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Abstract. We consider the Polyakov loop operator in finite temperature planar N = 4
supersymmetric Yang-Mills theory defined on a spatial S3 and in representations where the
number of boxes in the Young Tableau k is large and scales so that kN remains finite in
the large N limit. We review the argument that, in the de-confined phase of the gauge
theory, and for symmetric representations with row Young tableau, there is a quantum phase
transition in the expectation value of the Polyakov loop operator which occurs as the size of
the representation is increased beyond a critical value of kN . We also argue that for completely
antisymmetric representations with column tableau, there is no such phase transition. The
AdS/CFT dual of such large representation loops are thought to be probe D-branes with k units
of fundamental string charge dissolved in their world-volumes. Our results for both symmetric
and antisymmetric representations are consistent with what is known about these branes on the
thermal AdS black hole background.

1. Introduction
A beautiful picture of the quark de-confinement phase transition of finite temperature Yang-Mills
theory has emerged in the context of AdS/CFT duality [1]. In the most conservative version of
this duality, the gauge theory is N = 4 supersymmetric Yang-Mills theory, which has conformal
symmetry and is not normally viewed as a confining gauge theory. In fact, conformal invariance
dictates that its non-Abelian gauge field mediated interactions are Coulomb-like at all distance
scales. However, in context of AdS/CFT holography, the gauge theory must be defined on a
spatial three-dimensional sphere, S3. Then “confinement” is simply due the impossibility of
solving the gauge theory Gauss’ law for a color charged state on a compact space. Furthermore
the N = 4 theory has only adjoint representation degrees of freedom, which are not capable
of combining with a fundamental representation external source to make a color singlet. For
this reason, the question of confinement can then be addressed by testing the response of the
gauge theory to insertion of a fundamental representation external charge, which must necessarily
create a color-charged state. This response is measured by the expectation value of the Polyakov
loop operator, and the question of confinement or de-confinement can be couched in terms of the
realization of the center symmetry of the adjoint gauge theory and under which the Polyakov
loop transforms.

Being in finite volume, de-confinement can only be a sharp phase transition in the large N
limit. The idea is that, as the temperature gets larger, the thermally excited degrees of freedom
which tend to screen the color charge are more numerous. When N is infinite, this screening
can be so efficient that above a certain critical temperature, charged states are actually allowed.
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We will generally work with the large N planar limit of Yang-Mills theory, also called the ’t
Hooft limit where we take N to infinity while holding the ’t Hooft coupling λ ≡ g2

YMN finite.
Here, gYM is the coupling constant of the gauge theory. In planar Yang-Mills theory defined on
a spatial S3, the de-confinement phase transition can be seen even in the weakly coupled gauge
theory [2]-[3].
N = 4 supersymmetric Yang-Mills theory is thought to be exactly dual to type IIB superstring

theory on an AdS5 × S5 background space-time with N units of Ramond-Ramond 4-form flux.
The ’t Hooft coupling of the gauge theory is related to the fundamental string tension, 1

4πα′ , and
the radius of curvature of the AdS5 and S5 spaces, R, by λ = R4/(α′)2. The planar limit of the
Yang-Mills theory is equivalent to the classical (tree level) limit of the string theory. The further
limit of strong ’t Hooft coupling in the planar Yang-Mills theory is dual to the limit of string
theory as the radius of curvature of the background space is much larger than the fundamental
string scale. This limit produces classical type IIB supergravity in an AdS5 × S5 background.

