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Abstract. The full-field transmission X-ray microscope at the electron storage ring BESSY II 

allows nanoscale spectroscopy as well as correlative fluorescence and nanoscale tomographic 

imaging of frozen-hydrated adherent cells. Reconstructions of tilt series permit the 

visualization of the sub-cellular structures in mammalian cells and plant cells. Quantitative 

information about package densities of cell organelles in the cytoplasm is possible. We present 

an overview of recent results in materials and life sciences obtained with the HZB X-ray 

microscope. 

1.  Introduction 

The full-field transmission X-ray microscope (TXM) at the electron storage ring BESSY II operated 

by the Helmholtz-Zentrum Berlin (HZB) was installed at the undulator beamline U41-FSGM [1] in 

2007. It is in full user operation since spring 2008. It was the first TXM in the soft X-ray energy range 

operating at an undulator source with a focusing spherical grating monochromator (FSGM) and an 

elliptically shaped glass capillary mirror as condenser [2]. This set-up delivers a spectral resolution 

which is an order of magnitude higher than for conventional TXMs using a zone plate 

monochromator. Therefore, nanoscale spectroscopy applications like NEXAFS investigations are 

feasible [3]. On the other hand with this set-up no pinhole close to the specimen is necessary. The free 

space for specimen rotation permits to use flat sample supports. Additionally, the partially coherent 

object illumination delivers an improved contrast transfer function of the microscope compared to 

incoherent systems [4]. The schematic optical layout and the workflow for nanoscale spectroscopy and 

nanoscale tomography are depicted in Fig. 1. 

The spatial resolution of the HZB TXM was determined to be 11 nm (half-pitch) for 2D imaging 

[5]. This resolution cannot be transferred directly to the 3D resolution in nanoscale tomography which 

is affected by the small depth of focus of the zone plate objective. In practice, the achieved 3D 

resolution is about 36 nm (half-pitch) [4,6]. 

The sample stage is a modified CompuStage from FEI Company. Therefore, TEM holders can be 

used. The specimens are investigated under vacuum conditions. Depending on the application, users 

can choose between two different holders: A room temperature holder allows mounting either round 

standard EM grids with 3 mm in diameter or alternatively silicon nitrate membranes with 3.5 mm x 

3.5 mm in wafer size. For biological samples a cryo high tilt holder (Gatan model 630, see Fig. 2) is 

employed. For this holder special rectangular grids suited for high tilt were designed: IFR-1 and HZB-

2 types are shown in Fig. 2. Holy carbon films like the R2/2 coating from Quantifoil [7] turned out to 

be the best sample support film. 
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Fig. 1: Optical set-up of the HZB-TXM (upper) and workflow for nanoscale spectroscopy (lower left) 

and tomography (lower right) investigations. 

 

 
 

 

 

Fig. 2: The Gatan model 630 cryo high tilt holder: (a) in the transfer station, (b) showing the tip with a 

grid in working position. (c) Two types of high tilt grids employed for cryo tomography of cells. 

 

Recently, a light microscope inside the X-ray microscope became accessible for users. The 

schematic set-up is displayed in Fig. 3. It is possible to switch between the light and the X-ray 

microscope working positions within 2 minutes (Fig. 4). For correlative microscopy, the sample is 

under the same viewing angle for light and x-ray microscopy. The light microscope delivers an 

overview of the samples on the grid and helps to preselect the objects without applying an X-ray dose. 

Additionally, the fluorescence mode can be used to identify labeled regions in cells as well as fiducial 

markers for correlative alignment. 
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Fig. 3: Schematic layout of the incorporated light microscope. The filter cube allows switching 

between four different modes: bright field, differential interference contrast (DIC) and two fluorescent 

modes: GFP (green) and rhodamine (red). Details of the filters used in the fluorescent mode are given 

in Table 1. 

 

 

 
 

Fig. 4: Working position of the light microscope (left). Switching to the X-ray microscopy working 

position (right) requires to retract the light microscope objective along the optical axis with subsequent 

travel on the bevel to the home-position. Finally, the condenser (capillary stage) of the X-ray 

microscope has to be moved along the optical axis to the X-ray microscopy working position.  
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U41-TXM, HZB 
Microscope type TXM 

Source Undulator beamline, linear polarization 

Condenser/Objective aperture Partially coherent illumination 

Energy range 250 – 800 eV (- 1.5 keV) 

Spectral resolution up to E/∆E = 104 

Zone plates for user operation drn = 25 nm, 40 nm 

Spatial resolution 2D: ≈10 nm half-period (depends on objective) 
3D: ≈36 nm Rayleigh criterion 

Sample format 1) Special designed rectangular grids (HZB-2 or IFR-1) 
having  
2 mm x 1 mm sample area and 
open grid slits width 50 µm x 200 µm or 150 µm x 
700 µm 

2) 3 mm diameter EM grids or 3.5 ∙ 3.5 mm2 wafer,  
but for these no cryo and no tomography possible 

Tomography capability yes  

Tilt range -80°…. +80° 

Cryo capability yes 

Detector type Thinned, backside illuminated CCD, 1340 pixel x 1300 pixel 

X-ray magnification adjustable, value depends on the used objective  

Light microscope BF, DIC, fluorescence 

Filter sets for light fluorescence 
microscope 

Filter set 38 from Zeiss, GFP, ex 470, emm 525; 
Filter set 43 from Zeiss, Cy 3 (rhodamin), ex 545, emm 605 

Raw data format *.spe (WinView);  
3.407 MB per image 

Data analysis software 
capabilities available  

ImageJ, Imod (eTomo)  

Preparation Lab BioLab (restricted access): safety level 2 (BioStoffV), 
genetically modified organisms (GMOs) belonging to safety 
level S1 (GenTG); incubator; plasma cleaner; plunge freezer 
(liquid ethane); fluorescence light microscope LEICA 
DMI6000B; cryo light microscopy stage (ordered) 

  
Table 1: Main parameters of the U41-TXM and the infrastructure available for X-ray microscopy 

experiments at HZB. 

