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Abstract. A theory of the nonsteady-state absorption of supershort light pulses in bulk
materials and heterostructures with quantum wells and wires when multiphoton resonance at
interband transitions occurs is developed.The absorbed energy dependence on the detunings of
the multiphoton resonance and on the pulse width is investigated. The interaction between
two consecutive short pulses (pump-probe spectroscopy within the femtosecond regime) with
bulk crystals and low-dimensional structures under the conditions of two-photon resonance at
interband transitions and transitions between size-quantized sublevels is studied.

1. Introduction

Femtosecond light pulses are widely used in studying interaction of powerful laser radiation
with transparent insulators and semiconductor nanostructures [1].The carrier time 7, (known as
the relaxation time of momentum of carrier) is usually determined by scattering on longitudinal
optical lattice vibrations and ordinarily is hundreds of femtoseconds in bulk crystals. In
heterostructures 7, is also determined by intrasubband transitions due to interaction of electrons
with optical phonons. When the pulse width \/o < 7, , conventional methods of calculating the
optical transition probabilities, relying on the concept of the number of transitions per unit time,
are not adequate. Thus, the formulas obtained for the case of quasi-steady-state electromagnetic
fields [2] cannot be used for a consistent interpretation of experimental data concerning the
nonlinear response of materials to femtosecond light pulses [3], and other methods are required.

2. Transitions between discrete electron levels
Let a linearly polarized light with frequency w propagate a lenght L in a medium along x
direction. The absorbed power per unit area is then determined by [3]

J = —wLFy(t)Py(t) (1)

where Fy(t) is the electric field amplitude of the wave, while Ps(t) is the medium polarization of
the reactive nature. We assume that the field does not change significantly as it passes through
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the lenght L the medium. We take the light pulse in a Gaussian shape:

Fo(t) = foexp [~ (t — t0)*/0] (2)

Futher to simplify the calculations, we considered the nonlinear polarization for the case
of three-level system with discrete levels (for example, quantum dots and impurities) when
multiphoton resonance corresponds to a transition between levels 0 and 1, i.e., E1 — Fg = nhw
(Fig.1a). For even values of n, the allowed transitions are 0 — 2 and 1 — 2, while, for odd
n, the transitions 0 — 1 and 1 — 2 are allowed.
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Fig.1. Models of the band materials

In what follows, we also consider absorption in a three-band model of a one-, two- or three-
dimensional systems (Fig.1b-c). Using Eq.(1), for the energy absorbed in unit volume the
following approximate formula is obtained
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where e is the electron charge, c is the speed of light, o, is the high-frequency permittivity
of the medium, ng is the number of three-level systems (quantum dots or impurity atoms) in
unit volume, wr = nw — wy; is the detuning of then n-photon resonance under assumption that
wr < w, W is the total energy passing through a unit area during the laser pulse, Mi(n) are the
n-order compound matrix elements of the electron coordinate operator between the initial 7 and

final f states [4] and

n
A, = Z exp (—@Z(Qn)fy\/g) (4)
p=1
The following approximations for the quantities entering Eq.(4) can be made
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Let us note, that the preexponential factor in dependence (3) is proportional to ol="/2 In
addition, the o dependence is contained in the exponent and in the factors A, in the right-hand
side of Eq. (3). While, in the case of long pulses (vy/0 > 1) the absorbed energy is proportional
to ol=n/2 only. Thus, for systems with discrete levels, including quantum dots, impurity centers,
etc., the nonlinear multiphoton resonance response to ultrashort and longer laser pulses, may be
essentially different.

1
ol ~ g(n+9). ol ~
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3. Nonlinear multiphoton resonance response of heterostructures with a
continuous spectrum

In the case of interband (intersubband) transitions, the electron system of a crystal can be
approximately represented as a collection of noninteracting three-level systems each of which is
characterized by its own wave vector k (three-, two-, or one-dimensional) and the corresponding
energies F;(k).

Let us denote the dimensionality of the structure by D (D = 3 in the case of bulk crystals,
D = 2 for quantum wells, and D = 1 for quantum wires). Then, the energy of the ultrashort
pulse absorbed by the D-dimensional system under n-photon resonance conditions is determined
by the formula

JP) = 2= / dkkP 1 T (R), (5)
0

where 21 = Lny/(27),Z2 = Sna/(27), 23 = Q/(4w), L is the length of quantum wire, S is the
area of quantum well, n; is the number of quantum wires per unit area normal to their direction,
and ng is the number of quantum wells per unit length in the growth direction. Integration over
k space is carried out by the saddle-point method. For the energy absorbed in unit volume from
(5) we get

o(Tn—4)/2(2n—1)/451/2,,1/2,,,1/2 ;20 9
TP = np o Wy, M) (6)
Y2 np(In=1)/2 5 (n-1) /2
where
mo=n1/AY? 0y = (2u/h) g, ng = 2uA}/?/(7h)
and p is the reduced mass of electron and hole and hA, = nhw — E, wp = A, — @—"i In

the case of three-dimensional crystal,E = I, where E, is the bandgap width. In the case of
quantum wells or quantum wires, E stands for the energy gap between initial and final subbands
of quantum confinement at k = 0.

