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Abstract. The dislocation velocities and mechanical strength of bulk crystals of SixGe1-x alloys 
grown by the Czochralski method have been investigated by the etch pit technique and 
compressive deformation tests, respectively. Velocity of dislocations in the SiGe alloys of the 
composition range 0.004 < x < 0.08 decreases monotonically with an increase in Si content at 
temperature 450–700˚C and under stress 3–24MPa. In contrast, velocity of dislocations in the 
composition range 0.92 < x < 1 first increases, then decreases and again increases with a 
decrease in Si content at temperature 750–850˚C and under stress 3–30MPa. The velocity of 
dislocations was quantitatively evaluated as functions of stress and temperature. Stress-strain 
behaviour in the yield region of the SiGe alloys of composition 0 < x < 0.4 is similar to that of 
Ge at temperatures lower than about 600˚C. However, the yield stress becomes temperature-
insensitive at high temperatures and increases with increasing Si content. The stress-strain 
curves of the SiGe alloys of composition 0.95 < x < 1 are similar to those of pure Si at 
temperatures 800–1000˚C and the yield stress increases with decreasing Si content down to x = 
0.95. The yield stress of the SiGe alloys is dependent on the composition, being proportional to 
x(1-x), showing a maximum around x ≈ 0.5. Built-in stress fields related to local fluctuation of 
the alloy composition and the dynamic development of a solute atmosphere around the 
dislocations, may suppress the activities of dislocations and lead to the hardening of SiGe 

alloys. 

1.  Introduction 
Silicon-germanium (SixGe1-x or Germanium-silicon Ge1-xSix, where x indicates the mole fraction of 
silicon) is a complete solid-solution semiconductor having the diamond cubic structure. SiGe alloys 
have attracted great interests for both microelectronic and optoelectronic devices and various 
functional materials because of the potential for band-gap and strain/lattice parameter engineering they 
offer. That is, alloying leads to various unique effects on fundamental properties, absent in the 
component materials Si and Ge. 

Usually these alloys are grown as thin films on Si substrates by various epitaxial techniques. The 
introduction of misfit dislocations is inevitable in such hetero-structures due to the stress caused by 
interfacial mismatch when the film thickness exceeds a critical value in the system of thin 
film/substrate. Although dislocations affect the electrical and optical properties of SiGe alloy and limit 
its application within various devices, only little is known about their dynamic properties such as the 
generation and motion of misfit dislocations at the film/substrate interface within stressed layers, 
mainly for compositions on the Si-rich side [1-5]. The large biaxial stress inherent to such hetero-
structures hinders the quantitative study of the native properties of dislocations. The dynamic 
properties of dislocations in SiGe have often been assumed to be similar to those in Si or Ge and little 

18th Microscopy of Semiconducting Materials Conference (MSM XVIII) IOP Publishing
Journal of Physics: Conference Series 471 (2013) 012002 doi:10.1088/1742-6596/471/1/012002

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 
 
 
 
 
 

attention has been paid to the unique properties which have been found in several compound alloy 
semiconductors [6-8]. The present author reported that the flow stresses of GaAsP and InAsP ternary 
alloys have an athermal component that is absent in the binary GaAs, GaP, InAs and InP compounds 
[9,10]. Accordingly, it is of interest to investigate the dynamic activities of dislocations in SiGe alloys 
using bulk crystals and to deduce their unique properties brought about by alloying. SiGe alloys are 
quite suitable for such a basic study. The mechanical behaviour of the element materials Si and Ge has 
been under investigation since the 1960's pioneering studies by groups such as Patel and Chaudhuri 
[11] and Bell and Bonfield [12] and at present is well understood on the basis of kinetic properties of 
dislocations [13]. 

To clarify the dynamic properties of dislocations in SiGe alloys quantitatively, it is necessary to 
grow bulk crystals with low dislocation densities and measure the dislocation velocities and the 
mechanical properties. Growth of bulk single crystals of SiGe alloys is difficult because of a large 
miscibility gap and the differences in the densities, lattice parameters and melting temperatures of the 
constituent elements. However, this type of material is also suited for a basic study on the 
solidification of solid solution. Here, unique features that appeared in thermo-mechanical behaviour in 
SiGe grown by the Czochralski (CZ) method are reviewed, based on the results by the author’s group 
[14-19]. 