2.  Overview of the modes of operation and their applications 

Two modes of operation are already outlined in Fig. 1: Nanoscale spectroscopy and tomography. The 

photon energy available for X-ray microscopy experiments ranges from 270 eV - 800 eV (see Table 

1). Accepting a reduced photon flux, this energy range can be extended up to about 1.5 keV. 

2.1.  Nanoscale spectroscopy 

For spectroscopy applications the CCD camera will be moved together with the objective zone plate to 

ensure the same image magnification at each photon energy. After collecting a data set of images, the 

images can be aligned using a cross-correlation method as implemented for example in the eTomo 

package [8] or the images can be directly imported into the aXis2000 software [9]. After the 

alignment, a NEXAFS spectrum for each pixel in the image can be obtained. The image field is 13 – 

20 µm in square with a pixel size of 10 – 15 nm depending on the zone plate objective applied for 

imaging. Therefore, one image data set of nanoparticles already contains many different particles 
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which makes statistical analysis possible. Typically, one data set is taken within 60 – 90 minutes with 

a few seconds exposure time per image. Compared to scanning X-ray microscopes (SXM´s) the TXM 

allows a much faster data acquisition for the same amount of particles.  

This mode of operation was used for the investigation of different TiO2 nanoparticles like 

nanoribbons [10,11,3], carbon nanotubes, graphite layers [12] and especially synthesized microgels 

with TiO2 particles [13]. Another example for using the tunability of the photon energy is the 

investigation of organic solar cells [14]. In most of these studies complementary methods like electron 

microscopy or atomic force microscopy are used to combine the findings for a more detailed 

interpretation. 

2.2.  Nanoscale tomography 

Tomography studies can be performed using the high tilt grids in combination with the Gatan model 

630 holder. This allows tilt angles in the range of up to ±79°. After taking a data set in typically 1° 

steps within about an hour with a few seconds exposure time per image, the images will be aligned. 

For this purpose, freely available software packages like eTomo [8] or BSoft [15] – both originally 

developed for electron microscopy – are used. These software packages deliver a reconstruction of the 

sample volume. Subsequent segmentation processes can be performed to display e.g. different 

organelles in cells. Besides materials sciences applications like tomography studies of stress migration 

in semiconductors [16] or the morphology of cement particles [17], the main application field for 

nanoscale tomography is cell biology. Due to the higher penetration depth of X-rays compared to 

electrons, tomography of whole cells in their native state is possible. Only cryo fixation without 

staining or sectioning is necessary to accomplish X-ray tomography studies of cells. The method of 

cryo fixation is well established and described for X-ray microscopy work in several publications 

[4,6,18-20]. Studies of mouse adenocarcinoma cells delivered already an atlas of mammalian cell 

ultrastructures in the cellular volume like mitochondria, nuclear membrane channels, granular 

structures in nucleoli and many other organelles [20].  

    The application of cryo X-ray tomography together with complementary methods solved the 

question whether the nucleation of hemazoin in the life cycle of Plasmodium falciparum occurs in the 

lipid droplet or at the lipid-water interface of the digestive vacuole. As a result it could be clearly 

determined that an oriented crystallization at the inner membrane in the aqueous rather than the lipid 

phase takes place [21].  

The study of virus cell interactions is another field of interest: In a first attempt it was demonstrated 

that membranes and inner compartments of Vaccinia viruses could be resolved by cryo X-ray 

tomography [18]. In a second step these viruses could be identified in cells. Combining the use of the 

incorporated fluorescent light microscope together with subsequent investigations by electron 

microscopy, viral factories within cells could be defined and volume representations of different states 

of these viruses (immature and mature) were achieved [19]. 

Furthermore, tomography studies of cells treated with a fluorophore-tagged protein showing the 

same behavior as Herpes viruses show different aspects of changes within the cell nucleus [6]. 

Additionally, quantitative findings on the volume densities of different cell organelles within the 

cytoplasm of mammalian cells [3] or within e.g. algae [22] were procurable.  

3.  Outlook 

Current nanoscale tomography studies pave the way to a better understanding of the interaction of 

nanoparticles with cells and help to understand their toxicological effects on cells. These 

investigations are important for humankind as nowadays many substances used e.g. for sun-milks or 

for paints contain nanoparticles. Developing new fiducial markers visible as well in the fluorescent 

light microscope as in the X-ray microscope will allow for correlative microscopy. So far, by default 

cryo samples were prepared by plunge freezing in liquid ethane or in a mixture of ethane and propane 

[6], but recently it was verified that high pressure freezing might be advantageous [24]. 
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