It should be noted that the dependence of the absorbed energy on the detuning of resonance
from the fundamental band edge, A, leads to the same result as in the case of quasi-steady-state

field:
J® /A, (7)

This Eq. corresponds to the density of electron states for bulk crystal (D = 3). Similarly, it is
found that the dependence of the absorbed energy on duration of field action also is the same
as in the case of quasi-stationary.

Here, the situation differs from the case of a system with discrete levels. It is clear to
understand if we take into account the following reasons. When we consider the continuous
electron spectrum, all the spectral components that form the ultrashort light pulse, participate in
the resonant multiphoton transitions on interband transitions, each Fourier component in the
proper point of the Brillouin zone. For this reason, the situation becomes similar to the case of
steady-state absorption of monochromatic light.

The dependences of the absorbed energy on the pulse width in the case of low-dimensional
structures (D = 1,2) have the same character as in bulk crystals. The explanation of this fact
is the same as in the case of bulk materials.

The dependences of the absorbed energy on the detuning from resonance A, in the case
of two- and one-dimensional structures again coincides with their quasi-steady-state analogs.
For example, in two-photon absorption process J2(1) x AQ_I/Z and J2(2) x const for D = 1,2,
respectively.
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4. Pump-Probe spectroscopy within the femtosecond two-photon resonance regime

In recent years, in experimental studies of multiphoton absorption by wide-band
semiconductors and insulators the method of the femtosecond ”pump-probe” spectroscopy is
used widely [5]. Pump-probe spectroscopy within the femtosecond regime uses two consecutive
laser pulses. The first pulse (known as pump) exites the sample, the second pulse (known as
probe) probes the change in the optical properties, due to action of the first powerful pump
pulse. Let the system interact with two consecutive ultrashort pulses with frequencies w; and
wo, respectively. The time delay between the pulses is of the same order as the pulse durations,
that is 7 < 100 fs. The lights are linearly polarized and they propagate in optically thin medium,
i.e. single-photon transitions in this medium are absent. Two-photon resonance corresponds to
a transition between levels 0 and 1, i.e., F1 — Ey = h(w; +w2). In the dipole approximation the
interaction operator is

2
Vi = S dR, (e (@it heiz) 4 fe, (8)
=1

where k,, are the wave vectors of light pulses. So, using the formulas (1) we can write the final
expression for absorbed energy from probe pulse in unit volume

2
Jéfgp(wRaT,Ul,@ﬁ) %ZMifi, (9)
i=1

where
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and w;; = (E; — E;)/h are the frequencies of the transitions between the jth and ith states
in the electron system, wp is the detuning of two-photon resonance, |/o; are the pulse widths.
ayp = 47/16,b1 = 5/46, a9 = 251/86,by = 21/328. These coefficients are obtained by numerical
evaluation.

Using Eq.(9) we get the second pulse energy absorbed by D-dimensional system

D) (D)\?2
JiP) _ AD=2)/2 aP) P/ ¢! (1‘50)9551)) WilWs
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where we introduced the following notations

Q45 Sji, (10)

Soo = f1,511 = f2, 512 = Sa1 = (f1 + f2)/2 (11)

and f; is the same as in formula (9) and
(w20 — wi) ™ (wao — wj) ~h = Qyj. (12)

In Eq.(10) the summation over dummy indices 4,j = 1,2 is implied. a®) are the numerical
coefficients for the D-dimension structures: ot = 568/5, a(?) = 2841/27/5, 1) = 5687 /5. For
one- and two- dimensional systems the right hand side of formula (10) must be multiplied by
the number of quantum wires per unit area normal to their direction, n; or by the number
of quantum wells per unit length in the growth direction, no, respectively. It should be noted
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that the terms a;01y/4 in both exponents in Egs.(9) and (10) are closely related to polarization
induced by the high-powered pump pulse.

The expressions obtained above show that the dependence of the absorbed energy on detuning
of two-photon resonance from probe pulse has Gaussian form, i. e. Jz(?;zp o exp(—ow?/2).
The absorbed energy dependence on the delay between two pulses also has Gaussian shape.

5. Conclusion

We analyzed the nonlinear response of bulk materials and heterostructures with quantum
wells, wires, and dots to supershort light pulses with widths less than the intraband
(intrasubband) electron or hole relaxation time. The dependence of the absorbed energy on
the detunings of multiphoton resonances is obtained for nanostructures of different dimensions.
Similarly, the dependence of the absorbed light energy on the width of a supershort pulse with
fixed energy per pulse is investigated. It is shown that these dependences for zero-dimensional
objects (quantum dots, impurity centers) substantially differ from those that occur in the case
of relatively long pulses. This circumstance can be imporatant in interpretation of experimental
data on the nonlinear response of heterostructures with quantum wells to supershort light pulses.
The dependence of the absorbed energy on the detuning of the two-photon resonance and on
the delay between the pump and probe pulses is also studied. It is shown that in this case the
main role in absorption of supershort pulses plays the polarization induced by pump pulse.
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