

Furthermore, a purchased commercial calibration sample, MAG*I*CAL® from Norrox Scientific 
Ltd., containing multiple GeSi-layers with a known nominal Ge concentration of 19% embedded in Si 
and conventionally prepared in [110] zone axis was examined. The determined Ge concentration was 
(18±4)%, which is in good agreement with the nominal value. The evaluated composition of single 
layers from high resolution HAADF-STEM images coincided with the results of strain state analysis 
of high resolution CTEM micrographs which were evaluated for comparison. 
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Figure 1. Comparison of specimen 
thickness of the pure Si wedge sample 
determined from HAADF-intensity and 
from Pendellösung thickness fringes. A 
good agreement is found; the deviation 
is below 10 nm. 

4.3.  Investigation of a GeSi/Si-MOSFET structure 

In addition we investigated a Si-based p-MOSFET structure in which source and drain contain Ge to 
improve charge carrier mobility by straining the Si in the gate region [1]. The resulting two-
dimensional composition map from the HAADF signal is depicted in figure 2. The mean Ge 
concentrations in the lower and upper regions are (22±3)% and (28±3)%, respectively. These are 
slightly higher than the nominal values of 19% and 27%, but fall within statistical error. 

 

Figure 2. Concentration map of a GeSi/Si-
MOSFET structure with two regions of 
different Ge concentrations in source and 
drain. The line marks the position of the 
linescan shown in figure 3. In the encircled 
area an artificial negative Ge concentration 
caused by a stacking fault is observed. 

4.4.  Influence of strain on measured concentrations and thicknesses 

In the concentration map regions of artificial negative Ge concentrations also appear especially near 
GeSi/Si interfaces. This is partially caused by stacking faults as the one marked in figure 2, which 
occur in this highly strained structure. A linescan below the transistor in the pure Si region, as shown 
in figure 3, however, reveals artificial Ge concentration fluctuations of ±4% that cannot totally be 
caused by dislocations.  

Another possible reason are effects of strain in the Si induced by the GeSi-regions: For the 
reference simulations described in section 2 pseudomorphic growth of the GeSi on bulk Si was 
assumed, which is legitimate for layer samples, but in this highly strained structure, the GeSi in source 
and drain could actually cause strain in the Si. This mismatch between simulations and experiment 
would cause a systematic error. To investigate its influence, simulations were conducted for strained 
Si supercells. The results showed a significant intensity difference to unstrained Si, that can lead to an 
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underestimation of the specimen thickness of up to 10 nm for 100 nm thick specimens or, if the 
thickness was estimated correctly, negative Ge concentrations in regions of pure Si of up to -2%. This 
systematic error is unavoidable as long as the strain state of both the investigated and the reference 
area is unknown. It partly explains the observed fluctuations. The remaining artifacts are most likely 
caused by surface strain effects as described in reference [2]. 

 

 

Figure 3. Linescan of 10 nm width from 
the concentration map of the MOSFET 
shown in figure 2 taken in the pure 
silicon area below the transistor (red line 
in figure 2). A HAADF-intensity 
corresponding to a Ge concentration in 
the range of ±4% is measured. Below 
source and drain artificial negative 
concentrations are obtained. This is 
caused by strain effects and, as in the dip 
at 60 nm, by dislocations. 

5.  Summary 
The applicability of chemical composition evaluation with normalised HAADF-STEM intensity by 
comparison to multislice simulations in the GeSi/Si material system was investigated. The 
measurement of thickness in a pure Si wedge specimen and the concentration determination in a layer 
structure yielded results which are in good agreement with both reference measurements and nominal 
values.  

For a GeSi/Si MOSFET structure two-dimensional composition maps were determined. The 
concentrations were also in good agreement with nominal values. Within these highly strained 
structures, however, artificial Ge concentration fluctuations were observed in pure silicon regions, 
which could partly be explained by strain effects. To avoid these, the simultaneous measurement of 
strain as suggested by reference [14] would be necessary. 
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