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Abstract. We construct a non-relativistic limit of the AdS/CFT conjecture by taking, on
the boundary side, a parametric group contraction of the relativistic conformal group. This
leads to an algebra with the same number of generators called the Galilean Conformal Algebra
(GCA). The GCA is to be contrasted with the more widely studied Schrodinger algebra which
has fewer generators. The GCA, interestingly, can be given an infinite dimensional lift for any
dimension of spacetime and this infinite algebra contains a Virasoro Kac-Moody sub-algebra.
We comment briefly on potential realizations of this algebra in real-life systems. We also propose
a somewhat unusual geometric structure for the bulk gravity dual to the GCA. This involves
taking a Newton-Cartan like limit of Einstein’s equations in anti de Sitter space which singles out
an AdS2 comprising of the time and radial direction. The infinite dimensional GCA arises out
of the contraction of the bulk Killing vectors and is identified with the (asymptotic) isometries
of this Newton-Cartan structure.

1. Introduction

Even after more than a decade, the AdS-CFT conjecture [1] continues to throw up rich, new
avenues of investigation. One such recent direction has been to consider extensions of the
conjecture from its original relativistic setting to a non-relativistic context. This opens the door
to potential applications of the spirit of gauge-gravity duality to a variety of real-life strongly
interacting systems. It was pointed out in [2] that the Schrodinger symmetry group [3, 4, 5], a
non-relativistic version of conformal symmetry, is relevant to the study of cold atoms. A gravity
dual possessing these symmetries was then proposed in [6, 7].

Instead of the Schrodinger group here we consider an alternative non-relativistic realization
of conformal symmetry in the context of the AdS/CFT conjecture [8]. This symmetry will be
obtained by considering the nonrelativistic group contraction of the relativistic conformal group
SO(d+1,2) in d+ 1 space-time dimensions. This Galilean conformal group is to be contrasted
with the more studied Schrodinger group from which it differs in some crucial respects as we
shall go on to outline.

However, the most interesting feature of the GCA seems to be its natural extension to an
infinite dimensional symmetry algebra. This is somewhat analogous to the way in which the
finite conformal algebra of SL(2,C) in two dimensions extends to two copies of the Virasoro
algebra. Our algebra contains one copy of a Virasoro together with an SO(d) current algebra
(on adding the appropriate central extension). We comment on the potential realization of this
extended symmetry.

In addition to possible applications to non-relativistic systems, one of the motivations for
studying the contracted SO(d + 1,2) conformal algebra is to examine the possibility of a new
tractable limit of the parent AdS/CFT conjecture. In fact, the BMN limit [9] of the AdS/CFT
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conjecture is an instance where, as result of taking a particular scaling limit, one obtains a
contraction of the original SO(4,2) x SO(6) (bosonic) global symmetry. In our case, the non-
relativistic contraction is obtained by taking a similar scaling limit on the parent theory. Like
in the BMN case, taking this limit would isolate a closed subsector of the full theory. There
are, however, some important differences here from a BMN type limit. Normally the BMN type
scaling leads to a Penrose limit of the geometry in the vicinity of some null geodesic. These
are typically pp-wave like geometries whose isometry is the same as that of the contracted
symmetry group on the boundary. The non-relativistic scaling limit that leads to the GCA on
the boundary is at first sight more puzzling to implement in the bulk. This is because, under
the corresponding scaling, the bulk metric degenerates in the spatial directions x;. We propose
a novel non-metric Newton-Cartan like formulation of the bulk theory, which has a geometry
with an AdS, base and the spatial R? fibred over it. As a check of this proposal, we will see
that the infinite dimensional GCA symmetries are realized in this bulk geometry as asymptotic
isometries. These generators will also be seen to reduce to the generators of the GCA on the
boundary.

