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Abstract.
The maximal symmetry of a quantum system with Heisenberg commutation relations is given

by the projective representations of the automorphism group of the Weyl-Heisenberg algebra.
The automorphism group is the central extension of the inhomogeneous symplectic group with a
conformal scaling that acts on extended phase space. We determine the subgroup that also leaves
invariant a degenerate Minkowski orthogonal line element. This defines noninertial relativistic
symmetry transformations that have the expected classical limit as c → ∞.

1. Introduction
The inhomogeneous Lorentz group defines the relation between inertial states. Clocks locally
at rest relative to an inertial state are related to the clocks of other inertial states through the
Minkowski proper time line element. Quantum states are rays in a Hilbert space and therefore
inertial quantum states are related through the projective representation of the inhomogeneous
Lorentz group. Projective representations are equivalence classes of unitary representations of
the central extension of the group. The central extension of the inhomogeneous Lorentz group
is its cover, the Poincaré group, as this group does not admit an algebraic extension. [1],[2]

The equivalence principle of general relativity enables the noninertial frames of a particle
accelerating under gravity to be understood as locally inertial states on a curved manifold.
Particles under gravity follow geodesics that are locally inertial trajectories and neighboring
locally inertial frames are related by the connection. The clock locally at inertial rest is related
to the local clocks of other neighboring locally inertial states in the gravitating system through
the Riemannian proper time line element.

Neither general relativity nor special relativity addresses the issue of noninertial states that
are not due to gravity, but rather one of the other forces. A special case is a region in which
gravity is negligible and the underlying manifold may be considered to be flat. Consider for
example an electron in a region that gravity is negligible that encounters an electromagnetic
field and therefore has a noninertial trajectory. How are the clocks of such noninertial states
related?

We hypothesize that the noninertial relativistic symmetry group relating these states is the
most general group consistent with the requirements that

1) the Heisenberg uncertainty principle holds in the noninertial as well as inertial states
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2) the proper time given by the Minkowski line element that is invariant for noninertial as
well as inertial states

Consider a quantum system in which the position, momentum, energy and time degrees of
freedom are represented by the Hermitian representation of the algebra of the Weyl-Heisenberg
group H(n + 1) where the number of spacial dimensions is n = 3. The requirement that the
algebra transforms into itself under the action of the relativistic symmetry group means that
the symmetry group is a subgroup of the automorphism group of the Weyl-Heisenberg algebra.
[3],[4],[5] This automorphism group is

AutH ' Z2 ⊗s D ⊗s Sp(2n+ 2)⊗s H(n+ 1). (1)

Z2 is the 2 element discrete group, D is the abelian group isomorphic to the reals under
multiplication, Sp(2n+2) is the symplectic group with the over-bar denoting the universal cover
and H(n+ 1) is the Weyl-Heisenberg group. At this point there is no concept of a relativistic
symmetry.

The Minkowski line element is dτ2 = dt2 − 1
c2
dq2. This is an invariant for states that are

inertially related and the second assertion is that this continues to be true for general noninertial
states.

We will show that the homogeneous relativistic symmetry group that is a subgroup of the
automorphism group of the Weyl-Heisenberg group that leaves the Minkowski line element
invariant is

Oa(1, n) ' O(1, n)⊗s A(m), (2)

where m = (n + 1)(n + 2)/2 and A(m) is the abelian group isomorphic to Rm under addition.
The additional generators of the abelian group behave as a power-force stress tensor that is
the proper time derivative of the energy-momentum stress tensor. We show that this leads to
expected relativistic results in transforming to noninertial states.

