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Abstract. In this work we extend the quantum channel detection method developed in Refs.
[1, 2] in order to detect other interesting convex sets of quantum channels. First we work out
a procedure to detect non completely co-positive maps. Then we focus on the set of so-called
bi-entangling operations and show how a map outside this set can be revealed. In both cases we
provide explicit examples showing the theoretical technique and the corresponding experimental
procedure.

1. Introduction
In quantum information it is of great importance to characterise quantum communication
channels or quantum devices without necessarily performing quantum process tomography.
Actually, quantum process tomography requires a large number of experimental resources, while
one is usually interested in few properties of the quantum channel under consideration, as e.g.
whether the channel has some entangling power. In many realistic implementations some a
priori information on the form of the channel is available, hence, the quantum channel detection
(QCD) method developed in [1, 2] can be applied. Besides being less informative than the full
quantum process tomography, the QCD method allows us to test the property of interest with
a much smaller experimental effort.

In this work we will discuss in detail how to detect two sets of quantum channels, namely
quantum channels that are not completely co-positive (CCOP) and the set of operations that
are not bi-entangling (BE). Both sets are of great interest as they are connected via the Choi-
Jamiolkowski isomorphism to PPT states1 [3] and to the problem of classical simulatability of
quantum computation [4], respectively.

This work is organized as follows. In section 2 we will review the main idea of QCD following
Refs. [1, 2]. In section 3 we will discuss a method to detect non CCOP maps. In section 4 we
will study how to reveal quantum channels that are not BE operations, and we finally summarize
the main results in section 5.

2. The general QCD method
The QCD method proposed in Refs. [1, 2] relies on the concept of witness operators [5] and the
Choi-Jamiolkowski isomorphism [6]. We briefly remind both of them in the following.

1 A state of a bipartite system is PPT if the partial transpose of its density matrix is positive semi-definite,
otherwise it is NPT.
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A state ρ is entangled if and only if there exists a hermitian operator W such that Tr[Wρ] < 0
and Tr[Wρsep] ≥ 0 for all separable states; such an operator is called an entanglement witness.
The Choi-Jamiolkowski isomorphism provides a one-to-one correspondence between completely
positive (CP) maps M acting on D(H) (the set of density operators on H, with finite dimension
d) and positive operators CM on HA ⊗HB (named Choi states), where A and B here denote
the two subsystems on which the Choi state is defined. The isomorphism can be stated as

M ⇐⇒ CM = (M ⊗I )[|α〉〈α|], (1)

where I is the identity map, and |α〉 is the maximally entangled state with respect to the

bipartite space H⊗H, i.e. |α〉 = 1√
d

∑d
k=1 |k〉 |k〉. The above isomorphism can be exploited to

link convex sets of quantum channels to particular convex sets of quantum states.
As a simple example consider the convex set of entanglement breaking (EB) channels. A

channel E is EB if and only if its Choi state CE is separable [7]. Therefore, the detection of
entanglement of CE by means of a suitable witness operator WEB implies that the implemented
quantum channel E is not EB [1].

Although the general QCD method applies to several convex sets of quantum channels, as
e.g. EB and separable maps, in the following it will be explicitly studied for the convex sets of
CCOP channels and BE operations.

3. Completely co-positive channels
In this section we will consider the set of CCOP channels. A CP map C acting on a qudit
(d-dimensional system) is CCOP if and only if the composite map CT = T ◦ C , where T is
the transposition map, is CP. Since a quantum map is CP if and only if the corresponding Choi
operator is positive, we can restate the above definition as follows: a CP map C is CCOP if and
only if the Choi operator CCT

related to the composite map CT is positive.
By the above correspondence we will develop a method to detect whether a map is non CCOP

by adapting techniques developed for the detection of non positive partial transposed (NPT)
entangled states [3]. Consider then a map M that does not belong to the set of CCOP channels.
From the above definition it follows that the bipartite Choi state CMT

= (TA ⊗ I )[CM ] has
at least one negative eigenvalue. Let λ− be the most negative eigenvalue corresponding to the
eigenvector |λ−〉. The following operator, i.e.