2. Non-Relativistic Conformal Symmetries
2.1. Schrodinger Symmetry
The Schrodinger symmetry group in (d + 1) dimensional spacetime, Sch(d, 1) has been studied
as a non-relativistic analogue of conformal symmetry. Its name arises from being the group of
symmetries of the free Schrodinger wave operator in (d + 1) dimensions. In other words, it is
generated by those transformations that commute with the operator S = i0; + ﬁ@f However,
this symmetry is also believed to be realized in interacting systems, most recently in cold atoms
at criticality.

The symmetry group contains the usual Galilean group (denoted as G(d, 1)) with its central
extension.

[Jij, Jrs] = SO(d), [Jij, BT] = —(Biéjr — Bj(;”)
[BZ', i = 0, [BZ,P]] = méij [H, PZ] = 0, [H, Bz] = _Pi- (21)

Here J;; (i,j = 1...d) are the usual SO(d) generators of spatial rotations. P, are the d
generators of spatial translations and Bj; those of boosts in these directions. Finally H is
the generator of time translations. The parameter m is the central extension and has the
interpretation as the non-relativistic mass (which also appears in the Schrodinger operator S).

As vector fields on the Galilean spacetime R®!, they have the realization (in the absence of
the central term)

Jij = —(2,0; — x;0;), H=-0, P;=0, DB;=t0 (2.2)

In addition to these Galilean generators there are two more generators which we will denote
by K,D. D = —(2t0; + z;0;) is a dilatation operator, which unlike the relativistic case, scales
time and space differently. (z; — Az;, t — A?t.) K acts something like the time component of

special conformal transformations. It has the form K = —(tz;0; + t20;) and generates the finite
transformations z; — (11—1@, t— m
These two additional generators have non-zero commutators
[K,P] = B;, [K,Bj]=0, [D,Bj]=-B;
[D,K|] = —-2K, [K,H|=-D, [D,H|=2H. (2.3)

Note that there is no analogue in the Schrodinger algebra of the spatial components K; of special
conformal transformations. Thus we have a smaller group compared to the relativistic conformal
group (12 generators +1 central extension in (3 4+ 1) dimensions as opposed to 15.).
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2.2. Contraction of the Relativistic Conformal Group
We know that the Galilean algebra G(d,1) arises as a contraction of the Poincare algebra
150(d,1). Physically this comes from taking the non-relativistic scaling

t— €'t z; — €l (2.4)

with e — 0. This is equivalent to taking the velocities v; ~ € to zero (in units where ¢ = 1). For
the process of group contraction the parameter r will play no role apart from modifying an over
all factor which is unimportant. Hence we will mostly take r = 0.

Starting with the expressions for the Poincare generators (u,v =0,1...d)

Jy = — (2,0, — x,0,) P, =0y, (2.5)
the above scaling gives us the Galilean vector field generators of (2.2)

Jij = —(xiaj — x]@) P() =H = —8t
P = 0 Jy=B;=1td. (2.6)

They obey the commutation relations (without central extension) of (2.1). To obtain the
Galilean Conformal Algebra, we simply extend the scaling (2.4) to the rest of the generators of
the conformal group SO(d + 1,2). Namely to

D=—(z-0) K,=—-Q2xy(x-0)— (x-x)0,) (2.7)

where D is the relativistic dilatation generator and K, are those of special conformal
transformations. The non-relativistic scaling in (2.4) now gives (see also [10])

D= —(a;,a, + tat), K=Ky= —(2ta;,-8i + t28t), K;, = t28,-. (28)

Note that the dilatation generator D is the same as in the relativistic theory and scales space
and time in the same way. Therefore it is different from the dilatation generator D of the
Schrodinger group. Similarly, the temporal special conformal generator K in (2.8) is different
from K. Finally, we now have spatial special conformal transformations K; which were not
present in the Schrodinger algebra.

