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Abstract. In this paper the reconstruction of a two-dimensional image from a nonuniform
sampling of its Fourier transform is considered, in the presence of uncertainties on the frequencies
corresponding to the measured data. The problem therefore becomes a blind deconvolution,
in which the unknowns are both the image to be reconstructed and the exact frequencies.
The availability of information on the image and the frequencies allows to reformulate the
problem as a constrained minimization of the least squares functional. A regularized solution
of this optimization problem is achieved by early stopping an alternating minimization scheme.
In particular, a gradient projection method is employed at each step to compute an inexact
solution of the minimization subproblems. The resulting algorithm is applied on some numerical
examples arising in a real-world astronomical application.

1. Introduction

Fourier imaging finds applications in several scientific and medical areas, as computerized
tomography, magnetic resonance imaging and astronomy [4, 9]. More in general, a Fourier
approach is adopted when the high frequencies characterizing the measured radiation make
the acquisition systems designed for optical wavelengths unsuitable. In this paper, we address
the Fourier image reconstruction problem in which the frequencies corresponding to the data
samples are not exactly known, but some estimates of them are available. Problems in which the
degraded image has to be found without prior knowledge of the system PSF are typically known
as blind deconvolution [17, 18, 19]. In particular, in our case we are dealing with a semi-blind
deconvolution problem [2, 10, 11], since the PSF is not completely unknown but a parametrized
version is available. Due to the usual non-negativity of the image and the partial a priori
information on the frequencies, the reconstruction problem can be reformulated as a constrained
nonlinear least squares problem. We propose to address its solution by means of a cyclic block
gradient projection scheme, in which at each cycle either the image or the parametrized PSF is
kept fixed, while the other is updated through a certain number of gradient projection iterations.
Moreover, a suitable criterion allows us to perform only few cycles, thus leading to a regularized
solution thanks to the semiconvergent behaviour of a general iterative approach. The proposed
scheme is then validated with some numerical tests on simulated datasets, designed within a
real-world astronomical application.
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2. Imaging from Fourier data

The Fourier imaging problem aims at reconstructing a n2-vector f , representing the
discretization of an unknown non-negative distribution f(x, y) (rearranged in lexicographic
order), starting from the knowledge of an N -vector g containing the corresponding measured
or estimated complex Fourier samples. Mathematically, this can be done by solving the
minimization problem

min
f∈Rn2

, f≥0
Φ(f) ≡ 1

2
‖Af − g‖2

CN , (1)

where the N × n2 matrix A is defined as

(A)hk = e2πiρk(xh cos(θk)+yh sin(θk)), h = 1, . . . , n2, k = 1, . . . , N. (2)

Here (θk, ρk) are the spatial frequencies corresponding to the sample gk, given in polar
coordinates (in several applications, like the one described in Section 3, the data acquisition
system makes a polar representation of the spatial frequency more convenient than the classical
Cartesian one).
If the data frequencies are not completely known, but only some ranges of variability are
available, then problem (1) becomes

min
f∈Rn

2

, f≥0
θ∈RN , θmin≤θ≤θmax

ρ∈RN , ρmin≤ρ≤ρmax

Φ(f, θ, ρ) ≡ 1

2
‖A(θ, ρ)f − g‖2

CN , (3)

where θ = (θ1, ..., θN )T and ρ = (ρ1, ..., ρN )T are the vectors of angular and radial coordinates,
and θmin, θmax, ρmin, ρmax are the related lower and upper bounds.
Problem (3) is convex if restricted to f only, but is nonconvex with respect to θ and ρ and, even
more, with respect to (f, θ, ρ), thus leading to the possible presence of several local minima.
Due to the separate nature of the optimization variables, we approached the minimization
problem (3) by means of an alternating strategy [13, 14], consisting in the following iterative
minimization scheme:

f (ℓ+1) = argmin
f≥0

Φ(f, θ(ℓ), ρ(ℓ)) (4)

θ(ℓ+1) = argmin
θmin≤θ≤θmax

Φ(f (ℓ+1), θ, ρ(ℓ)) (5)

ρ(ℓ+1) = argmin
ρmin≤ρ≤ρmax

Φ(f (ℓ+1), θ(ℓ+1), ρ) (6)

The key problem is that the proposed scheme has two nontrivial drawbacks, since a) the
convergence to a solution of (3) is not guaranteed (see e.g. the counterexample shown by
Powell in [25]), and b) computing the exact minimum points in each subproblem is impractical.
Both problems can be avoided by solving inexactly each partial minimization problem by means
of a suitable descent method [5, 13]. In particular, this occurs when the approximation of
each solution of (4)–(6) is achieved by performing a finite number of iterations of the gradient
projection (GP) method [7], that applies to any minimization problem over a convex set Ω of
the form

min
x∈Ω

ψ(x)

and whose main steps are reported in Algorithm 1.
The GP method and its scaled version SGP [7] combine a gradient projection step with variable
steplength (and scaling) with the well-known Armijo rule to achieve the sufficient decrease in the
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Algorithm 1 Gradient projection method

Choose the starting point x(0) ∈ Ω, set the parameters ν, µ ∈ (0, 1), 0 < αmin < αmax.