WCCOP = |λ−〉〈λ−|TA , (2)

is thus suitable to detect the NPT state CMT
corresponding to the non CCOP map MT . Notice

that the transposition map on the Choi state acts only on the first qudit, i.e. TA.
As an illustrative example we consider the case of the dephasing noise D acting on a single

qubit, defined by the following trace preserving CP map

D [ρ] = pρ+ (1− p)σzρσz , (3)

where σz is a Pauli operator2. It is easy to see that the Choi state CD corresponding to D takes
the form

CD = p|α〉〈α|+ (1− p)|φ−〉〈φ−|, (4)

2 Hence, dephasing noise consists in either leaving the input state unchanged (with probability p) or applying a
phase flip σz (with 1− p). Generally speaking, it represents a loss of quantum coherence in the off-diagonal terms
of the regarded system.

4th Young Researcher Meeting, Trieste 2013 IOP Publishing
Journal of Physics: Conference Series 470 (2013) 012005 doi:10.1088/1742-6596/470/1/012005

2



|α〉
D

A

B WCCOP,D

Figure 1. Experimental scheme showing the detection of the dephasing channel D as a
non CCOP channel. Notice that the expectation value of the witness WCCOP,D , namely
Tr[WCCOP,DCD ], can be measured locally.

with |φ−〉 = 1√
2
(|00〉 − |11〉). The above state can be shown to be NPT whenever p 6= 1/2. It is

then possible to derive the following detection operator [8, 9] from Eq. 2:

WCCOP,D =

{
1
4(1⊗1+σx ⊗ σx + σy ⊗ σy − σz ⊗ σz) for p < 1

2 ,
1
4(1⊗1−σx ⊗ σx − σy ⊗ σy − σz ⊗ σz) for p > 1

2 .
(5)

This method can be experimentally implemented by preparing a two-qubit state in the
maximally entangled state |α〉, then operating with the quantum channel D to be detected
on one of the two qubits and measuring the operator WCCOP,D acting on both qubits at the end
(see Fig. 1). If the resulting average value Tr[WCCOP,DCD ] is negative, we can then conclude
that the Choi state CDT

= T ◦ D is NPT and that the channel under consideration is not
CCOP.

Finally, we would like to stress that, since every NPT state is entangled, the detection of a
non CCOP channel M implies that M is not EB as well, but the opposite does not hold in
general. Actually the set of EB channels is in general a subset of the CCOP channels. The two
sets coincide only when the channels act on two-dimensional systems. From the perspective of
QCD, this implies that for higher dimensional systems a quantum channel which is detected as
non EB may nevertheless belong to the set of CCOP maps.

4. Bi-entangling operations
In this section we will focus on BE operations, a class of quantum channels that can generate
at most bipartite entanglement. They were introduced in Ref. [4] in the context of quantum
computation and were shown to be efficiently simulatable classically. BE operations are quantum
channels acting on bipartite systems AB (of finite dimension d) in such a way that they can
be expressed as convex combinations of (a) separable operations, (b) operations that swap
the two qudits and then act as a separable operation, and (c) EB channels, that break any
entanglement between the two qudits on which the channel acts and extra ancillae [4]. Via the
Choi-Jamiolkowski isomorphism we can then characterize the set of BE operations in terms of
the corresponding Choi states.

Consider a BE operation MBE acting on the bipartite system AB. The Choi state CMBE

associated to MBE is then a four-partite state (composed of subsystems A, B, C and D).
Separable channels have separable Choi states with respect to the bipartition AC|BD [10]. As
a consequence, channels of type (b), with a swap gate followed by separable channels, have
separable Choi states in AD|BC. EB channels correspond to separable Choi states in the
bipartition AB|CD. A general Choi state CMBE

for a BE channel can then be written as
a convex combination of four-partite states biseparable with respect to bipartitions AC|BD,
AD|BC and AB|CD, namely

CMBE
= p

∑
i

piC
(AC|BD)
i + q

∑
j

qjC
(AD|BC)
j + r

∑
k

rkC
(AB|CD)
k , (6)
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where (p, q, r), {pi}, {qj} and {rk} are probability distributions. Notice that the first term
corresponds to the set (a), the second to (b) and the third to (c). In other words, the Choi
states CMBE

corresponding to BE operations lie in the convex hull of states biseparable with
respect to the bipartitions AC|BD, AD|BC and AB|CD for the four-partite system ABCD.
We name this convex set of four-partite Choi states corresponding to BE operations as SBE .
It is now possible to develop detection procedures for BE operations by employing suitable
witness operators that detect the corresponding Choi state with respect to the biseparable
states belonging to SBE .