This relativistic theory must lead to expected classical results in the limit c → ∞ where
the Minkowski line element reduces to the invariant Newtonian time line element dt2. We
have previously studied the most general group that leaves invariant the Newtonian time
line element dt2 that is a subgroup of the automorphisms of the Weyl-Heisenberg group.
This results in a group that leads directly to Hamilton’s equations and, with the additional
requirement of orthonormal position frames, describes the Hamilton symmetry group for
noninertial transformations in a classical context. [4]

2. Consistency between a relativistic symmetry group and quantum mechanics
States in quantum mechanics are represented by rays Ψ in a Hilbert space H that are the
equivalence class of states |ψ〉 in the Hilbert space that are related by a phase

Ψ '
{
eiω |ψ

〉
|ω ∈ R

}
, |ψ 〉 ∈ H. (3)

A relativistic symmetry group g ∈ G acts on the states through a projective representation π,
Ψ̃ = π(g)Ψ, with the property that it also has a phase,

π(g̃ · g) = eiω(g̃,g)π(g̃)π(g), ω(g̃, g) ∈ R. (4)

Projective representations are equivalence classes of the unitary representations % of the central
extension Ǧ (denoted by the inverted hat) of the group G that act on the states, [6],[7]

˜|ψ 〉 = %(g) |ψ
〉
, g ∈ Ǧ, |ψ 〉 ∈ H%. (5)
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The Hilbert space is determined by the unitary representation % and so we label it as H%.
Observables corresponding to a the relativistic symmetry group G are represented by the
Hermitian representations %′ of elements Z of the algebra of the centrally extended groupǦ,
Ẑ = %′(Z). The action of the projective representation of the group element g ∈ Ǧ on these
observables is

ˆ̃Z ˜|ψ 〉 = %(g)Ẑ |ψ〉 = %(g)Ẑ%(g)−1%(g) |ψ〉 = %(g)Ẑ%(g)−1 ˜|ψ 〉 (6)

and so ˆ̃Z = %′(Z̃) = %′(gZg−1). Therefore, if the representation % is faithful, we have Z̃ = gZg−1.
Position, momentum, energy and time observables are the Hermitian representation of the

algebra of the Weyl-Heisenberg group H(n+ 1) with a general element given by Z = zαZα ,
α = 1, ..2n+2 where {zα} ∈ P ' R2n+2 and Zα are a dimensionless basis for the Weyl-Heisenberg
algebra that satisfy the commutation relations

[Zα, Zβ] = ζα,βI, (7)

where ζα,β are the components of a symplectic metric. The Hermitian representation of the
algebra satisfies [Ẑα, Ẑβ] = iζα,β Î, where Ẑα = %′(Zα) and Î = %′(I) is the unit operator
on the Hilbert space. The position-time and momentum-energy Hermitian operators are
{Ẑα} = {X̂a, P̂a} with a = 0, ..n. Note that there is no relativistic symmetry yet and hence
no concept of a mass shell.

The basic physical assumption is that the Heisenberg commutation relations are satisfied
by any state related by a relativistic symmetry group G. That is, position, momentum,
energy and time observables satisfying the Heisenberg quantum commutation relations will also
satisfy the Heisenberg quantum commutation relations for any states related by the projective
representations of the symmetry group (6). This implies that if {Xa, Pa, I} are a basis of the
Weyl-Heisenberg algebra, then {X̃a, P̃a, Ĩ} are also a basis of the Weyl-Heisenberg algebra where

X̃a = gXag
−1, P̃a = gPag

−1, Ĩ = gIg−1 = I. (8)

and g ∈ Ǧ and % is a faithful representation. The maximal group for which this property is
true is the automorphism group of the Weyl-Heisenberg group. This results in basic consistency
condition that the central extension Ǧ of the relativistic symmetry group G must be a subgroup
of the automorphism group of the Weyl-Heisenberg group and algebra, Ǧ ⊆ AutH(n+1).

The automorphism group of the Weyl-Heisenberg group is [3],[4],[5]

AutH(n+1) = DSp(2n+ 2)⊗s H(n+ 1). (9)

The Heisenberg group itself are the inner automorphisms. The outer automorphisms are the
cover of the homogeneous group

DSp(2n+ 2) ' Z2 ⊗D ⊗ Sp(2n+ 2). (10)

The matrix realization of this group and the group properties are given in [4],[5]. The
inhomogeneous group includes translations on extended phase space P,

IDSp(2n+ 2) = DSp(2n+ 2)⊗s A(2n+ 2)
= Z2 ⊗s D ⊗s Sp(2n+ 2)⊗s A(2n+ 2)

. (11)

