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Abstract. We consider spiky strings in the context of the SL(2) Bethe ansatz equations. We obtain
an asymmetric distribution of Bethe roots along one cut which determines the all loop anomalous
dimension at leading and subleading orders in a large S expansion. At leading order in strong coupling

(large \) the energy of such states is given, in terms of the spin S and the number of spikes n by
E-S= %ﬁf)\ (ln % + In % sin 7 — 1) +0O (%) . This result agrees perfectly with the same expansion
obtained from the known spiky string classical solution. We also discuss a two cut spiky string Bethe

root distribution at one-loop in the SL(2) Bethe ansatz.

1. Introduction
The study of the SL(2) sector of ' = 4 SYM gauge theory has lead to a remarkable progress in
the understanding of the AdS/CFT correspondence. Much of this progress relates to twist two gauge
theory operators of the type tr(@Df@). On the string side they are described by the folded string
solution [1] as can also be verified by an alternative computation in terms of the cusp anomaly [2].
In the field theory an all loop Bethe ansatz was proposed in [3] which can be used to compute their
anomalous dimension at all loops in the planar approximation. Computations of quantum corrections
to the folded string solution [4] at leading order in large S as well as its generalization to AdSs x S!
[5, 6, 7] were recently used to successfully check such all loop asymptotic Bethe ansatz [8, 9, 10, 11].
The all loop asymptotic Bethe ansatz computation was further extended to the subleading orders in the
large S expansion [11, 12, 13] and exact matching with the corresponding string theory computations
[14] was found.

Beyond twist two, the SL(2) sector contains operators of higher twist. For example operators of
the type

s s s
O:tr(D;cI) D;<I>...D$<I>> (1.1)

are described, on the string side, by the spiky string solutions [15]. By analogy with the twist two
operators, the full understanding of these operators from the field theory point of view requires the
construction of the Bethe ansatz solution that describes them. In this paper we provide a proposal to
describe the spiky string solution in the all loop Bethe ansatz.

In [16, 17] and later in [18] such operators were described by a spin chain with a number of sites n
being the same as the number of spikes. At leading order in large S the spiky string solution touches
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the boundary of AdSs. It was shown [19] that at this order the spiky string solution can be mapped
to the folded string solution by a conformal transformation, and thus the all loop energy at leading
order in large S is given by

E-S= gf()\) InS + O(8°,n) (1.2)

where f(\) is a universal scaling function known as the cusp anomaly. Here we obtain this result from
the field theory side by an all loop Bethe ansatz computation.

An important ingredient in the construction of the Bethe ansatz solution is a set of integers ny
which may be interpreted as the bosonic mode numbers of the waves propagating in the spin chain.
The folded string solution in AdSs reduces [20] to the folded string solution in flat space in the limit
% < 1. In flat space we can quantize the string exactly in terms of right and left moving waves
propagating on the string. The folded string has the same number of right and left moving excitations,
i.e. ny, = ng, with the same wave numbers k;, = kr = 1. In AdSs, for all values of spin S and coupling
A, it was proposed that in a Bethe ansatz computation the folded string solution is described by two
sets of modes, one with ny = —1 and the other with n;, = 1. These numbers were used then as the
input in the one loop SL(2) Bethe ansatz equations for two cuts (corresponding to ni = +1), and
a symmetric Bethe root distribution was found to describe the folded string solution [21]. Similar
bosonic quantum numbers were used later [22, 3] to find the corresponding solution to the all loop
Bethe ansatz.

In our case, we look at the spiky string solution in flat space, find the left and right wave numbers
and use them as an input to find the corresponding Bethe root equation that we then proceed to solve.
It turns out that the bosonic quantum numbers that should be used in the Bethe ansatz equations
are ny, = —1 and ngp = n — 1. Using this input we find an asymmetric distribution of Bethe roots
spread over one cut along the real axis at one loop in weak coupling and leading order in the large S
expansion. We then extend the computation to all loops and further obtain the all loop result also for
the subleading order in large S. Remarkably, the result expanded at strong coupling precisely matches
the result known from expanding the classical string solution [14], that is, at order In S and also S°.

We then proceed to consider a two cut solution to the one-loop Bethe ansatz equations. Again
we use the “spiky string” bosonic quantum numbers for the integers ny, i.e. one cut has ny = —1
and the other np = n — 1 where n is the number of spikes. The solution has four real parameters
d < ¢ < a < b which represent the position of the two cuts given by the segments [d, ¢] and [b, a]. The
solution obtained allows us to compute the energy F, spin S, R-charge J and number of spikes n in
terms of these parameters, allowing to express the energy as a function of the other physical quantities
E=E(S,J,n).

