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Abstract. Biochemical processes in living cells are open systems, therefore they exchange
materials with their environment and they consume chemical energy. These processes are
molecular-based and for that reason the role of fluctuations can not be ignored and the stochastic
description is the most appropriate one. The chemical master equation describes in exact
way the probabilistic dynamics of a given discrete set of states and helps us to understand
and clarify the differences between closed and open systems. A closed system is related to a
condition of detailed balance (DB), i.e. an equilibrium state. After a sufficiently long period,
an open system will reach a non-equilibrium steady state (NESS) that is sustained by a flux of
external energy. We demonstrate that two implementations of the BCM learning rule (BCM82)
and (BCM92) are, respectively, always in DB, and never in DB. We define a one parameter
parametrization of the BCM learning rule that interpolates between these two extremes. We
compute thermodynamical quantities such as internal energy, free energy (both Helmholtz and
Gibbs) and entropy. The entropy variation in the case of open systems (i.e. when DB does not
hold) can be divided into internal entropy production and entropy exchanged with surroundings.
We show how the entropy variation can be used to find the optimal value (corresponding to
increased robustness and stability) for the parameter used in the BCM parametrization. Finally,
we use the calculation of the work to drive the system from an initial state to the steady state
as the parameter of the plasticity of the system.

1. Introduction
The BCM theory1 was originally proposed to describe plasticity processes in visual cortex as
observed by Hubel and Wiesel [1]. One of the main postulates of this theory is the existence of a
critical threshold (the sliding threshold θM ) and the BCM rule has been classically implemented
in two ways: BCM82 [2] and BCM92 [3], depending on the definition of θM . In the BCM82,
the neuron is assumed to be linear and θM is calculated as the power of the expectation value
of the neuron postsynaptic activity c, that is θM = 〈c〉2 [2]. In order to have stable fixed points,
the average used for θM in the BCM92 model is calculated with the square of the postsynaptic
activity, θM = 〈c2〉, as opposed to the original form, which squared the average of the output
itself. If the expectation value of the output is zero, then the original form would have only
trivial stable fixed points. This difference in the definition of θM leads to the possibility of
deriving the rule from an energy function and of a statistical interpretation of these systems
[3, 4].

1 Named after E L Bienenstock, L N Cooper and P W Munro, the BCM rule is a physical theory of learning in
the visual cortex developed in 1982.
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A “natural” way to cope with the BCM theory is the so-called Chemical Master Equation
(CME) approach [5] that executes in a precise manner the probabilistic dynamics of a finite
number of states, and recovers, in the thermodynamic limit (N → ∞), the mean field
approximation. The CME can be viewed as a Markov process describing the temporal evolution
of the probability of a given discrete set of states [5]. The CME approach offers the possibility
of computing the thermodynamic state functions of both closed and open systems (i.e. whether
they satisfy or not the detailed balance condition). The detailed balance condition (DB) states
that in equilibrium the sum per unit time of all transitions into any state n must be balanced
by the sum of all transitions from n into other states n′ [5]. An interesting observation is that
the two implementations of the BCM rule can either satisfy or not the DB condition.

Let m be the synaptic weights and d the input signals received by the synapses, the BCM
synaptic modification rule for a single neuron [2] has the form

ṁj = φ(c, θM )dj (1)

where mj is the jth synaptic weight and dj the jth input signal. The modification function
φ(c, θM ) depends on the neuron activity level c ∝ (. . .) ·d (it is assumed a linear proportionality
between the input d and the output c) and on a moving threshold θM , which is a nonlinear
function of the cell activity history [6]. For low values of d (d < θM ), φ is negative; for d > θM ,
φ is positive. The possibility of computing thermodynamical functions such as entropy, free
energy and entropy production gives the opportunity to quantify the grade of “openness” of a
system. Nevertheless the entropy variation can be related to the stability and robustness of the
system.

2. Parametrization of the bidimensional case of the BCM rule
It turns out that the bidimensional version of BCM rule, with two orthogonal inputs is indicative
of the general case of stochastic high-dimensional non-orthogonal inputs. Analysis that connects
both has been given in [2, 3, 6]. The averaged version of the BCM learning rule, in the
bidimensional case is:

d

dt

(
m1

m2

)
= (PD)T

(
φ1

φ2

)
(2)

where m1 and m2 are the synaptic weights, P is the diagonal matrix with the inputs probability
of the inputs p1 and p2, D is the inputs matrix (a matrix whose rows are the input vectors ~d1

and ~d2), and the neuronal output in the linearity region is c = ~m · ~d. The vector ~φ = (φ1, φ2),

is defined as (φ(~m · ~d1, θ), φ(~m · ~d2, θ)).
The BCM learning rule can be formulated in two ways: BCM82 [2] and BCM92 [3], based

on two definitions of the moving threshold θ. It is possible to find a parametrization that
interpolates with continuity between these two extremes by a suitable definition of θα