At large ’t Hooft coupling, the planar Yang-Mills theory is therefore efficiently described by its
dual, classical IIB supergravity. There, the gravitational dual of de-confinement is the collapse of
hot Anti-de Sitter space to an anti-de Sitter-Schwarzschild black hole. Unlike asymptotically flat
space, where a thermodynamic state of a gravitational system is unstable to black hole collapse
no matter what the temperature, at sufficiently low temperatures, anti-de Sitter space is thought
to be stable. It contains a hot gas of super-gravitons. Moreover, when it is heated to a certain
critical temperature, comparable to the inverse radius of curvature of the AdS space, the hot gas
eventually undergoes gravitational collapse resulting in a space-time which is an anti-de Sitter
black hole. The temperature and entropy of the resulting space-time are identified with the
Hawking temperature and Beckenstein-Hawking entropy of the black hole. The phase transition
between the two phases is first order and is called the Hawking-Page transition [4]. It is thought
to be the gravity dual of the de-confinement transition of finite temperature Yang-Mills theory,
extrapolated from the weak coupling to the strong coupling regime. It is conjectured that the
strong and weak coupling limits are connected by a line of de-confining phase transitions which
stretches across the intermediate λ regime.

In this Article, we shall review some of our recent work on the properties of the behavior of
some particular Polyakov loop expectation values in de-confined phase of the gauge theory [5].
This work was motivated by an observation in string theory concerning the gravity dual of the
Polyakov loops [6]. We will elaborate on this motivation in Section 2.

2. Giant Wilson loops
In the duality between gauge field theory and string theory, the expectation value of the Wilson
loop is normally thought to correspond to an open fundamental string amplitude in string theory.
This has been made precise for the Maldacena-Wilson loop [7] of the N = 4 supersymmetric
Yang-Mills theory,

WM[C] = TrPe
∮
C
dτ(iAµ(x)ẋµ(τ)+φI(x)θI |ẋ(τ)|) (1)

where xµ(τ) parameterizes a closed curve C. φI(x), I = 1, ..., 6 are the scalar quark fields of
N = 4 super Yang-Mills theory and θI is a (not necessarily τ -independent) unit 6-vector.

When λ is large, the loop (1) is computed by finding the minimum area of a fundamental
string worldsheet embedded in AdS5 × S5 and which has boundary located on the contour C
that is placed at the boundary of AdS5 and at a point θI on S5.

If the contour C in (1) links periodic Euclidean time in the finite temperature Yang-Mills
theory, WM [C] carries center charge and it can be nonzero only when the center symmetry is
spontaneously broken, that is, in the de-confined phase. Then, the boundary of the disc in the
disc amplitude of the string dual must also link periodic Euclidean time, but in the Euclidean
AdS background. Whether such a disc exists depends on whether the time circle is contractible.
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It is not contractible in the hot AdS background, and it is contractible on the AdS black hole
background. There is therefore no tree level disc amplitude on the hot AdS background. This
is interpreted as implying that the expectation value of (1) vanishes there. The black hole
background, on the other hand can have a classical disc amplitude, so the expectation value
of (1) can be non-zero. This difference was pointed out by Witten as further evidence for the
identification of the black hole formation with de-confinement [1].

In the gauge theory, if C wraps the time circle, WM[C] carries center charge and its
expectation value is governed by the realization of the center symmetry. Its expectation value
is related to the holonomy of a heavy W -boson which would be created by Higgsing SU(N + 1)
gauge symmetry to SU(N)× U(1) and where θI gives the orientation of the scalar condensate.
One could imagine larger representation objects made from W -bosons, for example a bound
state of a large number of the W -bosons which transforms in a higher representation of the
gauge group.

In the zero temperature Yang-Mills theory defined on a spatial R3, an interesting phenomenon
occurs for loops in representations where the number of boxes k in the Young tableau is large
so that k

N is finite in the large N limit. The dual fundamental string worldsheet is replaced by
a D-brane with world-volume electric flux [8].This object is called a “giant Wilson loop”.

This was found by studying highly supersymmetric 1
2 -BPS loops, where some results are

known for all values of the coupling constant [9]. For the anti-symmetric representation, the
dual is a D5-brane whose world volume is a direct product AdS2 × S4 where AdS2 ⊂ AdS5 and
S4 ⊂ S5. For a symmetric representation, it is a D3-brane with world volume AdS2×S2 ⊂ AdS5.

