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Abstract. The occurrence of single variant CuPtB ordering during growth of InGaP graded 

buffer layer structures on offcut (001) GaAs substrates for inverted metamorphic solar cells is 

found to have a strong influence on strain relaxation mechanisms. Since the surface-induced 

CuPtB ordering is metastable in the bulk of the material, a strong preference is observed for the 

nucleation and glide of 60° type misfit dislocations with Burgers vectors that introduce an 

antiphase boundary into the ordered structure. This results in an overall epitaxial layer tilt in 

the opposite sense to that normally observed for the direction of substrate offcut. Furthermore, 

in InGaP buffer layers graded to InP, a switch in the dislocation glide plane preference back to 

that normally observed for the direction of substrate offcut is observed as the degree of atomic 

ordering falls below a critical value. This results in the nucleation and glide of new misfit 

dislocations resulting in an increase in the threading dislocation density that is found to have a 

deleterious effect on device efficiency. Understanding the materials science behind this 

behavior will enable the engineering of more effective, lower threading dislocation density 

strain relief buffer layers resulting in improved performance of subsequently grown devices. 

1.  Introduction 
The growth of lattice-mismatched semiconductor heterostructures introduces increased degrees of 

freedom in the design of optoelectronic devices for desired properties such as emission wavelength of 

light emitting diodes and optimal band gap combinations for ultra-high efficiency multijunction solar 

cells. Fundamental to the achievement of the highest performance devices is an understanding of the 

factors that affect strain relaxation processes that occur during the epitaxial growth of these lattice-

mismatched layer structures, such as dislocation nucleation and glide, and epitaxial layer tilt. 

The highest efficiency solar cells so far produced are multijunction solar cells that are typically 

operated under concentrated light. There are presently two main approaches to producing this type of 

cell: (i) an all lattice-matched approach using a dilute III-nitride alloy as an ≈1 eV junction [1], or (ii) a 

metamorphic approach where one or more of the junctions are lattice-mismatched with respect to the 

substrate used for growth [2–7]. Both of these methods have resulted in multijunction solar cells with 

efficiencies greater than 40 % under concentrated light. Multijunction solar cells are able to reach such 

high efficiencies because their design reduces the thermalization and transmission losses that are 

typically associated with single junction devices and hence enables a fuller utilization of the solar 

spectrum [e.g., 8]. However, to produce such high efficiency devices requires extremely high quality, 

epitaxial III-V semiconductor materials. These can only be grown on very expensive single crystal 

substrates using costly epitaxial growth techniques. In order to reduce costs, multijunction solar cells 
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for terrestrial applications are generally used in a concentrator system where the light is gathered from 

a large area and then focused using a relatively cheap optical eleme

multijunction solar cell. An added bonus is t

increases under concentrated light

The particular structure being investigated at NREL is t

(IMM) solar cell [2, 4, 5]. A schematic show

42.6 % has recently been reported for this 

expected after further optimization

only likely to be obtained by the addition of a fourth junction with a ba

[e.g., 11]. The IMM solar cell has several advantages over the upright lattice

metamorphic multijunction (MM) 

available for the metamorphic approach than for

design, the two most power producing high 

efficiency may be expected due to a lower sensitivity to the presence of mismatched

than in the case of the upright MM solar cell where the high band gap junctions are lattice

mismatched. The IMM design also has the potential for a large cost reduction by enabling substrate 

reuse after removal of the cell active layers that may also be bonded to a handle material with more 

favorable properties than the original substrate

obtain the highest efficiency IMM solar cells require the growth of highly perfect, transparent, graded 

buffer layers to minimize optical losses and recombination losses associated with the introduction of 

structural defects such as dislocations resulting from the lattice

To achieve the four-junction IMM device illustrated in f

buffer layer structure to step the lattice parameter from that of 1.0 eV band gap InGaAs t

eV InGaAs, figure 2. For this application the InGaP graded buffer layer 

with energies between 0.7 eV and 1.0 eV and also be electrically conducting. It is a

promote dislocation glide during growth of this graded buffer layer to minimize the density of 

threading dislocations that would have a deleterious effect on the efficiency of the final device.

relaxation in lattice-mismatched III

nucleation and glide of 60° type misfit dislocations once a certain critical thickness has been exceeded. 