2.  Bulk crystals 
Bulk crystals of SixGe1-x alloys in the whole composition range 0 < x < 1 were grown by the 
Czochralski technique at very low pulling rates ranging from 1 to 8 mm/h in an Ar gas flowing 
atmosphere [14, 19-22]. Seeds prepared from a Si or Ge crystal oriented parallel to [111] or [001] 
were used for the growth of the crystals. 

Full single crystals of large size (i.e. larger than 15 mm in diameter and longer than 40 mm) were 
successfully grown for the composition ranges of 0 < x < 0.15 and 0.9 < x < 1. Small single crystal 
alloys of intermediate composition were obtained in the ingot near the seeds since the transition to 
polycrystallinity relates to the occurrence of constitutional supercooling [22]. 

Striations and dislocations were observed in the grown crystals. Dislocations were generated 
mainly at the seed/alloy interface. The density of grown-in dislocations in the alloys was in the range 
103–105 cm-2. The generation process may be controlled by the magnitude of the misfit strain between 
the alloy and seed, the temperature, the temperature gradient and the mobility of generated 
dislocations in the alloy [19]. 

This alloy shows a variety of unique properties, such as atomistic bonding structure, electron and 
hole mobilities, thermal conductivity, local-vibration of oxygen impurity, muonium, etc., which have 
been reported separately [23-31]. Here, it should be noted that SiGe alloy is a typical disorder material 
and that the bond lengths and bond angles are distorted with alloy composition in SiGe, classified to 
be quasi-Pauling type [23,24]. 

3.  Dislocation velocities 
Velocities of dislocations were measured in SixGe1-x alloys of composition range 0 < x < 0.08 and 
0.922 < x < 1 with low densities of grown-in dislocations of ~ 103 cm-2. The specimen was stressed at 
elevated temperature by three-point bending in a vacuum. Dislocations were generated preferentially 
from a scratch drawn on the surface. Displacements of dislocations caused by stressing were measured 
by the etch pit technique [15,17,18]. 

Figure 1(a) shows the velocities of 60° dislocations at 550˚C plotted against the resolved shear 
stress in CZ-SiGe alloys of the composition range 0 < x < 0.08 together with that in pure Ge. As seen 
in the figure, the logarithm of the velocity of dislocations is linear with respect to the logarithm of the 
stress, with approximately the same slope for all the Si contents except the following feature: the 
velocity of 60° dislocations in the SiGe alloys of higher Si content shows a break at stress around 8 
MPa, depending on the Si content. Figure 1(b) shows the velocities of 60° dislocations in Ge-rich SiGe 
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Figure 1. Velocities of 60˚ dislocations in the Ge-rich SiGe alloys. (a) Stress-dependence at 550˚C, 
(b) temperature-dependence under a shear stress of 20 MPa. Numbers show the Si content. 

 

    

Figure 2. Velocities of 60˚ dislocations in the Si-rich SiGe alloys. (a) Stress-dependence at 800˚C, (b) 

temperature-dependence under a shear stress of 20 MPa. Numbers show the Si content. 

alloys of various Si contents under a stress of 20 MPa, free from any threshold or kink, plotted against 
the reciprocal temperature together with that in pure Ge. 

Figure 2(a) shows the velocities of 60° dislocations at 800˚C plotted against the resolved shear 
stress up to 30 MPa in float-zone-grown (FZ-)SiGe alloys of the composition range 0.922 < x < 1 (Si-
rich side) together with that in pure Si [32]. The logarithm of the velocity of dislocations in SiGe 
alloys is linear with respect to the logarithm of the stress at temperatures 750–850˚C. The slope of the 
plot of the dislocation velocity versus the stress in the SiGe alloy with x = 0.996 is approximately the 
same as that in Si. On the other hand, in SiGe alloys of x = 0.922–0.979 the velocity of dislocations is 

(a) (b) 

(b) (a) 
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Figure 3. Velocities of 60  dislocations in the Ge-rich and Si-rich SiGe alloys at 
550 and 800˚C, respectively, under a shear stress 20MPa as dependent on the Si 

content. 

zero under a stress lower than the threshold one and then increases rapidly with an increase in stress 
beyond the threshold stress as reported by Iunin et al. [33]. The threshold stress for dislocation 
generation from a scratch increases with a decrease in the Si content. Figure 2(b) shows the velocities 
of 60° dislocations in Si-rich SiGe alloys of various Si contents under a stress of 20 MPa, free from an 
effect of the threshold, plotted against the reciprocal temperature together with that in pure Si. 