The automorphism group is the central extension of this inhomogeneous group, AutH(n+1) '
ˇIDSp(2n+ 2).
Projective representations of the classical inhomogeneous group are equivalence classes of

the unitary representations of the automorphism group that is its central extension. The
unitary representation determines the Hilbert space of quantum states. These representations
are the largest symmetry of a quantum system that preserves the Weyl-Heisenberg commutation
relations.
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3. Homogeneous relativistic symmetry group
We determine in this section the homogeneous relativistic symmetry group for noninertial frames
that satisfies two conditions

1) It leaves invariant the Minkowski proper time line element.
2) It is a subgroup of the automorphism group of the Weyl-Heisenberg group.
The group Oa(1, n) is dependent on the scale c. We show a homomorphism parameterized by

c satisfies the conditions to define a Inönü-Wigner contraction. This contraction results in the
Hamilton group that we have previously shown is the relativistic symmetry group for noninertial
states in the nonrelativistic (c→∞) context.

3.1. The group Oa(1, n) and its algebra
The postulates of special relativity requires the invariance of the Minkowski proper time line
element

dτ2 = ηa,bdx
adxb (12)

with a, b.. = 0, ..n and η is the diagonal matrix η = [ηa,b] = diag{−1, 1, ...1} with units where
c = 1.

Consider the 2n + 2 dimensional time, position, energy, momentum extended phase space
P ' R2n+2 with coordinates {zα} = {xa, pa} where α, β = 1, ...2n + 2, a, b = 0, 1..n. The
Minkowski metric is a degenerate line element on the cotangent space T ∗z P

dτ2 = η̃α,βdz
αdzβ (13)

where η̃α,β are the components of the (2n+ 2)× (2n+ 2) dimensional matrix η̃

η̃ = [η̃α,β] =

(
[ηa,b] 0
0 0

)
.

The group GL(2n + 2,R) of nonsingular (2n + 2) × (2n + 2) matrices acts naturally on the
cotangent space T ∗z P with basis {dzα|z}. Elements Γ of the subgroupOGLa(1, n) ⊂ GL(2n+2,R)
that is defined as the subgroup that leaves invariant the degenerate line element (13) satisfies

Γtη̃Γ = η̃. Γ may be written in terms of (n + 1) × (n + 1) submatrices as Γ = (
Λ B
Ξ A

) and

therefore (
η 0
0 0

)
=

(
Λt Ξt

Bt At

)(
η 0
0 0

)(
Λ B
Ξ A

)
=

(
ΛtηΛ ΛtηB
BtηΛ BtηB

)
. (14)

It follows immediately that B = 0 and Λ ∈ O(1, n). As det Γ = detΛ detA, detA 6= 0 and
A ∈ GL(n+ 1,R). Therefore,

OGLa(1, n) ' (O(1, n)⊗ GL(n+ 1,R))⊗s A((n+ 1)2) (15)

that has elements Γ and Γ−1 of the form

Γ =

(
Λ 0
Ξ A

)
, Γ−1 =

(
Λ−1 0
−A−1ΞΛ−1 A−1

)
,

Λ ∈ O(1, n) Ξ ∈ A((n+ 1)2)
A ∈ GL(n+ 1,R)

(16)
It can be verified that this has the semidirect product structure as claimed following exactly

the same steps as given explicitly below for the Oa(1, n) group. The homogeneous relativistic
symmetry group, that is called Oa(1, n), is the homogenous subgroup of the automorphism group
that leaves invariant the degenerate line element,

Oa(1, n) = DSp(2n+ 2) ∩ OGLa(1, n). (17)
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The elements of the DSp(2n + 2) group are of the form ∆Σ where ∆ ∈ Z2 ⊗ D and
Σ ∈ Sp(2n + 2). The symplectic matrices satisfy the condition ΣtζΣ = ζ and so Σ−1 = −ζΣtζ

with ζ = (
0 η
−η 0

). This may also be written in terms of (n + 1) × (n + 1) submatrices Σµ,ν

µ, ν = 1, 2 with the matrix and inverse having the form

Σ =

(
Σ1,1 Σ1,2

Σ2,1 Σ2,2

)
, Σ−1 =

(
ηΣt

2,2η −ηΣt
1,2η

− ηΣt
2,1η ηΣt

1,1η

)
. (18)