For k = 0, 1, 2, ... do the following steps:

Step 1. Choose the steplength parameter αk ∈ [αmin, αmax];
Step 2. Projection: y(k) = PΩ(x

(k) − αk∇ψ(x(k)));
Step 3. Descent direction: ∆x(k) = y(k) − x(k);
Step 4. Backtracking loop: set λk = 1.

If ψ(x(k) + λk∆x
(k)) ≤ ψ(x(k) + νλk∇ψ(x(k))T∆x(k) Then go to Step 5;

Else set λk = µλk and go to Step 4.
Endif

Step 5. Set x(k+1) = x(k) + λk∆x
(k).

End

Algorithm 2 Cyclic block gradient projection method

Choose f (0) ≥ 0, θmin ≤ θ(0) ≤ θmax, ρmin ≤ ρ(0) ≤ ρmax and three integers Nf , Nθ, Nρ ≥ 1.

For ℓ = 0, 1, 2, ... do the following steps:

Step f . Choose an integer 1 ≤ N
(ℓ)
f ≤ Nf and compute f (ℓ+1) by applying N

(ℓ)
f iterations

of Algorithm 1 to problem (4) starting from the point f (ℓ).

Step θ. Choose an integer 1 ≤ N
(ℓ)
θ ≤ Nθ and compute θ(ℓ+1) by applying N

(ℓ)
θ iterations

of Algorithm 1 to problem (5) starting from the point θ(ℓ).

Step ρ. Choose an integer 1 ≤ N
(ℓ)
ρ ≤ Nρ and compute ρ(ℓ+1) by applying N

(ℓ)
ρ iterations

of Algorithm 1 to problem (6) starting from the point ρ(ℓ).

End

objective function [3]. As concerns the choice of the steplength parameter, notable results have
been obtained in denoising and deblurring problems [21, 26] by alternating the two Barzilai-
Borwein rules [1, 12]. More details on GP and its parameters can be found e.g. in [6, 24].
In conclusion, problem (3) can be approximately solved by applying to the minimum problems
(4)–(6) a finite number of GP steps: the resulting scheme is the cyclic block gradient projection
(CBGP) method detailed in Algorithm 2 and any limit point of the sequence (f (ℓ), θ(ℓ), ρ(ℓ)) is
stationary (see [5, Theorem 4.2]).

3. An application in astronomy

In this section we test the proposed scheme in a real-world application in astronomy, namely the
reconstruction of X-ray images of a solar flare. The Fourier samples of the unknown image are
estimated from a set of count profiles provided by the solar satellite RHESSI [20], launched by
NASA on February 5 2002 to study solar flares and other energetic solar phenomena. Due to the
RHESSI imaging hardware, based on rotating modulation collimator techniques [15], the data
frequencies are arranged around nine concentric circles in the Fourier plane whose radii form a
geometric sequence with a common ratio

√
3 (see Figure 1). In particular, the total number of

data N is given by the sum of the Ni samples on each circle (i = 1, . . . , 9).
The resulting mathematical model is given by

min
f∈Rn

2

, f≥0
θ∈RN , θmin≤θ≤θmax

Φ(f, θ) ≡ 1

2
‖A(θ)f − g‖2

CN , (7)
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Figure 1. Left panel: example of distribution of the sampling points for the RHESSI imaging
problem (black asterisks), together with the bounds of the box constraints θmin, θmax (red
triangles). Right panel: image of a real flare used as ground truth for the simulated datasets.