These misfit dislocations generally lie along the orthogonal <110> directions at the interfaces

layers in samples grown on (001) substrates and their 

Figure 1. Schematic show

as grown on GaAs

structure over, bonding to a suitable handle, and removal of the substrate. 

(c) Four-junction device.
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a large area and then focused using a relatively cheap optical element onto a very small area 
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concentrated light [e.g., 9]. 
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hematic showing this structure is shown in figure 1

42.6 % has recently been reported for this triple-junction device structure and 

expected after further optimization [10]. However, further significant efficiency gains beyond this are 

only likely to be obtained by the addition of a fourth junction with a band gap of 
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(MM) solar cells. The first is that a wider range of band gaps is potentially 
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design, the two most power producing high band gap junctions are lattice-matched and hence a higher 

efficiency may be expected due to a lower sensitivity to the presence of mismatched

than in the case of the upright MM solar cell where the high band gap junctions are lattice
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reuse after removal of the cell active layers that may also be bonded to a handle material with more 

favorable properties than the original substrate, such as a lighter weight or flexibility. However, to 

obtain the highest efficiency IMM solar cells require the growth of highly perfect, transparent, graded 

buffer layers to minimize optical losses and recombination losses associated with the introduction of 
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to the <110> line direction of the dislocations

These dislocations possess screw, misfit

on the sign of the strain and the <110>

at the core, α-dislocations, or group III atoms at the core, 

strained graded buffer layer of interest in this work,

β-dislocations have a line vector of [110]. It should also be noted that these 60° type 

are frequently observed to dissociate into two 

stacking fault [13, 14]. The possible slip systems for 60

InGaP semiconductor alloy are listed i

vectors and components, slip planes and dislocation type

Under the growth conditions normally used, the InGaP graded buffer layers are found to atomically 

order on {111}B planes [16–18]. T

in the bulk of the material but is found to be energetically favorable during growth on a reconstructed 

surface containing [110] rows of [

a mixture of the two {111}B variants is observed but a preferential selection of a single variant can be 

obtained by growth on a substrate offcut a few degrees from (001) towards one of the {111}B planes 

[21]. Since the ordered planes a

dislocations in zincblende III-V semiconductors, this has important consequences on the dislocation 

nucleation and glide behavior and strain relaxation mechanisms in these graded buffer layer 

Depending on the Burgers vector, certain of the 60° misfit dislocations will leave behind an antiphase 

boundary (APB) in the ordered structure as they glide [16, 17, 22], see table 1. Since the ordered 

structure is metastable in the bulk, this 

energetic preference for the nucleation and glide of misfit dislocations that produce APBs. We present 

experimental results that illustrate this behavior and discuss the consequences 

relaxation in these graded buffer layer 

dislocation density.  

Figure 2. Band gap versus lattice parameter plot for selected 

III-V, and II-VI semiconductors showing lattice

junction materials of band gaps 1.0 and 0.7 eV and a potential graded 

buffer layer path, 1, using InGaP alloys between the lattice parameters of 

GaAs and these two InGaAs alloys.

 
to the <110> line direction of the dislocations, and at 45° to the interface, as shown in f

ocations possess screw, misfit, and tilt components and glide on {111} planes. Depending 

ign of the strain and the <110>-line direction, these dislocations can either have

dislocations, or group III atoms at the core, β-dislocations. For the InGaP c

strained graded buffer layer of interest in this work, α-dislocations have a line vector of [

dislocations have a line vector of [110]. It should also be noted that these 60° type 

are frequently observed to dissociate into two Shockley partial dislocations separated by a

The possible slip systems for 60° dislocations in the compressively strained 

re listed in table I together with the dislocation line vectors, 

vectors and components, slip planes and dislocation type [15]. 