It is interesting to ask whether these D-branes exist in the finite AdS black hole geometry
where they would be dual to a gauge theory loop linking periodic Euclidean time and in the de-
confined phase. This question was studied by Hartnoll and Kumar [6] who searched for solutions
of the appropriate Born-Infeld actions on the black hole background.

For the D5-brane wrapped on S4 ⊂ S5 which corresponds to a totally antisymmetric
representation on the gauge theory side, there seem to be solutions for any k

N with the usual
cutoff at k = N dictated by the maximum size of an antisymmetric representation on the gauge
theory side and a maximum radius for embedding S4 in S5 on the supergravity side. However,
in the case of the D3-brane, which should correspond to a totally symmetric representation,
Hartnoll and Kumar could not find any solutions at all. It is interesting to ask whether this
difference between the two cases is visible in the gauge theory. This question is what motivated
our work on the gauge theory which is summarized in Ref. [5] and which we shall review in the
following Sections.

3. Confinement-de-confinement and the Polyakov loop
Let us begin by reviewing the role of the Polyakov loop operator and the origin of center
symmetry in an adjoint gauge field theory [10]-[11]. The Polyakov loop,

〈
TrPei

∫ β
0
dτA0(τ,~x)

〉
=

∫
[dAµ...]e

−
∫

1

2g2
YM

TrF 2
µν+...

TrPei
∮ β

0
dτA0(τ,~x)

∫
[dAµ...]e

−
∫

1

2g2
YM

TrF 2
µν+...

(2)

measures the trace of the holonomy of the gauge group on the Euclidean time circle. In pure
Yang-Mills theory, or a theory such as N = 4 super Yang-Mills theory where all matter fields
transform in the adjoint representation of the gauge group, the Euclidean path integral has a
center symmetry. It arises from gauge transformations which, in such a theory need not be
periodic in Euclidean time, they need only preserve the periodicity of the local fields. As such,
they can obey a boundary condition

g(τ + β, ~x) = cg(τ, ~x)
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where c where c = e2πi/N is the generator of the ZN center of the SU(N) gauge group. Because
c commutes with everything, all local operators which transform in the adjoint representation,
for example Fµν(τ, ~x) → g(τ, ~x)Fµν(τ, ~x)g†(τ, ~x), remain periodic after the gauge transform.
However, the Polyakov loop transforms as

TrPei
∫ β

0
dτA0(τ,~x) → c TrPei

∫ β
0
dτA0(τ,~x) (3)

The center transformation appears as a global symmetry of the Euclidean path integral and
it acts on Polyakov loops. When it is a good symmetry, any combination of Polyakov loops
with non-vanishing center-charge must have vanishing expectation value. This is interpreted as
confinement. When the center symmetry is spontaneously broken, the expectation value can
be non-zero. This is interpreted as de-confinement. The representation of center symmetry has
been used to study the de-confining phase transition of Yang-Mills theory [12]-[15].

The expectation value of the Polyakov loop operator is related to the free energy of Yang-
Mills theory with a classical color source inserted. If one quantizes Yang-Mills theory with the
constraint that a non-dynamical color charge is located at point ~x, the free energy of the system
Γ is obtained from the Euclidean path integral in (2).

e−βΓ =

〈
TrPei

∫ β
0
dτA0(τ,~x)

〉
(4)

Γ is the energy that is needed to insert the external charge. When the expectation value is zero,
as in the confining phase, the energy is infinite. When the expectation value is non-zero, the
energy is finite.