θα = 〈c1+α〉2−α (3)

in this way we obtain for α = 0⇒ θ0 = 〈c〉2 and for α = 1⇒ θ1 = 〈c2〉.
As was done in the work of Bienenstock et al. 1982 [2], we consider two special input vectors

as d1 = (1, 0), d2 = (0, 1), with equal probability of appearing p1 = p2 = 1/2 and the definition
of θ as in equation 3, in this way the the BCM rule becomes2:

ṁ1 =
1

2
φ(m1, θ) =

m1

2
(m1 − θ) (4)

ṁ2 =
1

2
φ(m2, θ) =

m2

2
(m2 − θ)

2 A detailed description is given by Cooper et al. 2004 [6].
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3. BCM rule and CME
Both systems (BCM82 and BCM92) can be studied by the CME because the number of synapses
can be small, and the role of fluctuations can not be neglected. On the other hand, if these
numbers increase, the CME approaches the deterministic equations (mean field limit). Another
motivation for the CME approach is that we can state conditions for the validity of the detailed
balance, and if we can compute the stationary distribution, we can also compute all the relevant
thermodynamic quantities as free energy and entropy. The CME formalism allows us to deal
with “discrete synapses”, that are synapses with non-continuous values, as pointed out by several
authors [2, 3, 4, 6, 7]. The CME for the system defined in equation 4 is:

ṗm1,m2 = (Em1 − 1)r(m1)
m1,m2

pm1,m2 + (E−1
m1
− 1)g(m1)

m1,m2
pm1,m2 (5)

+ (Em2 − 1)r(m2)
m1,m2

pm1,m2 + (E−1
m2
− 1)g(m2)

m1,m2
pm1,m2 .

This CME is derived under the condition of a one-step Poisson process [5], E and E−1 are the
forward and backward step operators, whose effect on an arbitrary function f(n) is defined as
Enf(n) = f(n+ 1),E−1

n f(n) = f(n− 1). The generation and recombination terms respectively

are g
(mi)
m1,m2 =

m2
i

2N2 , r
(mi)
m1,m2 = miθα

2N2 , i = 1, 2, and N is the maximum value of the synaptic weight
(proportional to the maximum number of molecules). To verify if the DB condition holds, we
define a quantity that we call “commutator” Cα(m1,m2), because it is the difference between
the two possible paths (i.e. by joining the bottom left vertex with the upper right vertex) in an
unitary square. The validity of this definition relies on the structure of the CME, which does
not contain diagonal terms (i.e. there are no terms with simultaneous variations of m1 and m2)

Cα(m1,m2) =
g

(m2)
m1−1,m2−1 · g

(m1)
m1−1,m2

r
(m2)
m1−1,m2

· r(m1)
m1,m2

−
g

(m1)
m1−1,m2−1 · g

(m2)
m1,m2−1

r
(m1)
m1,m2−1 · r

(m2)
m1,m2

. (6)

If Cα(m1,m2) = 0, the DB condition always holds, whereas if Cα(m1,m2) 6= 0 the DB does not
hold.

4. Thermodynamics quantities from CME:
In order to make a non equilibrium thermodynamics approach in terms of the chemical master
equation, we have to know some concepts from the statistical mechanics of equilibrium. For the
canonical ensemble one can define the Gibbs entropy S, the total energy U and the Helmholtz
free energy F

S = −kB
N∑
i=1

pi ln pi, U =

N∑
i=1

piui and F = U − TS (7)

In this paper we will assume that kB and the temperature T are equal to 1.
Considering that the Gibbs entropy (equation 7) can be written as function of time and

taking its time derivate3

dS(t)

dt
= −

N∑
i=1

dpi
dt

ln pi −
d

dt

N∑
i=1

pi = −
N∑
i=1

dpi
dt

ln pi (8)

we take into account the generic master equation dpi(t)
dt =

∑N
j=1(pj(t)qij−pi(t)qji), where qij are

the transition rates and pi(t) is the probability that the system is in the ith state. In equation 8

3 The term d
dt

∑N
i=1 pi does not contribute since

∑N
i=1 pi = 1.
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the term dpi
dt can be replaced by the master equation and then we can write the time variation

of entropy as [8, 9]

dS(t)

dt
= −1

2

N∑
i,j=1

(pjqij − piqji) ln
piqji
pjqij

+
1

2

N∑
i,j=1

(piqij − pjqji) ln
qji
qij

(9)

This derivation is in agreement with the classical definition of the entropy variation and may be
written as the sum of two terms [10]:

dS(t)

dt
= hd − ep (10)

Where ep is the entropy production rate, i.e. the entropy produced inside the system due to
spontaneous process and hd is the heat dissipation rate, i.e. the entropy supplied to the system
by its surroundings. According to the second law of thermodynamics ep must be zero for
reversible (or equilibrium) transformations and positive for irreversible transformations of the
system. The entropy supplied, hd, may be positive, zero or negative depending on the interaction
of the system with its surroundings [10].