Under the growth conditions normally used, the InGaP graded buffer layers are found to atomically 

18]. This CuPtB form of ordering is predicted to be energetically unstable 

in the bulk of the material but is found to be energetically favorable during growth on a reconstructed 

surface containing [110] rows of [-110]-oriented P dimers [19–21]. On exact (001) o

a mixture of the two {111}B variants is observed but a preferential selection of a single variant can be 

obtained by growth on a substrate offcut a few degrees from (001) towards one of the {111}B planes 

[21]. Since the ordered planes are {111}, the same as the preferred glide planes for 60° misfit 

V semiconductors, this has important consequences on the dislocation 

nucleation and glide behavior and strain relaxation mechanisms in these graded buffer layer 

Depending on the Burgers vector, certain of the 60° misfit dislocations will leave behind an antiphase 

boundary (APB) in the ordered structure as they glide [16, 17, 22], see table 1. Since the ordered 

in the bulk, this results in a net reduction in the energy of the layer giving an 

energetic preference for the nucleation and glide of misfit dislocations that produce APBs. We present 

experimental results that illustrate this behavior and discuss the consequences 

graded buffer layer systems and what effect it might have on the resulting threading

Band gap versus lattice parameter plot for selected group IV, 

VI semiconductors showing lattice-mismatched InGaAs

junction materials of band gaps 1.0 and 0.7 eV and a potential graded 

buffer layer path, 1, using InGaP alloys between the lattice parameters of 

GaAs and these two InGaAs alloys. 

as shown in figure 3 [12]. 

and glide on {111} planes. Depending 

direction, these dislocations can either have group V atoms 

dislocations. For the InGaP compressively 

cations have a line vector of [1-10], whilst 

dislocations have a line vector of [110]. It should also be noted that these 60° type glide dislocations 
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dislocations in the compressively strained 

able I together with the dislocation line vectors, Burgers 

Under the growth conditions normally used, the InGaP graded buffer layers are found to atomically 

form of ordering is predicted to be energetically unstable 

in the bulk of the material but is found to be energetically favorable during growth on a reconstructed 

21]. On exact (001) oriented substrates, 

a mixture of the two {111}B variants is observed but a preferential selection of a single variant can be 

obtained by growth on a substrate offcut a few degrees from (001) towards one of the {111}B planes 

re {111}, the same as the preferred glide planes for 60° misfit 

V semiconductors, this has important consequences on the dislocation 

nucleation and glide behavior and strain relaxation mechanisms in these graded buffer layer structures. 

Depending on the Burgers vector, certain of the 60° misfit dislocations will leave behind an antiphase 

boundary (APB) in the ordered structure as they glide [16, 17, 22], see table 1. Since the ordered 

results in a net reduction in the energy of the layer giving an 

energetic preference for the nucleation and glide of misfit dislocations that produce APBs. We present 
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2.  Experimental Procedures 
InGaP layers and compositionally

layers were grown on (001) GaAs

offcut by 2° towards one of the {111}B planes 

by atmospheric pressure metal organic vapor 

phase epitaxy (MOVPE). The InGaP layers were 

grown at 675° C. Transmission electr

microscope (TEM) cross-section samples were 

typically prepared by standard mechanical 

polishing and dimpling techniques followed by 

argon ion milling with the sample rotated and 

cooled by liquid nitrogen to preserve the atomic 

ordering that was normally present. A few 

samples were prepared in an FEI dual beam FIB 

workstation using a lift out technique. Cross

section TEM and transmission electron diffraction (TED) experiments were performed in an FEI ST 

30 TEM operated at 300 kV. Threading dislocation den

(CL) imaging in a JEOL 5800 scanning electron microscope (SEM) equipped with Ge and InGaAs 

detectors. Epitaxial layer tilt, misfit, and strain relaxation of the samples were measured by high

resolution x-ray diffraction (XRD) reciprocal space mapping (RSM) using a Bede D1 diffractometer.