4. Effective field theory
Our goal is to study the realization of the center symmetry at weak coupling. In this Section,
we will review how this can be done using an effective unitary matrix model. In recent work,
the weak coupling limit of both Yang-Mills theory and N = 4 super Yang-Mills theory have
been studied for the case where the space-time is S3 × S1 [2]-[3]. This is an interesting case
in that, at weak coupling, the spectrum of the vector gluon fields is completely gapped. If
they are conformally coupled to the curvature of the S3, the scalar fields of N = 4 theory are
also gapped, as are the fermionic quarks. Then, the only low energy degree of freedom is the
temporal component A0 and, in the regime where the temperature is much less than the gap,
all of the gapped fields can be integrated out to find an effective action for the zero mode on S3

of A0, or alternatively the unitary matrix variable U ≡ TrPe
∮
A0 , and in the effective theory,

an order parameter for the center symmetry is

〈Tr U〉 =

∫
dUe−Seff [U ]Tr U∫
dUe−Seff [U ]

(5)

This is a unitary one-matrix model. At one-loop order, the effective action is

Seff [U ] = −
∞∑
n=1

[
zB(xn) + (−1)n+1zF (xn)

] |TrUn|2

n
(6)

where

x = e−
β
R , zB(x) =

6x+ 12x2 − x3

(1− x)3
, zF (x) =

16x
3
2

(1− x)3
(7)

Here, we have presented the action for N = 4 Yang-Mills theory. The one for pure Yang-Mills
theory is similar and is presented in Ref. [3]. Seff in (6) does not depend on the ’t Hooft coupling
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λ. This is due to the fact that it is the one-loop approximation. Dependence on λ starts at two
loops. For pure Yang-Mills theory, it has been partially found up to order two loops [16] where
the first order nature of the phase transition is confirmed.

The effective action Seff inherits gauge invariance from its parent theory:

Seff [U ] = Seff [V UV −1] (8)

as well as center symmetry
Seff [U ] = Seff [cU ] (9)

Further, the action is of order N2, Seff [U = 1] ∼ N2.
The analysis of unitary matrix models and the existence of a phase transition of the type that

we shall discuss has a long history dating back to the seminal work of Gross and Witten [17].
Gauge invariance (8) allows one to diagonalize the unitary matrices to form a model of the
eigenvalues. The large N limit can then be solved by a saddle-point method and it is found
that it has a phase transition from a center symmetric to a center symmetry broken phase at a
critical temperature. The phase transition occurs at TC ' 0.38 which is marginal to the regime
T << 1. We will assume that it is within the range of validity of the effective field theory
technique. In the following we will explore the de-confined phase. We will assume that we are
at temperatures just above the critical one and we will assume that the effective matrix model
gives an accurate description of the physics there.

5. Higher representations
We could also consider order parameters for center symmetry breaking in any representation of
the gauge group that carries non-zero center charge,

〈TrRU(x)〉 =

∫
[dU ]e−Seff [U ]TrR U∫

[dU ]e−Seff [U ]
. (10)

where TrR U is called the character. This expectation value should also exhibit the de-confining
phase transition and it is interesting to ask whether it is at the same temperature for all
representations. For small representations, it is easy to argue that the phase transition comes
from the matrix ensemble and the transition temperature is always the same, independent of
which representation we choose. On the other hand, we shall show in the following that (10)
can have interesting behavior which depends on the size and nature of the representation when
the representation is large. Two types of representation are easy to analyze: the completely
symmetric representations Sk whose Young tableaux are a single row with k boxes and completely
antisymmetric representations Ak whose Young tableaux are a single column with k boxes. We
shall consider large values of k so that the ratio k

N remains finite as N →∞ and we will study

the behavior of these representations as k
N is varied.

Note that we have not normalized the trace in (10), as one would normally do by dividing
by a factor of the dimension of the representation. Our reason for not doing so is to be able
to compare our results directly with holographic duality where the appropriate operator is the
un-normalized one. This immediately introduces the interesting possibility that the expectation
value is bigger than one – for example if the averaging over U were concentrated at the unit
matrix – the expectation value would simply be equal to the dimension of the representation.
The free energy would be negative, indicating that the system would “attract” the heavy quark.
This apparent attraction is not dynamical, it is statistical, simply due to the increase in entropy
from the multiplicity of states of the quark.