2. Spiky strings in flat space
In flat space ds? = —dt®> + dz? + dy® we can quantize the theory exactly, and it turns out that the
spiky solutions are just a superpositions of a left and a right moving waves:

= Acos((n—1)o4)+A(n—1) cos(o-) (2.1)

= Asin((n—1)o4)+A(n—1)sin(o-) (2.2)

t = 2An—-1)71=An-1)(o4 +0-) (2.3)

where o4 =7+ 0, o = 7 — 0, n is the number of spikes and A is constant that determines the size

of the string. Here, (7,0) parameterize the world-sheet of a string. The solutions are periodic in o
with period 27 and satisfy the equations of motion in conformal gauge, (92 — 92)X* = 0, as well as
the constraints (94 X)? = (0_X)? = 0. Quantum mechanically the state has ng = A%(n — 1)? right
moving excitations of wave number kr = 1 and n; = A%(n — 1) left moving excitations with wave
number k;, = n — 1 (satisfying the level matching condition ngrkr = nrkr). All excitations carry one
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Figure 1. Rotating string_\:;)vith 3 spikes in flat space. We plot (z,y) in eq.(2.3) parametrically as a
function of c =0 = 27 forn =3, A=1and 7 = 0.

unit of angular momentum and therefore the total angular momentum and energy are given by

n—1

S=np+ng=An(n—-1), E=+\/2(ngkr +ngkg) =24(n—1), E=2 S (2.4)

n
which agrees with a classical computation. For n = 2 we recover the standard Regge trajectory
E =+/25 and for n > 2 we get a Regge trajectory of modified slope. At fixed time, the shape of the
string for n = 3 is shown in fig. 1.

3. Spiky strings in the one-loop Bethe Ansatz: 1-cut solution
To obtain the In S dependence from the Bethe ansatz at large S we follow the same prescription used
in [22]. In the SL(2) sector the Bethe roots are on the real axis and, for large S, they accumulate
on various segments or cuts. For the folded string with J = 2 and S > 1, there is only one cut and
the root distribution is symmetric. In this case, namely for the lowest twist, there is only one state
whereas for J > 2 there is more than one state. We consider excited energy states which describe the
n-spike solution in the large S limit for a fixed finite J.

We first consider the one loop SL(2) spin chain. The one loop Bethe ansatz equations corresponding
toa XX X_% nearest neighbor spin chain are

_1_1 J S _ . 1
(u’“ f) =250 k=12..5 (3.1)
Uk — 5 #kuk—uj—l—z
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Taking the logarithm of (3.1), and further expanding in 1 as appropriate for large S gives [22]

i_zmk—z Z

Jj=13#k

(3.2)

U — Uy

where uy, are the Bethe roots and J is the length of the corresponding spin chain. The total momentum
should vanish due to the cyclicity of the trace which implies

s +i
+3
H — (3.3)
j=1 2
The one loop energy is given by
S
E— S
Z (3.4)

k=1

At this point one should solve eq.(3.2) for the real numbers uy subject to the condition (3.3). When the
number of roots S is very large, the roots accumulate in cuts on the real axis and one can conveniently
approximate the problem by defining a density of roots. Thus we introduce the root distribution
function po(u) = ) ) 0(u — uy). Furthermore, for large S, the cut grows as S and we can make the
approximation that u > 1. Therefore, at leading order in the large S expansion (3.2), we need to
solve the equations

]l NI C) R (3.5)

u —u

/dupo(u) = S (3.6)
][dupo(u) = 0, (3.7)

u

which are, the Bethe equation, the normalization of the density, and the zero momentum condition.
The function pg(u) is non-zero on a finite interval that needs to be determined as part of the solution
and that we take to extend from d < z < a with d < 0 and a > 0.