Since the usual Galilean algebra G(d, 1) for the generators (J;;, P;, H, B;) is a subalgebra of
the GCA, we will not write down their commutators. The other non-trivial commutators of the
GCA are [10]

K, K;] = 0, [K,Bj]=K; [K B]=2B
[Jij, Kr] = —(Kidjr — Kjoir), [Jij, K] =0, [J;5,D] =0
[Kiij] = 0, [KMBJ] =0, [KZ7P]] =0, [Ha KZ] = —2B;,
D,H] = H, [H K]=-2D, [D,K]=-K. (2.9)

We can compare the relevant commutators in (2.9) with those of (2.3) and we notice that
they are different. Thus the Schrodinger algebra and the GCA only share a common Galilean
subgroup and are otherwise different. In fact, one can verify using the Jacobi identities for
(D, B;, P;j) that the Galilean central extension in [B;, P;] is not admissible in the GCA. This is
another difference from the Schrodinger algebra, which as mentioned above, does allow for the
central extension. Thus in some sense, the GCA is the symmetry of a "massless” (or gapless)
nonrelativistic system.
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3. The Infinite Dimensional Extended GCA
The most interesting feature of the GCA is that it admits a very natural extension to an infinite
dimensional algebra of the Virasoro-Kac-Moody type. To see this we denote

L0 — g p Kk, MWV =P B K. (3.10)
The finite dimensional GCA which we had in the previous section can now be recast as

[L(m)’ L(n)] _ (m o n)L(m+n)’ [L(m)’MZ(n)] _ (m _ n)M(m+n)

(2

i M) = (™85 — MM og), ™ MM =0, [J;, L™ =0 (3.11)

The indices m,n = 0, £1. We have made manifest the SL(2, R) subalgebra with the generators
L LED In fact, we can define the vector fields

L0 = —(n+ 1)t"z;0; — t"T19,, M™ =1y, (3.12)

with n = 0,£1. These (together with J;;) are then exactly the vector fields in (2.2) and (2.8)
which generate the GCA (without central extension).
If we now consider the vector fields of (3.12) for arbitrary integer n, and also define

Jén) = JZ(‘]TL) = —tn(xlaj — Ilfjaz) (313)
then we find that this collection obeys the current algebra

(L0, L] = (m— )LL), J0) = g

™) = faped T L0 M = (m— )M, (3.14)
The index a labels the generators of the spatial rotation group SO(d) and fu. are the
corresponding structure constants. We see that the vector fields generate a SO(d) Kac-Moody
algebra without any central terms. In addition to the Virasoro and current generators we also

have the commuting generators Mi(") which function like generators of a global symmetry. We
can, for instance, consistently set these generators to zero. The presence of these generators
therefore do not spoil the ability of the Virasoro-Kac-Moody generators to admit the usual
central terms in their commutators.

We wish to understand what these symmetries mean. There is a simple interpretation for

the generators Mi(n),L("), Jan). We know that Mi(_l’o’l) generate uniform spatial translations,

velocity boosts and accelerations respectively. From (3.12) one can see that Mi(n) generate

arbitrary time dependent (but spatially independent) accelerations. z; — z; 4 b;(t). Similarly

Ji(f) generate arbitrary time dependent, space-independent rotations: z; — R;;j(t)z;. These two
set of generators together generate the Coriolis group: the biggest group of ”isometries” of ”flat”
Galilean spacetime [15].

The action of generators L™ can read this off from (3.12): t — f(t), z; — %xi. It
amounts to a reparametrisation of the absolute time ¢. Under this reparametrisation the spatial
coordinates z; act as vectors (on the worldline ¢). It seems as if this is some kind of ”conformal
isometry” of the Galilean spacetime, rescaling coordinates by the arbitrary time dependent factor

di-
Given that the Galilean limit can be obtained by taking a definite scaling limit within a

relativistic theory, we expect to see the GCA (and perhaps its extension) as a symmetry of
some subsector within every relativistic conformal field theory. For instance, in the best studied
case of N' = 4 Yang-Mills theory, we ought to be able to isolate a sector with this symmetry.
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One clue is the presence of the SL(2, R) symmetry together with the preservation of spatial
rotational invariance. One might naively think this should be via some kind of conformal
quantum mechanics obtained by considering only the spatially independent modes of the field
theory. But this is probably not totally correct for the indirect reasons explained in the next
paragraph.