The center charge of a representation is equal to the number of boxes in the Young Tableau
corresponding to that representation, modulo N . Thus, both representations Sk and Ak have
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center charge k mod N . The expectation value (10) is therefore expected to vanish in the
confined phase when this charge is non-zero. On the other hand, the expectation value can be
non-zero in the de-confined phase.

If the matrix U = diag[eiφ1 , ..., eiφN ] were diagonal, the permutation symmetry can be used
to order the eigenvalues in a completely symmetric or completely antisymmetric representation
so that they occur in order of non-decreasing index:

TrSkU =
∑

a1≤a2≤...≤ak

eiφa1eiφa2 ...eiφak , TrAkU =
∑

a1<a2<...<ak

eiφa1eiφa2 ...eiφak (11)

It is convenient to obtain these expressions from generating functions

TrSkU =

∮
dt

2πitk+1

N∏
a=1

1

1− teiφa
, TrAkU =

∮
dt

2πitk+1

N∏
a=1

(
1 + teiφa

)
(12)

where the contour integral projects onto the term in a Taylor expansion of the integrand which
contains k eigenvalues. The contour in the integral over t encircles the origin. It can be moved
away from the origin if it does not cross singularities of the integrand. In the case of the anti-
symmetric representation (12) when N is finite, the integrand is a polynomial and the contour
can be moved anywhere. For the symmetric representation (12) it should remain within the unit
circle.

(12) can be written as the covariant expressions for the free energies,

βΓSk ≡ − 1

N
ln 〈TrSk U〉 = − 1

N
ln

1

2πi

∮
dt

1

tk+1
〈exp [−Tr ln(1− tU)]〉 , (13)

βΓAk ≡ − 1

N
ln 〈TrAk U〉 = − 1

N
ln

1

2πi

∮
dt

1

tk+1
〈exp [Tr ln(1 + tU)]〉 (14)

The characters in (13) and (14) have center charge k and therefore they must vanish in the
center symmetric confining phase. They can be non-zero in the de-confined phase.

In the large N limit, the quantities in (13) and (14) can be computed using two saddle point
approximations. The first occurs while integrating over unitary matrices in the expectation
value bracket in (13) and (14) and which is defined in (10). Because of the gauge symmetry,
this is an eigenvalue model. The gauge symmetry can be used to diagonalize U . At large N ,
the eigenvalues become classical variables and their distribution is found by minimizing Seff plus
the logarithm of a Jacobian from the unitary integral measure. As long as k � N2, the loop
operators in (13) do not modify the eigenvalue distribution in the leading order at large N . It
is given by a density ρ(φ) which is 1

N times the number of eigenvalues between φ and φ + dφ
and is normalized,

∫ π
−π dφρ(φ) = 1. In the large N limit the expectation values in Eq. (13) are

computed using the eigenvalue density,1

βΓSk = − 1

N
ln

1

2πi

∮
dt

1

t
exp

(
−N

∫ π

−π
dφρ(φ) ln(1− teiφ)− k ln t

)
. (15)

βΓAk = − 1

N
ln

1

2πi

∮
dt

1

t
exp

(
N

∫ π

−π
dφρ(φ) ln(1 + teiφ)− k ln t

)
. (16)

The second use of a saddle-point approximation is to evaluate the integral over t in (15) and
(16). Let t̂ satisfy the saddle-point equation

RSk(t̂) ≡
∫ π

−π
dφρ(φ)

t̂eiφ

1− t̂eiφ
=

k

N
, RAk(t̂) ≡

∫ π

−π
dφρ(φ)

t̂eiφ

1 + t̂eiφ
=

k

N
. (17)

1 We will argue that using the leading order N0 density ρ(φ) in (15) is sufficient to obtain βΓSk/Ak to leading
order N0 accuracy.
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The functions RSk/Ak(t) in (17) are related to the resolvent of the matrix model and are
holomorphic functions of t with cut singularities on the unit circle determined by the support
of ρ(φ). Once the solution t̂ of the saddle point is determined, the free energy is given by

βΓSk =

∫ π

−π
dφρ(φ) ln(1− t̂eiφ) +

k

N
ln t̂ . (18)

βΓAk = −
∫ π

−π
dφρ(φ) ln(1 + t̂eiφ) +

k

N
ln t̂ . (19)

The generating function technique that we have used in the above is well known. See Ref. [18]
for a recent application in a different context.

