
Turn-on delay of QD and QW laser diodes:  
What is the difference? 

G. S. Sokolovskii,1 V. V. Dudelev,1 E. D. Kolykhalova,1,2 A. G. Deryagin,1 
M. V. Maximov,1 A. M. Nadtochiy,1 V. I. Kuchinskii,1 S. S. Mikhrin,3 
D. A. Livshits,3 E. A. Viktorov,4 and T. Erneux4 
1Ioffe Physical-Technical Institute, St. Petersburg, Russia 
2Saint Petersburg State Electrotechnical University (LETI), St. Petersburg, Russia 
3Innolume GmbH, Dortmund, Germany 
4Universite  ́Libre de Bruxelles, Optique Nonline´aire The´orique, Bruxelles, Belgium  

gs@mail.ioffe.ru 

Abstract. Turn-on delay of laser diodes with quantum-sized active media is investigated both 
theoretically and experimentally. In this research we show the striking difference in turn-on 
delay of quantum dot and quantum well laser diodes: With quantum-well lasers turn on delay 
tends to zero in the limit of high pumping, while with quantum dot lasers turn-on delay has the 
non-vanishing component which is independent of pumping. 

1.  Introduction 
Laser diodes (LDs) with quantum-sized active media such as quantum wells (QWs) and quantum dots 
(QDs) are widely used and intensively studied due to their efficiency, compactness and high flexibility 
of properties allowing for implementation of many extremely different application-oriented 
constructions. In recent years, much attention is paid to the pulsed operation of LDs allowing for 
orders of magnitude higher pumping densities [1,2]. However, the research of dynamical properties of 
laser diodes, especially those based on QDs, concentrate mostly on relaxation oscillations and related 
phenomena such as damping of relaxation oscillations [3–5]. Except the seminal work [6], little 
attention is paid to study of the turn-on behavior of LDs where the pump is quickly changed from 
below to above threshold that allows to deeply explore the dynamical response under various lasing 
conditions. In this work we study the difference between the turn-on of QW and QD LDs with special 
attention to the nonlinear and non-instantaneous capturing of the carriers into a quantum dot which is 
known to strongly affect the recovery of QD material [7], but remains unresolved except for recent 
publication [8,9]. 

2.  Turn-on delay of QW LD 
We first consider the turn on delay in QW LD. Theory is based on the simple rate equation system: 
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where N is the carrier concentration, S is the photon density in cavity, j is the current density,  
e is the electron charge, d is the active layer width, A is the linear gain coefficient, Ntr is the 
transparency concentration,   is the carrier lifetime, p is the photon lifetime in cavity,  is the optical 
confinement coefficient. It is convenient to normalize the rate equations (1) before solution. It is well 
known that for threshold concentration Nth one can write: 

 1( ) ( )tr th PA N N A N N         (2) 
Substituting (2) into the system (1) we get: 
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where /th thj edN   is the threshold current density. If we denote N – Nth=δN, then: 
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with boundary conditions 
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With these normalized variables the threshold current Jth=1 and threshold carrier density Dth=1. On 
the front edge of the pump pulse current values are: J(0-)=J-<1 and J(0+)=J+>1. In what follows we 
will use t instead of t1 in all formulae for simplicity. Steady state solution of (5) at fixed current J is: 
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Eq. (7) shows that LD turns on if the carrier density reaches threshold value. The turn on delay may 
be found from the second equation of the system (5) if we assume that intensity below threshold is 
zero I=0: 

 ( ), (0)dD J D D J
dt

      (8) 

