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Abstract. A typical way to compute a meaningful solution of a linear least squares problem
involves the introduction of a filter factors array, whose aim is to avoid noise amplification due
to the presence of small singular values. Beyond the classical direct regularization approaches,
iterative gradient methods can be thought as filtering methods, due to their typical capability
to recover the desired components of the true solution at the first iterations. For an iterative
method, regularization is achieved by stopping the procedure before the noise introduces
artifacts, making the iteration number playing the role of the regularization parameter. In this
paper we want to investigate the filtering and regularizing effects of some first-order algorithms,
showing in particular which benefits can be gained in recovering the filters of the true solution
by means of a suitable scaling matrix.

1. Introduction

An ill-posed discrete inverse problem can be modeled with a linear system

b = Axtrue + η, (1)

where A is an ill-conditioned full-rank m×n matrix, with m ≥ n, b ∈ R
m is the observed data,

xtrue ∈ R
n is the unknown object we want to recover and η ∈ R

m is the noise corrupting the
data. A classical example of the mathematical model (1) can be found in image restoration
[2, 11]: in this case the matrix A represents the blurring effect that the acquisition process
introduces on the unknown image x.
Since discrete ill-posed problems have the property that the singular values decay to zero, a
simple inversion of the data would amplify the noise providing a solution without any physical
meaning. Especially when dealing with large scale problems, as the image deblurring one, a
typical way to overcome this situation consists of iteratively building up a sequence of arrays
that converges to the solution of the following least squares problem

min
x∈Rn

f(x) ≡
1

2
‖Ax− b‖22, (2)

and stopping the iterations before the noise distorts the reconstructions.
Due to the large diffusion of the least squares approach to address many real-world applications,
the development of efficient methods to solve (2) has been widely treated in literature. In this
paper, we consider the family of the scaled gradient methods, and we analyze the role played by
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well-known steplengths and scaling matrices in reconstructing the true solution. The starting
point of our work is a paper of Nagy & Palmer [14], in which the authors investigate how the
solution achieved by some classical gradient methods can be written as a linear combination of
the singular vectors of A through appropriate filter factors [11]. Here we extend this analysis
to the presence of a scaling matrix multiplying the gradient direction, showing its regularizing
effect in recovering the true filter coefficients.
The paper is organized as follows: in Section 2 we introduce the optimization methods for the
solution of (2) we decided to analyze, while in Section 3 the state-of-the-art on these algorithms
as filtering methods is summarized, and the extension to the scaled case is provided. Section 4
will be devoted to some numerical experiments we carried out on a simulated image deblurring
problem, while our conclusions are offered in Section 5.

2. Gradient methods

A gradient method for the solution of (2) is an iterative algorithm whose (k + 1)–th element is
defined by

xk+1 = xk − αkMkgk, (3)

where αk > 0 is the steplength, Mk is a symmetric and positive definite scaling matrix and
gk = ∇f(xk) = AT (Axk − b) is the gradient vector. The idea of finding a descent direction by
scaling the gradient of the objective function is rather classical in numerical optimization. The
most famous example of scaled gradient method is provided by the Newton algorithm, in which
the scaling matrix is given by the inverse of the Hessian ∇2f(xk).
Among the large variety of selection rules for the steplength, classical examples are the
Steepest Descent (SD) [5] and the Minimal Gradient (MG) [6, 15] parameters, which minimize
f(xk − αMkgk) and ‖∇f(xk − αMkgk)‖2, respectively:

αSD
k =

gT
k Mkgk

‖AMkgk‖
2
2

; αMG
k =

gT
k MkA

TAgk

‖ATAMkgk‖
2
2

. (4)

In order to accelerate the slow convergence exhibited in most cases by the standard formulas (4),
many other strategies for the steplength selection have been proposed, as the two Barzilai and
Borwein rules [1] adapted to account for the scaling matrix [4], obtained by regarding the matrix
B(αk) = (αkMk)

−1 as an approximation of the Hessian ∇2f(xk) and forcing a quasi-Newton
property on B(αk). The resulting steplengths are given by

αBB1
k =

sTk−1
M−1

k M−1

k sk−1

sTk−1
M−1

k yk−1

; αBB2
k =

sTk−1
Mkyk−1

yT
k−1

MkMkyk−1

,

where sk−1 = xk − xk−1, yk−1 = gk − gk−1, and their several alternated versions [9, 15].
As for the scaling matrices, in this paper we consider the following two examples arising from
the constrained optimization:

• the one provided by the iterative space reconstruction algorithm (ISRA) [8], whose explicit
expression of the scaling matrix is

M ISRA
k = diag

(

xk

ATAxk

)

,

where the quotient is intended in the Hadamard sense;
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• the one proposed by Hager, Mair and Zhang (HMZ) [10], that exploits a gradient splitting
strategy [12, 13] with a resulting scaling matrix given by

MHMZ
k = diag

(

αCBB1
k xk

xk + αCBB1
k (ATAxk +ATb)+

)

,

where t+ = max{0, t} and αCBB1
k is a cyclic version of the first Barzilai and Borwein

steplength rule computed by reusing αBB1
k for p consecutive iterations [7].