The reader might have the concern that the presence of the loop variable in the path integral,
though it does not alter the eigenvalue distribution to the leading order N0, it will have an effect
at order 1/N and a 1/N correction in the order N2 part of the action would contribute a term
of order N which competes with the free energy which we are computing. To see why this is
not a problem, consider the free energy in the large N limit is given by

NβΓ = inf
(ρ,t)

[
N2S[ρ] + λ

∫
ρ− λ+N

∫
ρ ln

(
1− teiφ

)
+ k ln t

]
− inf

ρ

[
N2S[ρ] + λ

∫
ρ− λ

]
(20)

where S[ρ] is the effective action consisting of Seff plus a contribution from the integration
measure. The saddle-point equations are

δS

δρ
+

1

N
ln
(
1− teiφ

)
+

λ

N2
= 0 ,

∫
ρ = 1 ,

∫
ρ

teiφ

1− teiφ
=

k

N

1

t
(21)

for the first infimum and

δS

δρ
+

λ

N2
= 0 ,

∫
ρ = 1 (22)

for the second infimum. The eigenvalue density which satisfies (22) is ρ̂0. Then the density
which satisfies (21) differs from it by a correction of order 1

N , ρ̂0 + 1
N ρ̂1. However, since ρ̂0

satisfies (22), it is easy to see, that if we are interested in NβΓ only to accuracy of order N ,
we can get simply use ρ̂0 in the equation which determines t̂ and, to the same accuracy (where
we trust the order N but not the order N0 contribution), in the expression for NβΓ in (20).
This justifies our use of the “probe approximation” where we use the eigenvalue distribution
of the effective unitary matrix model to compute the generating functions in (15) to (19). We
note that a similar probe approximation is made when analyzing the dual objects on the string
theory side of the AdS/CFT correspondence.

Before we proceed further, let us consider a simple example, the confined phase. Center
symmetry is an invariance under a simultaneous translation of all eigenvalues φa → φa + 2π/N .
In the center-symmetric confined phase, the distribution is translation invariant, eigenvalues are
uniformly distributed on the unit circle and

ρconf =
1

2π
(23)

In the de-confined phase, on the other hand, the eigenvalues would have a non-constant
distribution. Let us put off discussing the de-confined phase until later.

With the confining eigenvalue distribution (23) we can integrate over φ in the saddle-point
equations (17),

RSk(t̂) =

{
0 |t̂| < 1
−1 |t̂| > 1

=
k

N
, RAk(t̂) =

{
0 |t̂| < 1
1 |t̂| > 1

=
k

N
(24)
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Similarly, and consistent with this, we can integrate the free energies in (18) and (19),

βΓSk =

{ k
N ln t̂ |t| < 1

iπ +
(
1 + k

N

)
ln t̂ |t| > 1

, βΓAk =

{ k
N ln t̂ |t| < 1(

k
N − 1

)
ln t̂ |t| > 1

(25)

In the case of the symmetric representation, the saddle-point equation (24) has a solution only
when k

N = 0. We interpret the absence of a solution when k
N 6= 0 as meaning that the expectation

value of any representation with non-zero center charge vanishes. Certainly, if there is no saddle-
point of a periodic function of a variable φ, the integration is not dominated by any particular
value of φ and φ must be integrated over its entire range. This would average the expectation
value of any operator with non-zero center charge to zero. It is in the other case, when there
is a saddle point, where the large N limit forces one to evaluate the integrand at the saddle
point and the expectation value is generically non-zero. Further, we see that the free energy
has an imaginary part when |t̂| > 1 which indicates an instability. This apparent pathology is
consistent with the observation after (12) that the integration contour should remain inside the
unit circle. We shall henceforth ignore the region |t| > 1 for symmetric representations.2