To solve (3.5) we also need the bosonic numbers n,,. Following the intuition from the folded string
at all-loops here we identify n,, with the left and right wave numbers of the corresponding flat space
solution, i.e. n,, = —1 and n, = n — 1 where n is the number of spikes. More precisely we take the
function n,,(u) as

-1, d<u<0
nw(u)_{n—l, O<u<a (3.8)

To solve (3.5) we introduce a function F(w) = v/w — av/w — d which has a cut on the real axis
extending precisely from d to a. Furthermore, right above (below) the cut it is purely imaginary with
positive (negative) imaginary part. Using this function we define the resolvent as (see [23] for details)

G(w) = 1 /da F(F(w) Wi du (3.9)

u+i0t)u—w

On the cut we get
G(z +ie) = £p(z) +iny(z), x€C, e—0%. (3.10)
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with po(u) determined to be

L[ Fl) | nw(@) ,
== 3.11
po(w) W][d F)| v —u ( )
It turns out that for (3.11) to be a solution of (3.5) we need to satisfy the consistency condition
G
Res [ (w) ,oo] =—-Go=0 (3.12)
w—u

where G is the leading coefficient of the expansion of G(w) at large w

1
G(w):Go—}-GlE—i-..., w — 00 (3.13)
Explicitly for 1-cut we obtain
n—2 in . a+d
Gy = —/ Fu+20+ du =1 5 +7rarcsm<a_d> (3.14)
a+d 1% uny(u)
= — —— | =——=d 1
G 5 G0 w/d Flu+iot)™ (3:15)

On the other hand, equation (3.6) gives

S = / po(u jf Glw)dw = irRes [G(w), o] = —inGy (3.16)
and eq.(3.7) is e 1w w1
0 _]é P = ?i T  imRes [ ; ,oo] — inGy (3.17)

which is satisfied if (3.12) is. In the previous equations we used a contour C' that encircles the cut in
a clockwise direction. Using (3.14) we then find

—% = tan? (%) (3.18)

Using (3.15) and (3.16) gives
S =nv—-ad (3.19)

We now need to compute the energy which, within the Bethe ansatz is given by

, iy 2
E-5-J :/da PO) gy, — (G(;) —G(—é)) =nln <¢a(; _d)-ﬂ/(a_ ! d>> (3.20)

29° u? +

For fixed n and large S we see from eqgs.(3.18) and (3.19) that a ~ d ~ S > 1 so we can approximate

the last equation as
E-S5-1J 8ad
- > nln|( - 1 21
22 nn( a—d)’ S>> (3.21)
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Figure 2. Root density po(@) = po(§) for n =2, n = 3 and n = 6. The larger the n the more skewed
the distribution becomes.

Therefore, through egs.(3.19), (3.21), we have solved the problem by writing E and S in terms of two
parameters a and d related by the condition (3.18). Explicitly we can write

S S E-S—-J 45

a:—tanl, d:——cot1 S opdn | Zsin s (3.22)
n 2n n 2n’ 2g2 n n

The root distribution is asymmetric. Using eq.(3.11) it can be written as

o, |Valu—d)+ /—d(a—u)
po(w) 1 \/a —d) —\/—da—u

(3.23)

(3.24)
Typical plots of the root distribution are shown in Figure 2.
4. Spiky strings in the all loop Bethe ansatz: 1-cut solution

We proceed to find a 1-cut solution to the all-loop Bethe equations. We will follow the procedure used
in [22]. The asymptotic all loop Bethe equations in the SL(2) sector read

o, S/2
2J arctan(2ug) 4+ iJ In % = 27 —2 Z arctan(ug — u;) (4.1)
/(xk j=—5/2
370
S/2 2/1'k S/2
+ Z ln1 5 ] -2 Z O(u, uj),
j=—5/2 - /‘rk J j=—5/2
J#0 J#0
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where 6(u,v) denotes the dressing phase and z*(u) are defined through u + £ = 2% (u) + ng?u).

As in the one-loop Bethe ansatz, in the large S limit we introduce a root density p(u). The all loop
equations can then be written as

J od . 14 ¢%/(z (u))? d u’
+iJ—1In +9/( (532 2mp(u) — 2/@ 7@ p()

u?+1/4 du 1+ g%/(xt(u —u)?+1
¢ I, i L 1—g*/zt(wa (u )_ w
+ /a du p(u)du (21 In = g/ (w)a(w) 20(u, )> (4.2)

For the highest excited state J is equal to the number of cusps, n.