Recently, the nonrelativistic limit of the relativistic conformal hydrodynamics, which
describes the small fluctuations from thermal equilibrium, have been studied [11, 12, 13]. One
recovers the non-relativistic incompressible Navier-Stokes equation in this limit. The symmetries
of this equation were then studied by [12] (see also [13]). One finds that all the generators of
the finite GCA are indeed symmetries except for the dilatation operator D .The generator K
acts trivially. In particular it has the K; as symmetries. It is not surprising that the choice of a
temperature should break the scaling symmetry of D. The interesting point is that the arbitrary

accelerations Mi(n) are also actually a symmetry [14] (generating the so-called the Milne group
[15]). Thus we have a part of the extended GCA as a symmetry of the non-relativistic Navier-
stokes equation which should presumably describe the hydrodynamics in every nonrelativistic
field theory.

Coming back to the Navier-Stokes equation, if the viscosity is set to zero, one gets the
incompressible Kuler equations In this case one has the entire finite dimensional GCA being a
symmetry since D is now also a symmetry. It is the viscous term which breaks the symmetry
under equal scaling of space and time. This shows that one can readily realize ”gapless” non-
relativistic systems in which space and time scale in the same way!

4. The Bulk Dual

Now we wish to turn our attention to the string theory side. Here it should be possible to
take a similar scaling limit along the lines of the non-relativistic limit studied in [16, 17, 18].
Below we will only consider features of this scaling limit when the parent bulk theory is well
described by gravity. This will already involve some novel features. This has to with the fact
that the usual pseudo-Riemannian metric degenerates when one takes a non-relativistic limit.
Nevertheless, there is a well defined, albeit somewhat unfamiliar, geometric description of gravity
in such a limit [19]. In the (asymptotically) flat space case this is known as the Newton-Cartan
theory of gravity which captures Newtonian gravity in a geometric setting. This is a non-metric
gravitational theory. One can generalise this to the case of a negative cosmological constant as
well. A variant of this is what we propose below as the right framework for the gravity dual
of systems with the GCA. In the next subsection we will briefly review features of the Newton-
Cartan theory and then go onto describe the case with a negative cosmological constant.

4.1. Newton-Cartan Theory of Gravity and its modification in AdS
In the Newton-Cartan description of gravity, the (d + 1) dimensional spacetime M has a time
function ¢ on it which foliates the spacetime into d dimensional spatial slices. Stated more
precisely (see for example [20]): one defines a contravariant tensor v = 49, ®0, (u,v =0...d)
such there is a time 1-form 7 = 7,dz" which is orthogonal to v in the sense that v**7, = 0.
The metric v, which has three positive eigenvalues and one zero eigenvalue, will be the non-
dynamical spatial metric on slices orthogonal to the worldlines defined by 7. There is no metric
on the spacetime as a whole. In fact, its geometric structure is that of a fibre bundle with a one
dimensional base (time) and the d dimensional spatial slices as fibres.

The dynamics is encoded in a torsion free affine connection I')/y on M. We will demand that
this connection is compatible with both v and 7 i.e.

VAt =0 V7, =0. (4.15)
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This enables one to define a time function ¢ ("absolute time”) since we have 7, = V,t. Unlike
the Christoffel connections which are determined by the spacetime metric in Einstein’s theory,
this Newton-Cartan connection is not fixed by just these conditions. One has to impose some
additional relations. Defining R\ = +*“RY_ ., one can define a Newtonian connection as one
which obeys the additional condition Rf, = RX.