Similarly, for the anti-symmetric representation, the saddle-point equation (24) has a solution
only when either k

N = 0 or k
N = 1, the two cases where the antisymmetric representation is center

neutral. This is also interpreted as confinement, the expectation value vanishes in all other cases.
Note that it has an expected k → N −k duality, though it comes from interchanging two saddle
points, one with |t̂| < 1 and one with |t̂| > 1. Neither of these saddle-points alone exhibit this
duality.

In the next Section, we will review the computation of the higher representation Polyakov
loops with more complicated eigenvalue distributions.

6. Giant Polyakov loop
Let us begin with the symmetric representation Sk. We consider three examples of eigenvalue
distributions. First, the confining phase has ρconf = 1

2π considered above. As a second example
consider a simple prototype of a de-confined distribution (while it is not realistic for N = 4
Yang-Mills theory, this is actually the solution of the strong coupling phase of the Gross-Witten
model [17]) ρ(φ) = 1

2π (1 + 2p cosφ). there the parameter p = 1
N 〈Tr U〉 =

∫
dφρ(φ)eiφ is the

fundamental representation loop. Positivity of the density requires 0 ≤ p ≤ 1
2 .

There is one solution of RSk(t̂) = k
N in the region |t̂| < 1 at t̂ = k

N /p. (If k
N and p are such

that |t̂| > 1, both RSk and ΓSk should be extended there by analytic continuation.) The free
energy is

ΓSk =
k

N
ln

[
k/N

ep

]
, (26)

where e = 2.718 . . .. ΓSk has the interesting feature that, as k
N is increased, it changes sign from

negative to positive. This results in a phase transition which occurs when k
N =

(
k
N

)
crit

= ep.

When k
N <

(
k
N

)
crit

, ΓSk is negative and the loop expectation value, e−NΓ, is exponentially large.

When k
N >

(
k
N

)
crit

, ΓSk is positive and the loop vanishes for N → ∞. This phase transition

implies that, even in the de-confined phase, sufficiently large symmetric representations are still
confined.

As a check of the saddle-point approximation to the t-integral in this simple example, observe
that, if for the moment we assume that k and N are finite, we can integrate (15) explicitly to

get e−NΓSk = Nk

k! p
k. Using the Stirling formula and taking k ∼ N →∞ reproduces (26).

2 We do later consider the analytic continuation of the free energy and the solution of the saddle point equation
from the region |t| < 1 to the entire complex plane.
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Figure 1. The free energy ΓSk(θ) as a function of k
N in the semi-circle distribution with p = 0.51.

To see this behavior in another example, consider the semi-circle distribution which, for
|φ| < 2 arcsin

√
2− 2p, is

ρ(φ) =
cos φ2

π(2− 2p)

√
2− 2p− sin2 φ

2
(27)

and which vanishes in the gap 2 arcsin
√

2− 2p ≤ |φ| ≤ π. We still use the fundamental loop,
p, as a parameter and now 1

2 ≤ p ≤ 1. This is the distribution in the weak coupling phase
of 2-dimensional lattice Yang-Mills theory [17]. It is also an approximation to the de-confined
distribution for weakly coupled N = 4 Yang-Mills theory [3][19]. For sufficiently weak coupling,
it could be accurate near the phase transition where p = 1

2 . The saddle point computation can
be done explicitly near t = 0 and analytically continued. The free energy is

ΓSk = (2θ cosh θ − sinh θ)
sinh θ +

√
sinh2 θ + 2− 2p

2− 2p

− 1

2
− ln

sinh θ +
√

sinh2 θ + 2− 2p

2− 2p

 , (28)

where θ is defined by t̂ = e2θ and is determined by the saddle-point equation

k

N
+

1

2
= cosh θ

sinh θ +
√

sinh2 θ + 2− 2p

2− 2p

 , (29)

which can be solved for sinh(θ). The free energy is zero when k = 0, negative for small k, goes
to zero at a critical k

N and is positive thereafter. This is so for any value of p in the allowed

range. A graph of ΓSk versus k
N for p = 0.51 is plotted in Fig. 1. With this value of p, the free

energy becomes positive at θ ' 0.50 which corresponds to k
N crit.