To simplify the presentation of the all-loop computation we will omit the dressing phase and only
restore its contribution in the end. We can now proceed with the all loop equation by splitting off the
one-loop piece of the density, p(u) = po(u) + 295 (u),

~ o0 o(u 1 ¢ nd L= g at (w)a (v
0 = 2mo(u) —2/_()0@_15,)2)_'_1—1-22 du PO(U)% <211n 1_34374_&“,)):6_((“3)

+ /oo du'&(u/)% (21' In L g’ /o (u)a” (U/)> . (4.3)

oo 1—g?/z* (u)r™(u)

In the above we have extended the integral boundaries to +co in the terms containing the higher loop
density, 7(u). '
Using the one-loop resolvent at large S, G (i%) =+>InS+..., we find

0 = 27r5(U)—2/OOW+n1n5dd<x+l P )

oo (W —u)2+1 (w) = (u)
+ /_Z du’5(u’)d% <2iln 1: Ziig ,))x ((u;) (4.4)
After Fourier transformation' and a redefinition of the density,
6(t) = —2net/?6(t)In S, (4.5)
the result is
o(1) = <K(2gt, 0) — 4¢2 /0 h dt’K(2gt,2gt’)6(t’)> (4.6)

Interestingly, the contribution from the dressing phase can be included in the kernel K

K(t7t/) = KO(tvt/) + Kl(ta t,) +Kd(tvt/) (47)
where
2 (o)
t) = 72 (2n — D) Jon_1(t)Jon—1(t),  Ki(t,t) = Zszgn t)Jon () (4.8)
o0 t//
Ky(t,t') = 8¢* / dt" K (t, 2gt”)ﬁK0(2gt”, ). (4.9)
. _

1 We use the convention f(t) = J75 dwe ™" f(w). Details on the Fourier transforms used here can be found in [22].
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Further we find that the energy is given by
E —S=28¢>n5(0)InS + O(S°). (4.10)

which gives
E—S:gﬂ@ms+ow% (4.11)

which matches the string theory result at leading order in large S [19].
The results discussed in section 3 and 4 can be extended to the next order in the large S expansion.
We obtain the following all loop result

2
E—S:n—l—f(g)g (lnS—i—w;—i—ln (nsinz>) —|—ng(9)+... (4.12)

where Bs(g) denotes the virtual scaling function of twist 2 operators. Using the first orders in the
expansions at strong coupling [12],

f(g) =49 — + O(1/9) (4.13)
2
Balg) = (~e ~tug) flg) — 491~ w2) - (1- “224 20 oy g
we find
E—-S = 2ng <lns+ln <4sin7r) —1)
g n n
+ ;L<1+61:2—31:2ln<isin2>—317112111?)—1—0(1/9) (4.15)

We see that the leading strong coupling result is in agreement with the known string theory result
[14]. For n = 2 we recover the result for the folded string [12], this result is in full agreement with the
one-loop computation from string theory [14]. For arbitrary n (4.15) is expected to be in agreement
with the one-loop result computed from the sigma model [24].

5. Spiky strings in the one-loop Bethe Ansatz: 2-cuts solution
We start again with equation (3.2) but we no longer drop the term proportional to J

][du/ po(¥') = mny(u) — J = Ny (u) (6.1)

u—u 2u

The condition that the total momentum should vanish, and the normalization of the root density give

/dupo(u) In Z 5 =0, /dupo(u) =S (6.2)

_ i
2

The 1-loop anomalous dimension is
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Figure 3. Root density po(u) = po(g) for n = 3 and a = 100,b = 50,c = —9.771958775,d =
—510.0091708.

Let us consider two cuts d < ¢ < b < a. Extending the bosonic wave number distribution from the
previous section we take

-1, d<u<c
nw(u)—{ n—1, b<u<a (6.4)

Then we find the solution for the root distribution function is (r = %)

P [e—wb-w) 1 B I
por(t) = 7f¢wuwMa—w><a_@@_@<< MG —d)(w—ay " T >K”>
+ S TFW@)](As — 4s) (6.5)

22!

for the left interval v’ € [d, ¢], and

oo [y R R
pOR( ) T (u’—d)(a—u’) (a—c)(b—d) <(d )H[(G—C)(Ul—d)’ ] +( d)K[ ]>
2 VTP (~As + 45) (6.6)

for the right one u’ € [b,a]. We show an example of a 2-cut root distribution in figure 3. The existence
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of this solution implies two relationships among the arbitrary parameters a,b, ¢, d
J
nAi + %(Azl — A5) =0, Ao + (n — 1)A3 =0 (67)

Normalization and momentum conditions give two additional equations

J J
%@42 —A3)+ A+ (n—1)A7 =5, vabcd[A4 +(n—1)A5 + %(Ag — Ag)] =0 (6.8)

A; are a,b,c,d -dependent elliptic integrals defined in [23]. The four equations can be solved in
principle for the four parameters a, b, ¢,d in terms of .S, J,n and thus the one-loop dimension can be
obtained as E = E(n, S, J). The 1-cut solution of section 3 can be recovered by taking the limit b = e,
c = —ne with € — 0.
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