Solution of eq. (8) is: 
 ( ) ( )exp( ),D t J J J t       (9) 

and from condition D(Δt) = Dth = 1 we find turn-on delay: 
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Which for non-normalized rate equations transforms to the well known formula: 
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At strong pump j>>jth  we get a hyperbolic function for turn-on delay: 
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Formulae (10-12) were obtained in assumption that LD turns on when the carrier concentration D 
reaches the threshold value Dth. Another type of boundary condition is that laser turns on when the 
intensity reaches a reference value Iref. This approach is more convenient for experimental research. 
Solving the system (5) with new boundary conditions for turn-on by substituting I=0 into the first 
equation we can transform the second to: 
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where s=ηt is the normalized time and: 
 ( ) ( 1) ( )(exp( ) 1).F s J s J J s         (14) 

 
We can find ons  from the condition I(son)=Iref : 

 0( ) ln( / )on refF s I I  (15) 

with η << 1 and assuming logarithm is a slow function we can approximate: 
 ( ) 0.onF s   (16) 

and in condition of strong pump s << 1 and J+ >> 1, we simplify (14): 
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And now we can write expression for the turn-on delay: 
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Figure 1. Turn-on delay of QW LD vs normalized current in linear (a) and log-scale (b): 
experiment (black rectangles), fit with eq. (10) (blue line), fit with eq. (19) (red line). Fitting 
values are: J–= 0 and = 0.63 ns.  
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From here, it is easy to see that t→0 with J+→∞. 
Experimental measurements of the turn-on delay were made with edge-emitting ridge stripe QW 

LD with generation wavelength 1060 nm. In our experiments we use pulses of 1 ns rise-time 
(measured at 10%–90% level) obtained from a high power (up to 1.5A current) pulse source. The laser 
output was detected using a high-speed pin detector with a cut-off frequency of 30 GHz and a 50 GHz 
digital oscilloscope. The turn-on delay was derived as the time difference between the rise-up of the 
pump current pulse measured at the laser diode and that of the signal from the photodetector. The 
optical and electrical path lengths were carefully estimated, and the difference between the two lengths 
was taken into account. Further details of the experimental technique can be found in Ref. [11]. Fig.1 
shows experimental dependence of the turn-on delay time t on the normalized current J+. It is clearly 
seen that experiment has a good agreement with (10) for low current, while for of high currents 
experimental dependence tends to curve corresponding to (19). In other words, the first approach for 
characterization of the turn-on delay is appropriate near the threshold while the second one is 
applicable at high pumping. 

3.  Turn-on delay of QD LD 

In this part of the paper we will consider the turn-on delay of QD LD. The main difference between 
QW and QD LDs in this consideration is the nonlinear and non-instantaneous capturing of the carriers 
into a dot. It is known to strongly affect the recovery of QD material [7] and thus can have an impact 
on the laser turn-on delay [9]. In QD LDs, carriers are injected at first in to the wetting layer, and only 
after that they can be captured in QDs. Rate equations for this two-stage process are represented by 
three: the first is for the photon density in the cavity S, the second is for the QD filling probability  
and the third is for the carrier density in the wetting layer n scaled to the two-dimensional QD density 
per layer [5,12-14]:  
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, (20) 

where τd is the carrier lifetime in dot, vg is the group velocity, σ is the interaction cross-section of 
carriers with photons in a dot, g0 is the differential gain, τcap is the carrier capture time in dot. Rate for 
the carrier capture in a dot is described by 2n(1–ρ)/τcap. It is proportional to the carrier density in the 
wetting layer n and to a probability for carrier to find a vacant dot. Factor 2 accounts for the spin 
degeneracy in quantum dot, while factor 1–ρ satisfies Pauli principle and describes nonlinear 
interaction between quantum dots and the wetting layer and constitutes the most important difference 
between QD and QW rate equations. 