3.  Experimental Results 

Figure 4 illustrates TEM, TED, and XRD RSM results obtained from an

layer, grown on an (001) GaAs substrate offcut 2° towards (

graded from that of GaAs to that of InP. In the 22

60° misfit dislocations that are introduced to relieve the strain during the growth of this

clearly be seen. The InP layer grown on top of the graded buf

density ≈ 2.2 x 10
7
 cm

-2
, showing the 

density of harmful threading defects 

4(b), selected area TED patterns, obtained 

graded buffer layer at various positions through the structure. Strong ½{

observed in the first few InGaP layers whose composition is close to 50% Ga

of strong single variant CuPtB ordering in the alloy. The single variant nature of the ordering is a 

consequence of the growth on an offcut substrate, 2° towards (111)B, that is typically used in MOVPE 

to obtain improved quality material

maximum degree of atomic ordering possible decreases linearly to zero at InP and this is visible in the 

TED patterns as a gradual disappearance o

InP rich region. The XRD RSM 

First, the growth of the InGaP graded buffer layer results in the generation of a significant epitaxial 

layer tilt indicating an imbalance in the density of misfit d

into the material on the (-111) and (1

layer tilt is in the opposite direction to that expected for t

feature is that as the InGaP graded buffer layer composition approaches InP, eventually the sense of 

the overall epitaxial layer tilt begins to 

and this seems to correlate with the

layer tilt is associated with a switch in the preferred {111} glide plane of the misfit dislocations and 

results in a sudden increase in the threading dislocation density above this point that is harmful

device grown on such a buffer layer structure [22].
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section samples were 

typically prepared by standard mechanical 
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argon ion milling with the sample rotated and 

cooled by liquid nitrogen to preserve the atomic 

present. A few 
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section TEM and transmission electron diffraction (TED) experiments were performed in an FEI ST 

30 TEM operated at 300 kV. Threading dislocation density was measured by cathodoluminescence 

(CL) imaging in a JEOL 5800 scanning electron microscope (SEM) equipped with Ge and InGaAs 

detectors. Epitaxial layer tilt, misfit, and strain relaxation of the samples were measured by high

tion (XRD) reciprocal space mapping (RSM) using a Bede D1 diffractometer.

TEM, TED, and XRD RSM results obtained from an InGaP step

layer, grown on an (001) GaAs substrate offcut 2° towards (-111), where the lattice parameter was 

graded from that of GaAs to that of InP. In the 220 dark field (DF) image of figure 4

misfit dislocations that are introduced to relieve the strain during the growth of this

clearly be seen. The InP layer grown on top of the graded buffer layer contains a th

, showing the potential of the graded buffer layer technique for 

density of harmful threading defects in the device structure that is typically grown above. In f

TED patterns, obtained from < 1µm areas of the sample, are shown o

at various positions through the structure. Strong ½{-111} superlattice spots are 

observed in the first few InGaP layers whose composition is close to 50% Ga, indicating the presenc

ordering in the alloy. The single variant nature of the ordering is a 

consequence of the growth on an offcut substrate, 2° towards (111)B, that is typically used in MOVPE 

improved quality material. As the InGaP alloy composition becomes more In

maximum degree of atomic ordering possible decreases linearly to zero at InP and this is visible in the 

s as a gradual disappearance of the ½{111} superlattice spots as the alloy approaches

RD RSM of this sample shown in figure 4(c) shows several interesting features. 

First, the growth of the InGaP graded buffer layer results in the generation of a significant epitaxial 

layer tilt indicating an imbalance in the density of misfit dislocations that have nucleated and glided 

111) and (1-11) planes. The second interesting point is that the sense of the 

layer tilt is in the opposite direction to that expected for the substrate offcut. The third interesting 

ture is that as the InGaP graded buffer layer composition approaches InP, eventually the sense of 

begins to reverse back to that normally expected for the substrate offcut 

this seems to correlate with the disappearance of the atomic ordering. This change in the epitaxial 

layer tilt is associated with a switch in the preferred {111} glide plane of the misfit dislocations and 

results in a sudden increase in the threading dislocation density above this point that is harmful

device grown on such a buffer layer structure [22]. 
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Introducing an offcut to the (001) substrate used for growth introduces an asymmetry

resolved shear stress on different {111} glide planes and to the misfit component of the 

of various 60° misfit dislocations making nucleation and glide of some of the misfit dislocations more 

favorable. (It also introduces an as

{111} glide planes from the growth surface to the interface that is also important). The effect of offcut 

on the misfit component of the Burgers vector

substrate, an offcut towards (-111) results in the dislocations gliding on (

component to their Burgers vector and hence would be expected 

with respect to the misfit dislocations that glide on (1

components in opposite directions, an imbalance in the numbers of misfit dislocations gliding on the