We can still relate hd and ep to the thermodynamic variables at equilibrium. If we consider
the definition of the Helmholtz free energy (equation 7), the entropy variation (equation 10) can

be expressed as dS(t)
dt = dU(t)

dt −
dF (t)
dt . Therefore, we identify

hd =
dU(t)

dt
and ep =

dF (t)

dt
(11)

In this way we have the mathematical formulation for the thermodynamic variables in terms of
the master equation. When the system presents detailed balance condition, for t→∞ it reaches

an equilibrium state with ep = hd = dS(t)
dt = 0. In contrast to systems in equilibrium, systems

in NESS present fluxes of physical quantities, such as particles or energy. Thus, DB is violated
and energy is pumped into the system to sustain the NESS [9, 11, 12]: ep and hd are not null,

but equal. This is necessary to ensure that S is finite asymptotically and dS(t)
dt = 0.

Using the result in equation 11, we can calculate the work to drive the system from an initial
state to the stationary (or equilibrium) state as

dWhd

dt
=

dU(t′)

dt′
− dU(∞)

dt′
(12)

Whd = lim
t→∞

∫ t

0
(hd(t

′)− hd(∞))dt′ = lim
t→∞

[ ∫ t

0
hd(t

′)dt′ − thd(∞)

]
and

dWep

dt
=

dF (t′)

dt′
− dF (∞)

dt′
(13)

Wep = lim
t→∞

∫ t

0
(ep(t

′)− ep(∞))dt′ = lim
t→∞

[ ∫ t

0
ep(t

′)dt′ − tep(∞)

]
The total work (work of entropy) is written as

WS = Whd −Wep (14)

Hence, we use the calculation of the work as the parameter of the plasticity of the system (where
each value of ep and hd represents a probability configuration for the system).
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5. Results
In this section we are going to compare the behavior of the different formulations of the BCM
rule, through the calculation of the thermodynamic variables. More specifically, we are interested
in determining which model is more plastic, studying the differences between DB and NESS.
We have to determine if systems with α 6= 0 and Cα(m1,m2) 6= 0 are in a NESS condition. We
can do this by the calculation of hd, ep and dS

dt , because as we enunciated in section 4 NESS is
characterized by a sustained energy input and hd = ep 6= 0 in the stationary state. We simulate
the time evolution of hd and ep for 0 ≤ α ≤ 1 and we verify that for α = 1 (BCM92) the system
presents hd = ep = 0.0013465 and for α = 0 (BCM82) hd = ep = 0. We can infer that the
BCM82 reaches an equilibrium state and the BCM92 reaches a NESS.

We will compute the work done by the system to reach the equilibrium configuration. To do
this we compute Whd ,Wep and WS according to equations 12, 13 and 14 by numerical integration
of the CME over a time span sufficiently long to reach the stationary distribution.

A first comparison between the two BCM models reveals that the work done to reach the
stationary distribution is lower in the case of DB violation (see figure 1).

Figure 1. Change of Whd ,Wep ,WS for BCM82 (black line) and BCM92 (dashed line). The
simulations are performed for N = 31 and the initial condition pm1,m2 = δm1,31δm2,31

We confirm this trend by plotting the value of entropy work in the stationary state (W s
S) as

a function of α (see figure 2).
We note that the value of these quantities is dependent on the choice of the initial conditions.

This dependence on the initial conditions is easily explainable for the WS from the definition

WS =

∫ ∞
0

dS

dt′
dt′ =

∫ ∞
0

(ep(t
′)− hd(t′))dt′ = Wep −Whd = S(∞)− S(0) : (15)

the entropy variation depends on the initial value. If for example we choose the initial conditions
as: pm1,m2 = δm1,m̄1δm2,m̄2 , the initial entropy is zero, hence Wep −Whd is simply S(∞).

Figure 2. Change of W s
S when α is

varied from 0 to 1. The simulations
are performed for N = 31 and
the initial condition pm1,m2 =
δm1,15δm2,15.

In figure 2 we show W s
S as a function of the parameter α. It is possible to see that the entropy

variation shows a minimum for α ≈ 0.6.
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6. Conclusions
Our results show that when the system is not in the detailed balance condition, the work
necessary to reach the stable state is less than that requested when the detailed balance holds.
This means that the system requires less energy to memorize a pattern when the detailed
balance is not satisfied. Hence the system is more plastic: a part of the energy that is requested
to maintain the NESS is recovered when the system learns and develops selectivity to input
pattern. We believe that this can be an hallmark of biological systems and that this can explain
why these systems spend a large part of their metabolic energy to maintain NESS states; this
energy is recovered during crucial developmental steps such as differentiation and learning.
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