If Γ in (16) is a subgroup of the outer automorphism group, we have Σ = ∆−1Γ or expanding,(
Σ1,1 Σ1,2

Σ2,1 Σ2,2

)
= ∆−1

(
Λ 0
Ξ A

)
. (19)

Γ−1 = ∆−1Σ−1 that we can compute from (18) and equate to the inverse calculated in (16)

Γ−1 =

(
Λ−1 0
−Λ−1ΞA−1 A−1

)
= ∆−2

(
ηAtη 0
− ηΞtη ηΛtη

)
(20)

from which it follows that Λ−1 = ∆−2ηAtη and A−1 = ∆−2ηΛtη. This has a solution if and only
if ∆ = ±1n ∈ Z2 ⊂ D and At = ηΛ−1η. 1n is the n × n unit matrix. Noting that Λ−1 = ηΛtη
this gives At = Λt and therefore A = Λ. Finally,

Ξt = ηΛ−1ΞΛ−1η = ΛtηΞηΛt. (21)

Thus elements of Oa(1, n) have the form

Γ(Λ,Ξ) =

(
Λ 0
Ξ Λ

)
, Λ ∈ O(1, n), Ξ ∈ A(m) . (22)

with m = (n+ 1)(n+ 2)/2. The group multiplication and inverse of Oa(1, n) are

Γ(Λ,Ξ) = Γ(Λ′,Ξ′)Γ(Λ′′,Ξ′′) Γ(Λ,Ξ)−1 = Γ(Λ−1,−Λ−1ΞΛ−1).
= Γ(Λ′Λ′′,Ξ′Λ′′ + Λ′Ξ′′),

(23)

The Lorentz group is the subgroup Γ(Λ, 0). The matrix components of the Lorentz matrices
may be given as the usual expressions in regular and hyperbolic trigonometry terms of the
rotation angles and boost angles.

The elements Γ(1n,Ξ) define an abelian normal subgroup with group multiplication, inverse
and automorphisms given by

Γ(1n,Ξ
′)Γ(1n,Ξ

′′) = Γ(1n,Ξ
′ + Ξ′′), Γ(1n,Ξ)−1 = Γ(1n,−Ξ) (24)

Γ(Λ′,Ξ′)Γ(1n,Ξ)Γ(Λ′,Ξ′)−1 = Γ(1n,Λ
′ΞΛ′−1) . (25)

The intersection Γ(Λ, 0) ∩ Γ(1n,Ξ) = 1n and Γ(Λ,Ξ) = Γ(1n,Ξ)Γ(Λ, 0). Therefore it is the
semidirect product

Oa(1, n) ' O(1, n)⊗s A((n+ 1) (n+ 2) /2). (26)

It can be shown that it does not admit an algebraic central extension and therefore the central
extension of this group is simply its cover.
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A general element of the algebra of Oa(1, n) is Z = λa,bLa,b + ξa,bMa,b . Note that as
ξa,b = ξb,a, that Ma,b = Mb,a. The Lie algebra relations may be directly computed to be

[La,b, Lc,d] = −Lb,dηa,c + Lb,cηa,d + La,dηb,c − La,cηb,d,
[La,b,Mc,d] = −Mb,dηa,c −Mb,cηa,d +Ma,dηb,c +Ma,cηb,d, [Ma,b,Mc,d] = 0.

(27)

The Ma,b abelian generators transform as a symmetric (0, 2) tensor under the Lorentz
generators La,b.

Returning to the group, the transformation equations are dz̃ = Γdz. Using the definition of
Γ in (26) results in

dx̃ = Γdx, dp̃ = Γdp+ Ξdx, (28)

that in component form are (with units where c = 1)

dx̃a = λabdx
b, dp̃a = λabdp

b + ξab dx
b. (29)

Then, the proper time line element is invariant as required,

dτ2 = ηa,bdx̃
adx̃b = ηa,bλ

a
cdx

cλbddx
d = ηa,bdx

adxb. (30)

The λac are the components of the Lorentz transformation that, as usual, depend on the
relative rotation angle and hyperbolic boost angle. The mass µ satisfies

c2dµ̃2 = ηa,bdp̃
adp̃b = ηa,b(λ

a
cdp

c + ξac dx
c)
(
λcddp

d + ξbddx
d
)