 In the Ge-rich SiGe alloys of composition range 0 < x < 0.08 the dislocation velocity decreases 
monotonically with increasing Si content, reaching about one of seventh of that in pure Ge at x = 0.08 
in the temperature range, as shown in figure 3. On the other hand, in the composition range 0.922 < x 
< 1 (Si-rich SiGe) the dislocation velocity first increases, then decreases and again increases with 
increasing Ge content in the temperature range 750–850˚C and the stress range 3–30 MPa, as shown in 
figure 3. The dislocation velocity for the Si content x = 0.996 is found to be higher than that in pure Si. 

The velocities of dislocations in the SiGe alloys investigated in the present studies are expressed in 

a similar way to those in Ge, Si and other semiconductors as functions of the stress τ and temperature 
T by the following empirical equation [13, 34, 35]: 

 

 v = v0 (τ /τ0)
m exp( - Q  / kBT ),  τ0=1 MPa,      (1) 

 
where kB is the Boltzmann constant. The experimentally determined magnitudes of v0, m and Q in 
SiGe and pure Ge and Si are listed in Table 1. 

Here, it should be noted that dislocations in SiGe alloys show a typical recombination enhanced 
dislocation motion under an irradiation by an electron beam [36,37]. 

4.  Mechanical strength 
The mechanical strength was investigated in SixGe1-x alloys for the composition range 0 < x < 0.4 and 
0.95 < x < 1 with grown-in dislocation densities of 103–105 cm-2. Rectangular parallelepiped 
specimens were compressed under a constant strain rate using an Instron-type machine at elevated 
temperatures [16-18]. 
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  Figure 4.  Yield stresses of the SiGe alloys plotted against the  

  temperature for deformation under a shear strain rate of 1.8 ×  

  10-4 s-1.  

Table 1.  Magnitudes of v0, m and Q for 60˚ dislocations in SixGe1-x and pure Ge and Si.  

Crystal v0 (m/s) m Q (eV) 

Ge 2.9 × 102 1.7             1.62 ± 0.05 
SixGe1-x         x = 0.016 4.6 × 102 1.7             1.68 

                     x = 0.047 2.8 × 102 1.7             1.68 

                     x = 0.080 2.3 × 102 1.6             1.7 

                     x = 0.922 1.2 × 101 3.3             2.2 

                     x = 0.946 9.4 × 101 2.1             2.3 

                     x = 0.979 2.1 × 102 1.9             2.3 

                     x = 0.996 1.4 × 104 1.0             2.4 

Si 1.0 × 104 1.0             2.4 

 

The stress-strain curves of the Si-rich SiGe alloys of the composition range 0.95 < x < 1 are similar 
to those of pure Si at temperatures 800–1000˚C, characterized by a stress drop followed by an increase 
in the stress with strain. Such a stress drop is commonly found in other semiconductors, such as Si, 
Ge, GaAs, and so forth, at relatively low temperatures [34,35]. The upper and lower yield stresses and 
flow stress increase with a decrease in Si content. Similarly, the stress-strain curves of the Ge-rich 
SiGe alloys with x = 0.01, 0.10, 0.25 and 0.40 at low temperatures were characterised by a stress drop 
followed by an increase in the stress with respect to strain, but at high temperatures those show no 
stress drop, differing from those of the Si-rich SiGe alloys. The highly enhanced mobility of 
dislocations at these temperatures may contribute to the feature. It is remarkable  that the SiGe alloys 
with x larger than 0.10 exhibit much higher levels of the yield and flow stresses than pure Ge and Si 
[16-18]. 