' 1.4.
Now, we consider the antisymmetric representation. For a large class of distributions gapped

around φ = π and with
dRAk (t̂)

dt̂
> 0, which includes the semi-circle distribution (27), we can

argue that ΓAk is always negative and the phase transition that we are discussing does not
occur. To begin, by changing variables in (18), we observe that ΓAk = ΓAN−k . This symmetry
is reflected in the saddle-point equation (17) which, using our assumption that ρ(φ) = ρ(−φ),
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can be re-written as

1

2

∫ π

−π
dφρ(φ)

t̂
1
2 ei

φ
2 − t̂−

1
2 e−i

φ
2

t̂
1
2 ei

φ
2 + t̂−

1
2 e−i

φ
2

=
k

N
− 1

2
(30)

and implies t̂(k/N) = 1/t̂(1− k/N). The free energy,

ΓAk = −
∫ π

−π
dφρ(φ) ln

(
t̂
1
2 ei

φ
2 + t̂−

1
2 e−i

φ
2

)
+

(
k

N
− 1

2

)
ln t̂ (31)

is symmetric under k
N → 1 − k

N . Moreover, with a gapped distribution, ρ(π) = 0, and the

integral in (30) is continuous at t̂ = 1. From
dRAk (t̂)

dt̂
> 0, t̂(k) is monotone, and one can see in

(30) that t̂ = 0 corresponds to k
N = 0, t̂ = ∞ to k

N = 1 and t̂ = 1 to k
N = 1

2 . Furthermore,

since
dΓAk
d(k/N) = ln t̂(k),

d2ΓAk
d(k/N)2 > 0, thus ΓAk is a convex function which decreases from 0 to a

negative minimum as k
N goes from 0 to 1

2 and then increases back to zero when k
N goes from 1

2
to 1. ΓAk does not become positive and there is no phase transition of the kind that we found

for symmetric representations. When the distribution is ungapped, or when
dRAk (t̂)

dt̂
becomes

negative (for example when p < 0), interesting behavior can occur, discussion of which we put
off to a later time.

7. Conclusion
We have found a difference between the symmetric and antisymmetric representation Polyakov
loops in the gauge theory which is qualitatively similar to the one found by Hartnoll and
Kumar [6] for the dual objects in supergravity: the antisymmetric loop is non-zero in the
de-confined phase for all allowed k

N and the dual D5-brane exists whereas the gauge theory

symmetric representation loop has a phase transition at a critical value of k
N . The numerical

search for the dual D3-brane in [6] combined with analytic arguments at large values of the

parameter κ =
√
λ

4
k
N found no solution at all. We have also carried out a further numerical

search for the D3-brane, which was partially reported in [5]. We explored the region of small κ
and found no evidence for a solution except for extremely small values of κ which we cannot rule
out. If we assume that there is no solution and that this means that the expectation value of
the gauge theory quantity vanishes, it indicates that, even in the de-confined phase, the gauge
theory is still confining for large charge symmetric representation sources. Of course, coming
from the string theory, this is accurate only for large λ. The conclusion is that the critical value

of k
N becomes coupling constant dependent and the function

[
k
N

]
crit.

(T, λ) goes to zero faster

than 4√
λ

as λ→∞.

We note that a phase transition of similar nature, but in a somewhat different context of
branes with large angular momentum has recently been discussed [20].
The authors acknowledge hospitality of the Galileo Galilei Institute, Aspen Center for Physics
and Perimeter Institute. This work is supported in part by NSERC of Canada and the INFN
of Italy.
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