For both matrices, the positive definiteness is ensured by thresholding the diagonal elements in
a prefixed interval 0 < Lmin < Lmax. We remark that here we are not considering the ISRA and
HMZ algorithms, but we only borrow the scaling matrices defined in the algorithms themselves
and use them in our scaled gradient scheme.

3. Filter factors analysis

Let A = UΣV T be the singular value decomposition (SVD) of A, where U = [u1u2 . . .um]
and V = [v1v2 . . .vn] are unitary matrices and Σ ∈ R

m×n is a diagonal matrix with entries
σ1 ≥ σ2 ≥ ... ≥ σn > 0. When solving the linear ill-posed inverse problem (1), the generalized
solution

x† =
n
∑

i=1

uT
i b

σi
vi = xtrue +

n
∑

i=1

uT
i η

σi
vi

results to be totally useless due to the division by the small singular values and the consequent
magnification of the corresponding noise components. A typical regularization strategy consists
in simultaneously preserving the highest σi while filtering out the smaller ones by means of an
array of positive weights ϕi. The corresponding regularized solution is given by

xreg =
n
∑

i=1

ϕi
uT
i b

σi
vi , (5)

where ϕi are the so-called filter factors. The truncated singular value decomposition (TSVD)
and the Tikhonov method are examples of this “direct” regularization approach, in which the
filter factors are defined by

ϕi =

{

1 if i ≤ r

0 if i > r
; ϕi =

σ2
i

σ2
i + λ

,

where r ∈ {1, . . . , n} and λ > 0.
The general iteration of any gradient method can also be interpreted as a filtered regularized
solution, since it can be written as

xk+1 =
n
∑

i=1

ϕk+1

i

uT
i b

σi
vi ,

where ϕk+1

i are opportune filter factors, depending on αk and Mk, automatically defined during
the iterative procedure. In particular, if we assume x0 = 0, then:

• when Mk = I for each iteration k, the iterative filter factors can be written as

ϕk+1

i = 1−
k
∏

ℓ=0

(

1− αℓσ
2
i

)

, k = 0, 1, . . . (6)
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• when Mk is not trivial, the expression for ϕk+1

i is more complicated. In particular, once
defined the polynomial Pk, acting on a n× n matrix Ω as

Pk(Ω) = Pk−1 (Ω) + αkMk(I −ΩPk−1(Ω)) , P−1(Ω) = 0,

we have

ϕk+1

i = σ2
i

(

∑n
j=1

(Qk)ijσju
T
j b

σiuT
i b

)

, k = 0, 1, . . . (7)

where Qk = V TPk(A
TA)V .

From equation (7) we can see that the presence of Mk on the filters expression makes any factor
ϕk+1

i explicitly related to the whole singular system of A, that acts in a different way on each
i-th component of the filter vector. For the nonscaled case, this dependence is hidden in the αℓ

coefficients, that are the same for all filters ϕk+1
1

, . . . , ϕk+1
n , while in the analytical expression

only the i-th singular value σi is explicitly present. In Section 4, we will show the positive effect
of such more complicated dependence in reconstructing the actual values of the true solution
filter factors

ϕtrue
i = σi

vT
i xtrue

uT
i b

. (8)

4. Numerical experiments

The numerical experiments are carried out on a 2-dimensional image restoration test problem.
We used the phantom test image from Matlab’s Image Processing toolbox, artificially blurred
by a Gaussian point spread function (PSF) with variance 1, in order to simulate the degrading
effect on a real image due to the action of a general acquisition system. The resulting blurred
data has been corrupted with 1% white Gaussian noise. We set n = m = 4096, thus obtaining
xtrue and b of 64×64 pixels. The first row of Figure 1 contains the true image, the PSF modeling
the blurring effect and the measured data. When performing the scaled methods, we adopt the
BB2 rule for the steplength selection, with a further Armijo reduction procedure to ensure the
convergence.
Table 1 shows the best reconstruction errors ‖xk − xtrue‖2/‖xtrue‖2 for the methods we
considered. For the HMZ matrix, we chose the value p = 4 for the cyclic version of the BB1
steplength rule definingMk. Moreover, the diagonal elements of the scaling matrices provided by
the ISRA and HMZ approaches have been thresholded in the range [10−3, 108]. From the results
of Table 1, we can notice that the presence of the scaling matrix provides clear improvements in
the minimum error reached by the corresponding methods, even if higher number of iterations
are required. We have to remark that, for the scaled algorithms, the error behaviour rapidly
decrease with the iterations and then stands in a very flat region, therefore values very close to
the minimum can be obtained in both cases by stopping the procedure hundreds of iterations
before the optimal value. In order to appreciate the positive effects of the scaling matrix on
the reconstructions, the second row of Figure 1 reports the restored images by the different
algorithms (since the reconstructions of the nonscaled methods were very similar, we reported
only the BB2 case). In particular, we can observe that the presence of a scaling matrix helps
to remove some artifacts due to the noise on the data and better recover some details of the
solution. The better performances of the scaled algorithms are also visible in the plots of the
filter coefficients; in particular, in Figure 2, we compare the filter factors generated at the
iteration corresponding to the minimum error for the different nonscaled and scaled gradient
methods and the “optimal” coefficients (8) associated to the true solution. The filter factors
generated by the nonscaled method with different steplength exhibit smooth trends, which are
not able to follow the (somewhat surprising) irregular profile of the filters related to xtrue, due
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to the presence of noise in the vector b at the denominator of the filters expression (8). On the
contrary, the presence of the same denominator in the analytical form (7) allows a more faithful
reconstruction of the filters by the scaled algorithms, whose behaviour results to be in general
as erratic as that of the true ones.