Figure 4 shows the temperature dependence of the upper yield stresses of various SiGe alloys and 

also those of Si and Ge, for comparison, under a shear strain rate of 1.8 × 10-4 s-1. In a case where there 
is no stress drop after yielding, the yield stresses are plotted. The yield stresses in Si and Ge decrease 

with an increase in the temperature. Such a dependence can be described as a function of strain rate ε
．
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Figure 5.  Yield stresses of SiGe alloys under a shear strain rate of 1.8 × 10-4 s-1 at 900°C. 

and temperature T by the following empirical equation: 
 

 τ = Aε

．
1/n exp(-U/kBT),         (2) 

 
where A, n and U are constants [34-38]. 

The Ge-rich SiGe alloys show similar reduction of the yield stresses with increasing the 
temperature in the low temperature regime. Their dependence on the temperature becomes weak in the 
high temperature region and finally nearly constant. The temperature-insensitive range expands 
towards the low temperature side with an increase of the Si content x. The magnitude of the yield 
stress of the alloys is higher in the high temperature region with increasing Si content up to 0.4. 
Typically, the yield stresses of the alloys x = 0.4 are temperature-insensitive in the range investigated. 
The magnitudes of the yield stress of the Si-rich SiGe alloy x = 0.99 are the same as, or slightly lower 
than, those of Si and the temperature dependence of the yield stress is similar to that of Si. With a 
decrease in the Si content to x = 0.95, the yield stress increases and the temperature dependence of the 
yield stress becomes weaker. 

Figure 5 shows the composition dependence of the yield stress of the SiGe alloys under a shear 

strain rate of 1.8 × 10-4 s-1 at 900°C. The yield stress increases with increasing Si content in the 
composition range x = 0–0.4 and decreasing Si content down to x = 0.95 investigated. Typically, the 
yield stresses of the Ge-rich SiGe alloys with x > 0.10 are much higher than that of pure Si. Over the 
whole composition range of the SiGe alloys the yield stress seems to show a maximum around x = 0.5 
and be dependent on the composition as proportional to x(1 - x) [18]. 

Hardness of the SiGe alloys obtained with a micro indenter with a 0.5 N load for 10 s at room 
temperature (RT), 600˚C and 900˚C is shown in figure 6. The hardness at RT and 600˚C increases 
almost linearly with the Si content x from 0 to 1, while that at 900˚C shows a maximum around x = 
0.5, similar to the yield stress above-mentioned. The temperature dependence of the hardness well 
corresponds with that of the yield stress. 
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Figure 7.  Schematic of the flow stress components and their dependence on temperature. 

  

 

 Figure 6. Micro-indentation hardness of the SiGe alloys plotted against the Si 

 content at room temperature (RT), 600 and 900˚C. 

5.  Origins of alloying effect 
SiGe demonstrates a character as an alloy noticeably at high temperatures. This may also be 
understood from the fact that the hardness does not show alloying effects at room temperature but at 
900˚C as seen in figure 6. The velocity of isolated dislocations in SiGe alloys with compositions close 
to Si and Ge shows only small differences from that in Si and Ge. Thus, the difference in the 
dislocation mobility among various compositions of SiGe alloys may not lead to the drastic difference 
in the mechanical strength of the alloys observed at high temperatures. Here, it may be noted that the 
bulk modulus of SiGe alloys was evaluated to increase linearly with alloy composition [39]. Also, it 
was observed that dislocations induced by the plastic deformation are dissociated into Shockley partial 
dislocations bounding intrinsic stacking-faults. The intrinsic stacking-fault energy in the alloys 
decreases from 61 ± 10 to 55 ± 10mJ/m2 with increasing Si content, intermediate between those of Si 
and Ge [40]. 

There are two components of the flow stress of a crystal for deformation as seen in figure 7: One is 
the effective stress by which dislocations move at a certain velocity against the intrinsic resistance 
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(Peierls potential) via thermal activation. The other is the athermal stress below which dislocations 
cannot move. The latter depends slightly on the temperature. If alloying results in a drastic increase in 
the Peierls potential and reduces the dislocation velocity, we may expect the stress drop at the yield 
point to be more remarkable in SiGe alloys than in Ge from the concept of dislocation dynamics of 
yielding in semiconductors.  In addition, the strengthening effect caused by alloying should be less 
remarkable with an increase of temperature. As shown in figure 4, the yield stresses of the alloys are 
temperature-independent at elevated temperatures, remarkable in the alloys with the intermediate 
composition. Thus, the observed variation in the yield stress against the temperature in the SiGe alloys 
can be understood as a feature that the SiGe alloys have an athermal stress, that does not exist in other 
elemental and compound semiconductors. The athermal stress is in maximum in the SiGe alloy with a 
Si content x ≈ 0.5. We can think reasonably that the athermal stress is related to the alloying effect. 

