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Abstract. In the work we examined the mechanism of nonradiactive resonant energy transfer 

between quantum dots (QD), the probability of this process was calculated. The valence band 

has difficult structure due to the additional matrix element connected with another polarization 

of heavy holes. Dependences of transfer probability on distance between quantum dots and 

barrier heights for electrons were studied. 

1. Introduction 

The modern medicine passes to new more modern diagnostics methods with usage of quantum dots 

for detecting of DNA helix hybridization/splitting that can help us to study a genetic code and to warn 

genetic diseases, to create special DNA chips, to investigate the delivery of drugs to bodies, to detect 

the location of cancerous growth, etc. In this case it is necessary to construct the theory of this process 

[1,2]. One of mechanisms of realization of this process is nonradiactive resonant energy transfer. First 

this process was considered by Forster for interaction between protein molecule [3]. 

In the work we examined the mechanism of nonradiactive resonant energy transfer between quantum 

dots (QD), the probability of this process was calculated. The task was considered in Kane model 

where the nonparabolic zones are considered. The valence band has difficult structure due to the 

additional matrix element connected with another polarization of heavy holes. Dependences of transfer 

probability on distance between quantum dots and barrier heights for electrons were studied. 

The accounting of the barrier finiteness leads to transitions with participation of electron and hole 

conditions with different main quantum numbers. 

There is a strong dependence of energy transfer probability on distance between QD: 
6

1

r
Wif  . This 

dependence turns out at consideration of the dipolar allowed transitions. Due to such behavior 

practical realization of nonradiactive resonant energy transfer is possible: detecting of linkage or not 

linkage of DNA helixes with the attached QD both in vitro, and in vivo 

2. Nonradiactive resonant energy transfer 

2.1. Model 
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Let's consider the system of two QD located from each other at final distance r in the dielectric 

environment ε. QD are made of the same material. QD have final potential barriers to electrons and 

holes. In an initial condition the electron in the energy donor QD is in a  conduction band (condition 

1), and in the acceptor QD the electron in a valence band (condition 3). As a result of the Coulomb 

interaction (
ad rrr 


2e

V ), where dr  and ar - QD radius), there is the nonradiactive resonant 

energy transfer: the birth an electron - hole pair in the acceptor due to the transferred excitement 

(transition of electrons from conditions 1, 3 in conditions 2, 4 respectively – fig.1). In fact, this process 

can be carried to the Auger process. This process takes place only under condition of energy 

conjunction of the donor and the acceptor accurate within half-width. 

 

 

Figure 1. The model of the nonradiactive resonant energy transfer 

 

For resonant energy transfer studying it is necessary to find wave functions of charge carriers. We will 

calculte wave functions within Kane's three-band model. Energy is counted from a bottom of the 

conduction zone. backs - orbital interaction is neglected,therefore 0SO . 

 

Figure 2. Kane’s model 

Wave functions can be written down in the following look: 
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     ,pψ ss     (1) 

where s and p  are Bloch wave functions. Functions of s-type describe a condition in a conduction 

band, and p-type describe a condition of a valence band. Functions s  and ψ  are envelope wave 

functions. Kane's equations for envelope functions have the following appearance:   
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where γ- Kane’s matrix element, 1  and 2  – Lattinzher's generalized parameters, m- free electron 

mass.  

As we have spherical QD, so the equation (3) can be written is spherical coordinates, in this case 

variables are divided and thewave function can be presented in a radial part and spherical function: 

     ),()(  lms YrR     (3) 

The following equation for the radial part )(rR  takes place: 
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For envelope functions of electrons in QD we received the following expressions (wave functions of 

electrons and light holes): 
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Here   ,1l

lmY  is  vector spherical harmonicas, l and m – values of the full angular moment and its 

projection to an axis z, )(krjl  – Bessel's spherical function, ek – a wave vector of electrons, A – a 

normalizing constant.  

By analogy we received wave functions under a barrier. For heavy holes we receive:  
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where kh – wave vector of holes. В and С – normalizing constants. 