Table 1. Numbers of iterations and minimum error reached for solving the image deblurring
problem.

Nonscaled gradient Scaled gradient
MG SD BB1 BB2 ISRA+BB2 HMZ+BB2

Iter 1339 1331 195 204 1495 570
Min Err 0.2636 0.2636 0.2636 0.2636 0.1820 0.2258

xtrue PSF Observed data

BB2 ISRA HMZ

Figure 1. First row: true image, Gaussian PSF and measured data. Second row:
reconstructions obtained with BB2 steplength and, from the left, Mk = I, Mk = M ISRA

k ,
Mk = MHMZ

k .

5. Conclusions

In this paper we conducted a comparative study between several iterative gradient methods for
linear least squares problems, with the aim of investigating their ability in providing a regularized
solution, i.e., a useful and stable solution not corrupted by the presence of noise on the data. In
particular, the analysis we carried out regards the ability of a given scheme to reproduce faithfully
the filter factors of the true solution. The filtering properties of nonscaled gradient methods had
already been described by Nagy & Palmer: in our paper we generalized their considerations to
the presence of a nontrivial scaling matrix in the descent direction. In particular, the formal
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Figure 2. Comparison of the xtrue filter factors (red dashed) with the ones generated by the
gradient method with SD, MG, BB1, BB2 and the scaled (ISRA, HMZ) versions (black solid).

expression of the filter factors has been given and their numerical evaluation has been performed.
We showed that the nonscaled methods are not able to generate filter factors that behave as
erratically as those associated to the true solution. On the other hand, the scaled methods
not only are able to recover the irregular profile of the exact filters, but also provide a better
approximation of the unknown solution in terms of accuracy and goodness of the results (as
remarked e.g. in [3]).

Acknowledgments

This work has been partially supported by the Italian Spinner2013 PhD Project “High-
complexity inverse problems in biomedical applications and social systems” and by a grant
of the Italian Gruppo Nazionale per il Calcolo Scientifico (GNCS) - Istituto Nazionale di Alta
Matematica (INdAM).

References
[1] Barzilai J and Borwein J M 1988 IMA J. Numer. Anal. 8 141–8
[2] Bertero M and Boccacci P 1998 Introduction to inverse problems in imaging (Bristol: Institute of Physics)
[3] Bonettini S Landi G Loli Piccolomini E and Zanni L 2013 Int. J. Comput. Math. 90 9–29
[4] Bonettini S Zanella R and Zanni L 2009 Inverse Probl. 25 015002
[5] Cauchy A 1847 C. R. Acad. Sci. Paris 25 536–8
[6] Dai Y H and Yuan Y X 2003 IMA J. Numer. Anal. 23 377-93
[7] Dai Y H Hager W W Schittkowski K and Zhang H 2006 IMA J. Numer. Anal. 26 604–27
[8] Daube-Witherspoon M E and Muehllener G 1986 IEEE T. Med. Imaging 5 61-6
[9] Frassoldati G Zanni L and Zanghirati G 2008 J. Indust. Manag. Optim. 4 299–312

[10] Hager W W Mair B A and Zhang H 2009 Math. Program. 119 1-32
[11] Hansen P C Nagy J G O’Leary D P 2006 Deblurring images: matrices, spectra and filtering (Philadelphia,

PA: SIAM)
[12] Lantéri H Roche M Cuevas O and Aime C 2001 Signal Process. 81 945–74
[13] Lantéri H Roche M and Aime C 2002 Inverse Probl. 18 1397-419
[14] Nagy J and Palmer K 2003 BIT 43 1003–17
[15] Zhou B Gao L and Dai Y H 2006 Comput. Optim. Appl. 35 69-86

3rd International Workshop on New Computational Methods for Inverse Problems IOP Publishing
Journal of Physics: Conference Series 464 (2013) 012006 doi:10.1088/1742-6596/464/1/012006

6