= c2dµ2 + ηa,bξ
a
c ξ
b
ddx

cdxd + 2ηa,bξ
a
cλ

b
ddx

cdpd.
(31)

From basic dimensional analysis, the ξac have the dimensions of force or power (in units with
c = 1, these are the same). It is a symmetric tensor satisfying ξab = ηa,cηb,dξ

d
c that transforms

as an (1,1) tensor under the Lorentz transformation

ξ̃ab = λacλ
d
bξ
c
d. (32)

These are the properties of a power-force stress tensor that is the proper time derivative of
the energy-momentum stress tensor.
The rate of change of the mass squared with respect to the proper time is given by

dµ̃2

dτ2
=
dµ2

dτ2
+

1

c2
ηa,bξ

a
cV

c(ξbdV
d + 2 λbdF

d) (33)

where V a = dxa

dτ is the four velocity and F a = dpa

dτ is the four force for the case n = 3.

3.2. Three notation
Further insight into the physical meaning of the group may be obtained by converting to n+ 1
notation that for n = 3 is the familiar three notation {xa} = {t, 1c q

i}, {pa} = {1ce, p
i}, i, j = 1, ..n.

The Lorentz matrix Λ(α, β) parameterized by rotation angles αi,j = −αj,i and hyperbolic boost
rotations βi that have the usual form. As usual, we identify velocity as vi = c β

i

|β| tanh(β) and

define γ(β) = cosh(β) = λ00 or equivalently γ(v) = (1− (vc )2)
− 1

2 .
The velocity four vectors are given as usual by {V 0, V i} = {γ, γvi} = γ{1, dxidt } where γ = dt

dτ .
The four force likewise is {F 0, F i} = {γr, γf i} where f i = dpi

dt and r = de
dt and f i has the

dimensions of force and r has the dimensions of power. The power-force-stress components are

Ξ =

(
ξ00 ξ0i
ξj0 ξji

)
= γ

( 1
c r −fi
f j 1

cm
j
i

)
. (34)
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Therefore, the transformation equations for the position, time, momentum, energy basis is

dt̃ = γdt+ 1
cλ

0
i dqi, dp̃i = λijdp

j + λ0i dt,

dq̃i = λijdq
j + cλi0 dt, dẽ = γde+ cλ0i dpi − γfidqi + cγrdt .

(35)

For n = 1 these are simply

dt̃ = γ(v)
(
dt+ 1

c2
vdq
)
, dp̃ = γ(v)

(
dpj + 1

c2
vde+ fdt+ 1

c2
m dq

)
,

dq̃ = γ(v) (dq + vdt) , dẽ = γ(v) (de+ vdp− fdq + rdt) .
(36)

and the corresponding group parameter transformations using (23) are

γ(v)

(
1 v
v 1

)
= γ(v′′)γ(v′)

(
1 v′

v′ 1

)(
1 v′′

v′′ 1

)
(37)

γ(v)

(
r f
f m

)
= γ(v′′)γ(v′)

((
r′ f ′

f ′ m′

)(
1 v′′

v′′ 1

)
+

(
1 v′

v′ 1

)(
r′′ f ′′

f ′′ m′′

))
(38)

and so

v = (v′′ + v′) /
(

1 + v′v′′

c2

)
, f =

(
f ′′ + f ′+ 1

c2
(r′v′′ − v′r′′)

)
/
(

1 + v′v′′

c2

)
,

r = (r′′+r′ − f ′v′′ + v′f ′′) /
(

1 + v′v′′

c2

)
,m = (m′′+m′ + f ′v′′ − v′f ′′) /

(
1 + v′v′′

c2

)
.

(39)

Consider next the algebra. We have the infinitesimal parameter correspondence

λ0,i =
1

c
βi, λj,i = αi,j , ξ0,0 =

1

c
r, ξj,0 = f j , ξj,i =

1

c
mj,i (40)

where αi,j = −αi,j and mi,j = mj,i with the corresponding generators

L0,j = cKj , Li,j = Ji,j ,M0,0 = cR,Mi,0 = Ni,Mi,j = cM◦i,j . (41)

A general element of the algebra is Z = αi,jJi,j + βiKi + f iNi + rR+mi,jM◦i,j . The nonzero
commutators of the Lie algebra (27) written in terms of these generators.