Here are boundary conditions fo electrons and light holes:  

    




























r

R

VEEr

R

EE

s

g

s

g

ss

)(1)(1 



   (7) 

for heavy holes 
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Indexes «<» and «>» means that parametrs undertake respectively at the left and the right side of 

heterobarrier.  
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2.2. Matrix element 

For finding of probability of nonradiactive resonant energy transfer we will use Fermi's 

"gold" rule within a first order perturbation theory: 

      
fiifif EEMW  

 22


   (9) 

Our task is reduced to find a matrix element of transition from an initial condition (in the donor 

there is an electron - hole pair, the acceptor is empty) to the final (the donor is empty, in an 

acceptor there is an electron - hole pair): 

    

 



ad rrr

*

21

*

4333
2

31224

dd

)()()()(







ad

addif

rr
e

rrVrrM

   (10) 

where dr  and ar  are coordinates of the electron - hole pairs in the donor and the acceptor respectively, 

1 and 2 wave functions of the initial and final conditions of the electron in the donor, 3  and 4  

wave functions of the initial and final conditions of the electron in the acceptor. In our work we 

consider two types of the hole polarization, two matrix elements are possible, they answer to different 

polarization: Mif1 and Mif2 . Let's consider a matrix element with polarization for heavy holes. For the 

calculation of a matrix element we will use Fourier representation for Coulomb interaction: 
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Matrix element has the following view 
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Substituting of wave functions for electrons and heavy holes in this expression, we receive the 

following type of a matrix element for heavy holes: 
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The similar expression we received for other polarization of heavy holes is too enormous and doesn’t 

shown 
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2.3. Discussion of results 

Let's consider dependence of probability of nonradiactive resonant energy transfer on the following 

parameters: distances between QD, height of a potential barrier. Carried out above calculation showed 

that the probability of nonradiactive resonant energy transfer depends on distance between quantum 

dots as: 
6

1
~

r
Wif for the dipolar allowed transitions (fig. 3). 
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Figure 3. Dependence of probability of nonradiactive resonant energy transfer on 

distance between quantum dots. Y axis denote energy transfer probability in s
-1

 

Dependence of probability of a recombination on height of a potential barrier. We consider 

two different cases. 

• the electron and the hole are in the basic condition; 

• the electron is in the basic condition, and the hole is in the raised. 

In case the electron and the hole are in the main condition, dependence of recombination 

probability grows with increase in height of a barrier. It occurs at the expense of the following 

effect: if the barrier is higher, the electrons in QD localized stronger therefore the overlap 

integral becomes stronger and the probability of the process increases (fig. 4). 
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Figure 4. Dependence of probability of nonradiactive resonant energy 

transfer from heights of a potential barrier to electrons in case the electron 

and the hole are in the main conditions. Y axis denote energy transfer 

probability in s
-1 

In other case if the electron is in the main condition, the hole is in the excited state at some limited 

height of the potential barrier, the following result turns out. On the graphics the maximum is 

observed: after some value of barrier height bending-around wave functions with different main 

quantum numbers become orthogonal (fig. 5). 
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Figure 5. Dependence of probability of nonradiactive resonant energy 

transfer from heights of a potential barrier to electrons in case the electron is 

in the main condition, and the hole is in the raised. Y axis denote energy 

transfer probability in s
-1

 

 

15th Russian Youth Conference on Physics and Astronomy (PhysicA.SPb) IOP Publishing
Journal of Physics: Conference Series 461 (2013) 012001 doi:10.1088/1742-6596/461/1/012001

6



 

 

 

 

 

 

5. Conclusion 

During the carried-out work it was shown that nonradiactive resonant energy transfer from one QD to 

another is possible. Process has many common features with Forster's  theory constructed for 

interaction between protein molecules. The process was considered in the Kane model where the 

nonparabolic dispersion law of electrons is considered. The probability of energy transfer was 

received. Due to the nonparabolic matrix element additional sum appears, it increases probability of 

the transfer process. 

The dependence of recombination probability on distance between QD gives . Also in connection with 

complcated structure of the valent band there is the additional matrix element connected with other 

polarization of heavy holes. The accounting of a barrier extremity leads to possibility of transitions 

with participation of electrons and holes with different main quantum numbers. 

The phenomenon of nonradiactive resonant energy transfer finds practical application in a modern 

science. This theory describes experiments with the colloidal QD surrounded with a layer of a semi-

conductor material which creates a potential barrier. Such structures can be used as sensors for 

indication of biological objects as by in vitro, and in vivo. 
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