We normalize these rate equations similarly to the earlier QW case. New normalized variables are: 
1 / pt t  , g dI v S  ,  / ,d p d    /p    0 ,p gg v g /d capB   , /J j q   (pump 

current per dot). Substituting these variables in (20) we obtain the normalized rate equations: 
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In what follows we will use t instead of t1 in all formulae for simplicity and assume that d   
(hence d  ). The QD LD gain g(2-1) is defined by the dot density and the normalized differential 
gain g. For typical value =1 ns and cap=10 ps we take factor B≈100. The normalized threshold 
current of QD LD is Jth=2 (for QW LD Jth=1). This follows from the spin degeneracy in QD energy 
levels. With J-<2, laser operates in stable OFF steady state, so that: 
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The boundary conditions are: 
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Turn-on delay t in our consideration is the lag between the momentum of time t=0+, when current 
simultaneously becomes J+>2, to the momentum of time when I=Iref. Assuming the intensity before 
laser turn-on is very small we substitute J=J+ and I=0 in the second and the third equations (21) and 
obtain differential equation of the second order for : 
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where G(s) is defined by: 
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Now we can determine numerically t by substituting solution for eq. (24) in eq. (26) and then 
substituting result in eq. (25) and finding s for I=Iref. Analytically we will investigate turn-on delay in 
some limit case similar to QW lasers. Namely, we will consider the limit of large B→∞, and the limit 
of large J+→∞. In the limit of B→∞ and 1->>B-1 (24) simplifies to Bernoulli equation for 1-: 
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which has analytical solution for : 
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with F(s) defined by: 
 ( ) ( )(exp( ) 1) ( 2) .F s J J s J s         (29) 

15th Russian Youth Conference on Physics and Astronomy (PhysicA.SPb) IOP Publishing
Journal of Physics: Conference Series 461 (2013) 012030 doi:10.1088/1742-6596/461/1/012030

5



In the limit of J+→∞ the approximate expression for F(s) will be very useful. This approximation 
can be clearly seen from simplification of (29) for large J+: 

 ( ) [(exp( ) 1) ]F s J s s     (30) 
Consideration of (28) shows that it has initial level and saturates at level =s≡1+O(B-1). For ≈1 
expression (26) simplifies to: 

 G=(g-1)s (31) 
Substituting (31) in (25) we obtain: 
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Then the minimum turn-on delay for QD LD is: 
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This formula shows the striking difference in turn-on delay of QD and QW LDs. With quantum-
well lasers turn-on delay is zero in the limit of J+→∞. With QD lasers the situation is very different as 
the turn-on delay has the independent of pumping non-vanishing component given by (33). 

 
In our experiments we investigate lasers with 1 and 5 QD layers. Growth and basic properties of 

similar QD laser structures have been described elsewhere [15]. Length of all lasers was 4.5 mm and 
the generation line was at 1290 nm (corresponding to the ground state lasing). Experimental technique 
was the same as with QW LDs and results of measurements are shown in Fig. 2. L-I curves for these 
lasers are shown in Fig. 3. It is seen from fig. 2 that despite of some scattering, measurements with QD 
LDs clearly indicate the quasi-stable pump-independent value for higher currents. The difference of 
the values of the minimum turn-on delay for QD LDs with 1 and 5 QD layers is clear if the differential 
gain of these lasers is taken into account (see expression (33)). Difference of gain constants g0 for 
these lasers is seen from almost two-fold difference of their thresholds in Fig. 3. Taking into account 
the input of the transparency current to the laser threshold, the three-fold difference of the minimum 
turn-on delay values is in a good agreement with the theoretical expression (33) for the minimum turn-
on delay of QD LD. 
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Figure 2. Experimental results for turn-on of 
QD LDs with 1 QD layer (red triangles) and 
5 QD layers (black rectangles). 

Figure 3. Light-current curves of lasers with 
1 QD layer (red triangles) and 5 QD layers 
(black rectangles). 
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4.  Summary 
Theoretical and experimental investigation of the turn-on delay of quantum well and quantum dot laser 
diodes is presented. We show that in contrast to the quantum wells, the nonlinear and non-
instantaneous capturing of the carriers into a dot leads to the minimum turn-on delay of QD LDs being 
non-zero at any pumping current. The value of this non-vanishing turn-on delay depends strongly on 
the gain factor. 
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