We will now focus on the case of a unitary transformation U acting on two d-dimensional
systems. The corresponding Choi state is pure and given by |U〉 = (U ⊗ 1) |α〉. Therefore a
suitable detection operator for U as a non BE operation can be constructed as [1, 2]

WBE,U = α2
BE 1−CU , (7)

where CU = |U〉 〈U |, and the coefficient αBE is the overlap between the closest biseparable state
in the set SBE and the entangled state |U〉, namely

α2
BE = max

MBE

〈U |CMBE
|U〉 . (8)

Since the maximum of a linear function over a convex set is always achieved on the extremal
points, the maximum involved in αBE can be always calculated by maximising over the pure
biseparable states in SBE , i.e.

αBE = max
|Ξ〉∈SBE

| 〈Ξ|U〉|. (9)

By exploiting the Schmidt decomposition [11] of the state |U〉, the maximization above can be
expressed analytically as

αBE = max
i

max
λ

λi(U), (10)

where the index i labels the bipartitions AC|BD, AD|BC and AB|CD, and λi(U) are the
Schmidt coefficients of |U〉 in the bipartition i. Therefore, in order to find the coefficient αBE
one has to find the maximal Schmidt coefficient of |U〉 for a fixed bipartite splitting and then
maximize it among all the bipartitions involving only two versus two subsystems.

As an example of the above procedure consider the following unitary operation V acting on
a two-qubit system

V =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

 (11)

The gate V is a modified swap gate such that it is no longer a BE operation. The coefficient
αBE for V can be computed following the steps outlined above. The Choi state |V 〉 associated
to the gate V is given by

|V 〉 =
1√
2

(|α〉AD |00〉BC +
∣∣φ−〉

AD
|11〉BC), (12)

and the Schmidt coefficients of V with respect to the bipartitions AC|BD, AD|BC and
AB|CD can be easily computed as λAC|BD(V ) = (1

2 ,
1
2 ,

1
2 ,

1
2), λAD|BC(V ) = ( 1√

2
, 1√

2
, 0, 0) and

λAB|CD(V ) = (1
2 ,

1
2 ,

1
2 ,

1
2). Therefore, the coefficient αBE equals 1/

√
2 and a suitable detection

operator in order to detect V as a non BE operation takes the form

WBE,V =
1

2
1−CV . (13)
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Figure 2. Experimental scheme implementing the detection of the gate V defined in Eq. 11 as
a non BE operation.

From an experimental point of view, the detection procedure can be implemented as follows:
prepare a four-partite qubit system in the state |α〉 = |α〉AC |α〉BD, apply the quantum gate V
to qubits A and B, and finally perform a suitable set of local measurements in order to measure
the operator (13). If the resulting average value Tr[WBE,V CV ] is negative then the quantum
channel is detected as a non BE operation. The experimental scheme is shown in Fig. 2.

We conclude this section by noticing that the method described above leads to different
detection operators with respect to the detection method for non separable maps [1]. Indeed,
already in the case of two qubits, the optimal witness operator that detects the gate V as a non
separable channel is [1]

WSep,V =
1

4
1−CV . (14)

As expected, the detection operator above is weaker than WBE,V in Eq. 13 in the sense that it
leads to a negative expectation value for a smaller set of CP maps. This is due to the fact that
BE maps are a strict subset of separable maps, and actually the set of separable Choi states in
the bipartition AC|BD, corresponding to separable maps, is a strict subset of SBE .

5. Conclusions
In summary, after a brief review of the general quantum channel detection method proposed in
[1], based on the Choi-Jamiolkowski isomorphism and witness operators, we have developed
a method to detect maps that do not belong to specific convex sets, i.e. the completely
co-positive maps and the bi-entangling operations. Significant examples of non co-positive
and non bi-entangling operations have been considered in detail, showing both the underlying
theoretical techniques and the corresponding experimental schemes. We stress that the method
works when some a priori knowledge on the quantum channel is available, it requires fewer
measurements than quantum process tomography and it is achievable experimentally with
present day technology [12]. In particular, the detection method for non entanglement breaking
channels and for non separable maps has already been demonstrated in a quantum optical
experiment [13].
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