Table 1. Details of possible slip systems and 60° degree misfit dislocations possible in compressively 

strained InGaP layers grown on a (001) substrate.
Slip 

System 

Line 

Direction 

Burgers 

vector 

1 [110] a/2[011] 

2 [110] a/2[-101] 

3 [110] a/2[-10-1]

4 [110] a/2[01-1] 

5 [1-10] a/2[01-1] 

6 [1-10] a/2[10-1] 

7 [1-10] a/2[101] 

8 [1-10] a/2[011] 

Figure 4. (a) -220 dark field (DF) image of InGaP graded buffer layer structure showing the misfit 

dislocation network. (b) [110] TED patterns from various parts of the graded buffer showing the 

absence of CuPtB atomic ordering at InGaP alloy compositions close to InP. (c) XRD 

showing presence of unexpected direction of epitaxial layer tilt and a dislocation glide plane 

preference switch at an alloy composition close to InP.

Introducing an offcut to the (001) substrate used for growth introduces an asymmetry

resolved shear stress on different {111} glide planes and to the misfit component of the 

of various 60° misfit dislocations making nucleation and glide of some of the misfit dislocations more 

It also introduces an asymmetry in the glide path length for the dislocations on the different 

growth surface to the interface that is also important). The effect of offcut 

on the misfit component of the Burgers vector is illustrated in figure 5 that shows for an (001) 

111) results in the dislocations gliding on (-111) having a larger misfit 

component to their Burgers vector and hence would be expected to nucleate and glide preferentially 

with respect to the misfit dislocations that glide on (1-11). As these two types of dislocation have tilt

components in opposite directions, an imbalance in the numbers of misfit dislocations gliding on the

Details of possible slip systems and 60° degree misfit dislocations possible in compressively 

strained InGaP layers grown on a (001) substrate. 
bmisfit bscrew btilt Slip 

plane 

a/4[-110] a/4[110] a/2[001] (1-11) 

 a/4[-110] a/4[-1-10] a/2[001] (1-11) 

1] a/4[-110] a/4[-1-10] a/2[00-1] (-111) 

 a/4[-110] a/4[110] a/2[00-1] (-111) 

 a/4[110] a/4[-110] a/2[00-1] (111) 

 a/4[110] a/4[1-10] a/2[00-1] (111) 

a/4[110] a/4[1-10] a/2[001] (-1-11) 

a/4[110] a/4[-110] a/2[001] (-1-11) 

k field (DF) image of InGaP graded buffer layer structure showing the misfit 

dislocation network. (b) [110] TED patterns from various parts of the graded buffer showing the 

atomic ordering at InGaP alloy compositions close to InP. (c) XRD 

showing presence of unexpected direction of epitaxial layer tilt and a dislocation glide plane 

preference switch at an alloy composition close to InP. 

Introducing an offcut to the (001) substrate used for growth introduces an asymmetry in the 

resolved shear stress on different {111} glide planes and to the misfit component of the Burgers vector 

of various 60° misfit dislocations making nucleation and glide of some of the misfit dislocations more 

ymmetry in the glide path length for the dislocations on the different 

growth surface to the interface that is also important). The effect of offcut 

that shows for an (001) 

having a larger misfit 

nucleate and glide preferentially 

11). As these two types of dislocation have tilt  

components in opposite directions, an imbalance in the numbers of misfit dislocations gliding on these 

Details of possible slip systems and 60° degree misfit dislocations possible in compressively 