Now, we would like to parametrically carry out the non-relativistic scaling on the bulk AdS;2
which would capture the physics of the nonrelativistic limit in the (d+ 1) dimensional boundary
theory. In the next section we will describe the bulk scaling in more detail. Here we will simply
motivate its qualitative features and give the resulting Newton-Cartan like description of the
bulk geometry.

We know that the boundary metric degenerates in the nonrelativistic limit with the d spatial
directions scaling as x; o< € while ¢ o< €?. We expect this feature to be shared by the bulk
metric. One expects that the geometry on constant radial sections to have such a scaling. Since
the radial direction of the AdSg4ys is an additional dimension, we have to fix its scaling. The
radial direction is a measure of the energy scales in the boundary theory via the holographic
correspondence. We therefore expect it to also scale like time i.e. as €. This means that in
the bulk the time and radial directions of the metric both survive when performing the scaling.
Together these constitute an AdS, sitting inside the original AdS;o.

What this implies for the dynamics is that we should have a Newton-Cartan like description
but with the special role of time being replaced by an AdSs. The geometric structure, in analogy
with that of the previous section, is that of a fibre bundle with AdSs base and the d dimensional
spatial slices as fibres.

Accordingly, we will consider a ("spatial”) metric v = 40, ® 0, (u,v = 0...d + 1) which
now has two zero eigenvalues corresponding to the time and radial directions. (In a canonical
choice of coordinates these directions will correspond to p = 0,d + 1). Mathematically the two
null eigenvectors will be taken to span the space of left invariant 1-forms of AdSs. These will
also define the AdSy metric g in the usual way (This is the analogue of the time metric defined
in the previous subsection).

We will once again have dynamical, torsion free affine connections I'"'y which are compatible
with both the spatial and AdSs metrics

Vo =0 Vpgap = 0. (4.16)

There will also be Christoffel connections from the AdSs and spatial metrics which will not be
dynamical if we do not allow these metrics, specifically g, , to fluctuate.

4.2. GCA in the Bulk

In this section we will carry out the non-relativistic scaling limit on the AdSs piece of the bulk.
We will also do this for the SO(4, 2) isometries of AdS; and obtain the same contracted algebra
as before. Consider the metric of AdSs in Poincare coordinates

1
Z/2

1
ds* (Muwdrtds” — dz'"%) = ﬁ(dt/z —d2? — dz?) (4.17)

The nonrelativistic scaling limit that we will be considering is, as motivated in the previous
section t/, 2/ — €%, €02 x; — €lx;.

In this limit we see that only the components of the metric in the (¢, 2’) directions survive to
give the metric on an AdS3. The d dimensional spatial slices parametrised by the x; are fibred
over this AdS,. The Poincare patch has a horizon at 2z’ = oo and to extend the coordinates
beyond this we will choose to follow an infalling null geodesic, in an analogue of the Eddington-
Finkelstein coordinates. Therefore define z = 2’ and t = ¢/ + 2. In these coordinates

1 t
ds? = g(—2dtdz + dt2) = %(dt — 2dz). (4.18)
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In the infalling Eddington-Finkelstein coordinates, the Killing vectors of AdS5 read as

Pz‘ = ai, Bi = (t — Z)az — :Eiat

K, = (t2 — 2tz — :E?)@Z + 2tx;0; + 2220, + 2220,
JZ" = —(:Eiaj — :z:j&-), D = —t@t — Zaz — :1:@8@
H = -0, K=—(t*+22)0; —2z(t — 2)0, — 2(t — 2)x;0; (4.19)

Carrying out the scaling mentioned before we obtain the contracted Killing vectors

Pi = ai, Bi = (t — Z)ai, KZ' = (t2 — 2tz)6i, Jij = —(332'8]' — x]&)
H = -8, D=—td — 20, —z;0;, K =—t*0, — 2(t — 2)(20, + ;0;) (4.20)

We see that at the boundary z = 0 these reduce to the contracted Killing vectors of the relativistic
conformal algebra. It can also be checked that these obey the same algebra as (2.1) and (2.9)
or equivalently (3.11) after the relabeling of (3.10).