As discussed in previous papers on GaAsP and InAsP alloys [9,10], several origins for athermal 
stress are plausible in alloying. First, short-range order of the L11 (CuPt-type) structure found in 
strained layer superlattice thin films prepared by molecular beam epitaxy [41] can lead to an extra 
stress of athermal nature since the motion of a dislocation destroys the short-range order along its slip 
plane [42]. However, there is no report detecting an ordered structure in bulk SiGe alloys [43] and also 
supported by XAFS study where the ordering parameter was evaluated to be around 0.22–0.29 from 
the coordination number [23]. 

Second, a long-range stress field may be developed by local fluctuation of the alloy composition in 
a crystal. Since the bond length of Ge is longer than that of Si by about 4%, local fluctuation of the 
alloy composition in the crystal, causing the development of Si or Ge enriched regions, may induce a 
long-range stress field that cannot be surmounted thermally by dislocations. Dislocations in SiGe 
alloys may move by a repeat bowing out process around the long-range stress fields. 

Third, the dynamic development of a solute atmosphere around a dislocation during deformation at 
high temperatures leads to the additional stress for releasing the dislocation from the solute 
atmosphere. Indeed, many fine serrations on the stress-strain curve in the deformation under a strain 

rate as low as 1.8×10-5 s-1 at 900˚C were observed [16].  Such a characteristic is known as the 
Portevin-LeChatelier phenomenon, being interpreted as repeated processes of locking and releasing of 
dislocations [44]. Indeed, though the width of dissociated dislocations formed by plastic deformation 
keeps constant, photoluminescence studies showed a variation of composition around deformation-
induced dislocations by annealing [45,46]. Although the releasing process of a dislocation from its 
solute atmosphere is a thermally activated one, the development of a solute atmosphere around the 
dislocation is more enhanced at higher temperature. Thus, the contributions of these effects to the flow 
stress compensate each other and may give rise to a temperature-insensitive resistance to the 
dislocation motion, apparently looking like an athermal stress.  

Either or both the local fluctuation of alloy composition and/or the dynamic development of a 
solute atmosphere around the dislocations are thought to suppress the dynamic activity of dislocations 
and result in the strengthening of bulk SiGe alloys at elevated temperatures.   

6.  Summary 

The unique properties of SixGe1-x crystals originating from alloying have been observed in an 
investigation of the mechanical strength and dislocation velocity by using bulk alloy crystals. 

1. The dislocation velocity decreases monotonically with increasing Si content in the SiGe alloys of 
composition range 0.004 < x < 0.080 in the temperature range 450–700˚C and the stress range 3–24 
MPa, while the dislocation velocity first increases, then decreases and again increases with decreasing 
Si content in the composition range 0.92 < x <1 for the temperature range 750–850˚C and the stress 
range 3–30 MPa. The velocity of dislocations was determined as function of stress and temperature. 

2. The stress-strain behaviour in the yield region of SiGe alloys of composition range 0 < x < 0.4 is 
similar to that of Ge at temperatures lower than about 600˚C. However, the yield stress becomes 
temperature-insensitive at high temperatures and increases with increasing Si content. The stress-strain 
behaviour of the SiGe alloys of composition range 0.95 < x < 1 is similar to that of pure Si at 
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temperatures 800–1000˚C and the yield stress increases with decreasing Si content down to x = 0.95. 
The composition dependence of the yield stress follows an x(1 - x) relationship.  

3. Built-in stress fields related to local fluctuation of the alloy composition, together with the 
dynamic development of a solute atmosphere around dislocations, seem to suppress the activities of 
dislocations and bring about a hardening of SiGe alloys. 
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