that is a particular case of (3) in which the radial coordinate ρ of each sample is known. The
CBGP approach is compared with the Space-D algorithm [6], that is a GP method developed
within the RHESSI data analysis framework for solving the minimum problem (1). As all the
other Fourier-based reconstruction algorithms designed for RHESSI [8, 22], Space-D assumes
that, for the i-th circle (i = 1, . . . , 9), the angular coordinate θ is given by the middle points
of a uniform partition of the [0, 2π] range in Ni bins, since in most cases this choice provides a
good estimate of the real value. Our CBGP approach allows to remove this assumption, and
to treat the value of θ as a further unknown of the reconstruction problem, using the uniform
discretization to define the box constraints (see Figure 1).
We generated a simulated dataset by selecting an image of a real flare (April 15 2002, 00:05:00–
00:10:00 UT, energy band 12-14 keV - see Figure 1, right panel) and calculating the corresponding
data through numerical integration of the Fourier Transform. As concerns the choice of θ, we
chose a random angle within each box [θmin, θmax]. The Fourier samples in this dataset will
be characterized by the presence of a systematic source of noise only, due to the fact that in
the inversion procedure the exact value of θ is unknown. We refer to this dataset with the
term “Sim”. Finally, we corrupted the resulting data by realistic statistical noise (estimated by
assuming Poisson noise on the original count profiles), and this last dataset will be denoted by
“Sim N”. We point out that our way to generate the simulated dataset is a very simplified version
of the much more sophisticated procedure employed by RHESSI. We chose this procedure since
it allows to know the “true” values of θ and, therefore, to evaluate the effectiveness of the blind
approach. In particular, the choice of angles θ according to a uniform random distribution is
arbitrary.
As for the CBGP parameters, we used the same values selected for the Space-D algorithm: in
particular, the stopping criterion chosen to terminate the iterations in both steps of the cyclic
approach1 is given by

|ψ(x(k))− ψ(x(k−1))| < 10−4|ψ(x(k))|. (8)

The choice of the threshold 10−4 guarantees a limited number of iterations at each step and,
therefore, a regularization effect on the recovered solution (more details are shown in [7]). The
CBGP scheme is initialized with a vector θ(0) equal to the middle points of each bin. In these
settings, the image reconstructed by the Space-D algorithm is exactly f (1) (see Algorithm 2).
As far as the number of cycles ℓ concerns, the CBGP algorithm is stopped when criterion (8) in
either the step on f or the step on θ is satisfied at the first iteration (in addition, a maximum
number of cycles equal to 20 is imposed).

1 We remark that in this situation both the block–iterative optimization methods described in Section 2 reduce
to the alternate inexact solution of subproblems (4)–(5).
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Figure 2. Results of the simulated tests Sim (top row) and Sim N (bottom row). The images
obtained with Space-D (first column) and CBGP (second column) are presented, together with
the reconstruction errors on the image and, for CBGP, on the angular coordinates (third column).
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Figure 3. Reconstructions obtained from real data with Space-D (left panel) and CBGP (right
panel).

In Figure 2 we report the reconstructed images obtained with Space-D (first column) and CBGP
(second column), together with the relative errors in Euclidean norm on both the image and the
angular coordinates (third column), for the Sim (top row) and Sim N datasets (bottom row).
As remarked before, the reconstruction error provided by Space-D is the one obtained at the
first cycle. From the results obtained we can see that the blind approach is able to improve
the image quality with respect to the Space-D algorithm, thanks to a better estimate of the
underlying array θ. Although the restored images appear to be very similar, some details are
better reconstructed, as the right footpoint of the loop in the Sim case. The lower number of
cycles performed in the noisy case is in agreement with the fact that, in presence of statistical
noise, the effect of a bad choice for θ is more negligible (even if still present). We remark that,
for the considered application, the computational time is not a crucial issue, since both Space-D
and CBGP end in few seconds.
Fore sake of completeness, we also considered a real event occurred on February 20, 2002
(11:06:02–11:06:34 UT, energy band 22-26 keV) and we show the reconstructions obtained with
Space-D and CBGP in Figure 3.
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4. Conclusions and future work

In this work we considered the image reconstruction problem from a sampling of its Fourier
Transform, in the specific case in which only estimates of the frequencies corresponding to the
measured data are available. From the mathematical point of view, the presence of uncertainties
on the frequencies can be translated in a constrained least-squares problem, in which the matrix
that describes the link between data and image is not known a priori, but depends on a vector of
parameters to be determined. The natural subdivision of the unknowns in separate groups led
us to choose a cyclic block alternating method for the resolution of the optimization problem.
In particular, we used a strategy in which each subproblem is solved inexactly by means of a
projected gradient method, which on the one hand provides a convergent scheme, and on the
other hand allows us to avoid the (onerous) exact resolution of each subproblem. As numerical
experiments, we chose to test the method on a simulated dataset inspired by a real application
in astronomy, and the results seem to validate the proposed scheme.
Future work will involve the extension of the semi-blind approach to objective functions including
regularization penalties on the image, like the Tikhonov term for smooth objects or an edge-
preserving function for sharp contents. As regards the astronomical application considered in
this work, we would like to extend the proposed methodology to the reconstruction of electrons
images through the Bremsstrahlung integral equation [16, 23].
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