Type APB in (-111) 

ordering 

β Yes 

β Yes 

β No 

β No 

α No 

α Yes 

α No 

α Yes 

 
k field (DF) image of InGaP graded buffer layer structure showing the misfit 

dislocation network. (b) [110] TED patterns from various parts of the graded buffer showing the 

atomic ordering at InGaP alloy compositions close to InP. (c) XRD RSM 

showing presence of unexpected direction of epitaxial layer tilt and a dislocation glide plane 
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structure whilst glide of misfit dislocations

metastable in the bulk, the formation of an APB in the single variant ordering in the crystal results in a 

reduction in energy and an energetic preference for nucleation and glide of misfit dislocations on (1

11) that outweighs the normal effect of the offcut.

layer tilt behavior we observe in these graded InGaP buffer layers

occurs when the degree of ordering in the InGaP drops below a critical value 

approaches InP resulting in a loss of the energetic preference for the nucleation and glide of misfit

dislocations on (1-11) and a return to the more normally observed preference for nucleation and glide 

of misfit dislocations on (-111) planes for the sense of substrate offcut used.

misfit dislocations gliding on (-111) planes naturally causes new threading dislocations resulting in the 

observed jump in the threading dislocation

point that the glide plane switch occurs.

To investigate this behavior further 

(TEM) and diffraction (TED) 

studies on a number of samples. 

Figure 7 shows ½{113} bright field 

(BF) and dark field (DF) images of 

the same area of the [110] cross

section of a single In0.6Ga0.4P layer 

grown on a (001) GaAs substrate 

offcut 2° towards (-111). The inset 

TED pattern in figure 7(b) shows 

that this sample contained mostly 

domains of the (-111) variant of the 

atomic ordering as expected for the 

substrate offcut used. The 

superlattice dark field image of 

figure 7(b) exhibits contrast arising 

from two different types of APBs as 
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4.  Discussion 
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dislocation half-loop on a {111} glide plane in 

would create an APB, this introduces an extra energy lowering term in equation (1)

where ξ is the energy per unit area released by the formation of the APB such that equation (1) now 
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critical value as the alloy composition approaches InP and nucleation and glide 
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and results in a substantial increase in the threading dislocation density.

presented in this paper, the presence of the single variant CuPtB atomic ordering also 

type 60° misfit dislocations with line vectors along [1-10]. 

As well as affecting dislocation glide, the presence of atomic ordering will also influence

 during growth of the graded buffer layers. As described by Mar

], this is normally thought to occur at the layer surface by the nucleation of a dislocation half

loop, probably at the site of a stress concentrator such as a step bunch. The energy of a perfect 

of radius r is given by [29] 
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Ehl = El + Es − Eτ − EAPB        (2) 

This results in an energetic preference for the nucleation at the surface for misfit dislocation loops that 

generate an APB in the (-111) atomic ordering by reducing the critical radius and maximum energy 

required for nucleation of such half-loops over half-loops that do not generate an APB in the ordered 

structure. 

In order to avoid a harmful increase in threading dislocation density associated with the observed 

glide plane switch during growth of the InGaP graded buffer layer, re-engineering of the buffer layer 

structure is required [30]. Further understanding of misfit dislocation nucleation and glide in these 

complex materials may enable control of the Burgers vector of the misfit dislocations to be achieved 

so as to enhance dislocation glide and promote favorable dislocation interactions to occur, leading to a 

reduced threading dislocation density in the final device.  

5.  Conclusions 

The occurrence of single variant CuPtB atomic ordering during MOVPE growth of InGaP graded 

buffer layer structures on offcut (001) substrates has a profound influence on strain relaxation 

mechanisms in IMM solar cell structures. A strong preference is observed for the nucleation and glide 

of misfit dislocations that generate an APB in the ordered crystal, resulting in an epitaxial layer tilt in 

the opposite sense to that typically observed for the direction of substrate offcut used. As the alloy 

composition approaches InP, the reduction of atomic ordering leads to a switch in the glide plane 

preference back to that normally observed and the generation of new threading dislocations that harms 

device performance. The knowledge gained from these studies will enable the engineering of new 

graded buffer layer architectures resulting in higher efficiency devices. 
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