The interpretation of most of the generators is straightforward. We note that the H, K, D
are scalars under the spatial SO(d — 1) and generate, as before, an SL(2, R). We identify this
as the isometry group of the AdSs base of our Newton-Cartan theory. We can again define an
infinite family of vector fields in the bulk

M (" — (m o+ D)t™)d;, S = " (28 — x;0;)
LW = 19, — (n 4 1)(t" — nzt" ) (28 + 20.) (4.21)

These vector fields reduce on the boundary to (3.12) and (3.13).
It is rather remarkable that these vector fields also obey the commutation relations of the
Virasoro-Kac-Moody algebra, the same as in the boundary theory

(L LM = (m —n)Lm) (L g = —pglm+n)
I = faped ™ (L0 M = (m = ) M. (4.22)

a 3

How do we interpret all these additional vector fields from the point of view of the bulk?
Firstly, notice that the vector fields Mi(") and JC(Ln) only act on x;. From the viewpoint of the fibre
bundle structure, these are simply rotations and translations on the spatial slices dependent on
time as well as z. These are the isometries of the spatial metric. They are also trivially isometries
of the AdSs metric since they do not act on those coordinates. Now we come to the action of
the Virasoro generators, L(™). These turn out to be the asymptotic isometries of the AdSy in
the sense of [21] and ordinary symmetries of the flat fibres. Thus the L™, C(L"), Mi(N) together
generate (asymptotic) isometries of the spatial and AdSy metrics v and gqp [8]. Therefore it
seems natural to consider the action of these generators on the Newton-Cartan like geometry.

5. Concluding Remarks
We have seen that the nonrelativistic conformal symmetry obtained as a scaling limit of the
relativistic conformal symmetry has several novel features which make it a potentially interesting
case for further study. The GCA, we have argued, is different from the Schrodinger group which
has been studied recently. It also has the advantage of being embedded within the relativistic
theory. Hence we ought to have realizations of the GCA in every interacting relativistic conformal
field theory. The obvious question is to understand this sector in a particular case such as
N = 4 Super Yang-Mills theory and to see whether the infinite dimensional extension can be
dynamically realized. We have provided indications why this might be the case generically.
Using this algebra on the boundary, we can construct representations and these turn out to be
labelled by the boosts and the dilations [22]. One can, like in the case of the relativistic conformal
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theory, use the finite algebra to determine the two and three point correlation functions upto
numerical factors. There has also been recent progress in understanding the quantum nature
of GCA in two dimensions [23], where the infinite algebra arises out of contraction of linear
combinations of the two copies of the Virasoro algebra. This indicates that the GCA might be
thought of as a high spin sector of the relativistic theory. There is also a recent realization of
the quantum two-dimensional GCA in a cosmological topologically massive three-dimensional
gravity theory [24].

A straightforward generalization of the results in the above discussion would be to a
supersymmetric extension of the Kac-Moody algebra. These have been investigated in [25, 26].

The bulk description in terms of a Newton-Cartan like geometry is somewhat unfamiliar and
it would be good to understand it better. In particular, one needs a precise bulk-boundary
dictionary to characterize the duality. At least implicitly this is determined by taking the
parametric limit of the relativistic duality.

In the case of the Schrodinger symmetry the dual gravity theory is proposed to live in two
higher dimensions than the field theory. This also provided the route for embedding the dual
geometry in string theory. It is interesting to ask if there is something analogous in our case,
whereby the GCA is realized as a standard isometry of a higher dimensional geometry (e.g.
(d + 3) dimensional for a (d + 1) dimensional field theory).

Coming back to the boundary theory, it is interesting to ask whether there are intrinsically
non-relativistic realizations of the GCA, perhaps in a real life system. It is encouraging in
this context that the incompressible Euler equations concretely realize the GCA, providing an
example of a gapless non-relativistic system.
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