[Ji,j , Jk,l] = −Jj,lδi,k + Jj,kδi,l + Ji,lδj,k − Ji,kδj,l, [Ki,Kk] = 1
c2
Ji,k,

[Ji,j ,Kk] = −Kjδi,k +Kiδj,k, [Ki, Nk] = −M◦i,k −Rδi,k,
[Ji,j , Nk] = −Njδi,k +Niδj,k, [Ki, R] = − 2

c2
Ni,[

Ji,j ,M
◦
k,l

]
= M◦j,lδi,k −M◦j,kδi,l +M◦i,lδj,k +M◦i,kδj,l[

Ki,M
◦
k,l

]
= −1

c2
(Nlδi,k +Nkδi,l) ,

(42)

3.3. Contraction in the limit c→∞
The scaling with c given in (42) satisfies the conditions for an Inönü-Wigner [8] contraction
c→∞ for which the nonzero contracted commutators are

[Ji,j , Jk,l] = −Jj,lδi,k + Jj,kδi,l + Ji,lδj,k − Ji,kδj,l, [Ki, Nk] = −M◦i,k −Rδi,k,
[Ji,j ,Kk] = −Kjδi,k +Kiδj,k, [Ji,j , Nk] = −Njδi,k +Niδj,k,[
Ji,j ,M

◦
k,l

]
= −M◦j,lδi,k −M◦j,kδi,l +M◦i,lδj,k +M◦i,kδj,l.

(43)

The subgroup spanned by {Ji,j ,Ki, Ni, R} is the algebra of the Hamilton group Ha(n). The
full algebra of the group defined by

O(n)⊗s A(n(n+ 1)/2)⊗s H(n) = Ĥa(n)⊗s A(n(n+ 1)/2) (44)
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where Ĥa(n) is the extended Hamilton group

Ĥa(n) = Z2 ⊗s Ha(n), Ha(n) = SO(n)⊗s H(n) (45)

where {Ji,j} are the generators of O(n), {Mi,j} are the generators of A(n(n + 1)/2) and
{Ki, Ni, R} are the generators of the Weyl-Heisenberg group H(n).

The basis transformation equations (35) contract to the expected transformation equations
in the limit [5]

dt̃ = dt, dp̃i = λ(α)ijdp
j + f idt,

dq̃i = λ(α)ijdq
j + vi dt, dẽ = de+ vidp

i − fidqi + rdt.
(46)

where the λ(α)ij are now the components of a rotation matrix, O(n).

4. Summary
We started by noting that neither special relativity nor general relativity address the problem of
how clocks of noninertial states due to forces other than gravity are related.

The hypothesis that the Minkowski proper time line element is invariant in these states that
are not necessarily inertial and requiring that the Heisenberg commutation relations hold in all
noninertial states results in the noninertial relativistic symmetry group Oa(1, n). This group
gives the expected transformations to noninertial states in terms of a power-force stress tensor
that is the proper time derivative of the energy-momentum stress tensor.

The Oa(1, n) group is also the b→∞ of the U(1, n) group of reciprocal relativity described in
[9]. This gives an understanding of the behavior of reciprocal relativity in the small interaction
limit (that is, small forces relative to b) that is analogous to the manner in which the Euclidean
group that is the homogeneous group of the Galilei group gives the small velocity limit, relative
to c, of the Lorentz group.

Spacetime is an invariant subspace under the actions of the Oa(1, n) group and therefore is
observer independent or absolute. In this limit, there is an apparent global inertial frame that
all observers agree on. Forces appear to be relative to this frame rather than being strictly
relative to particle states. Forces and the power-force-stress energy tensor are simply additive
and unbounded. Velocities are bounded by c and strictly relative to particle states.

In the c→∞ limit yields the classical nonrelativistic Hamilton theory that describes particles
undergoing general noninertial motion. In this case, there is an apparent global inertial rest
frame that all observers agree on. Forces and velocities appear to be relative to this frame
rather than being strictly relative to particle states. Forces and velocities are simply additive
and unbounded.
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