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Abstract. Valid inference drawn from analysis of experimental results needs scientific 
grounds, whereas conclusions based on statistical significance tests or hypothesis testing may 
be problematic, especially when dealing with a multiplicity of tested hypotheses, as in 
experiments performed on bio-molecules. The problem of false discovery rate is focused in the 
present paper, aiming at eliciting application of sound criteria for rejection/acceptance of 
hypotheses and related methods of uncertainty characterisation. 

1.  Introduction 
The qualifier ‘statistically significant’ attributed to an experimental result is not the same as 
‘scientifically meaningful’. It is well known that ‘significant’ is one of the most disputed definitions in  
scientific literature (see e.g. [1]), and the controversy is such that wondering why – not whether – most 
published findings are false [2] is an urgent question, for example in the biomedical research field, 
where harmful consequence to health may arise. This question is formulated in terms of so called false 
discoveries in the context of simultaneous testing of hypotheses in experimental research. 

In this paper Fisher’s and Neyman–Pearson’s theories developed in classical statistics are focused 
from a logical point of view; related problems are presented and discussed, and the inference approach 
based on Bayesian statistics is introduced. The state of the art of multiple hypothesis tests is reviewed 
with special attention to the problem of estimation and control of false discovery rate (FDR) with 
applicability to bio-metrology. 

2.  Frequentist and Bayesian rationals of statistical inference 

2.1.  Classical approaches 
In the so-called frequentist area of interpretation of probability, Fisher [3] advocated the use of p-
values in significance testing of so-called null hypothesis (usually denoted by 0H ) against the Neyman 
and Pearson (N–P) theory [4] that introduced the concept of an alternative hypothesis to the null one, 
and the probabilistic notions of type I/type II (false positive/negative) errors. Both Fisher’s and N–P’s 
methods disregarded the interplay of prior and conditional probabilities: this point was taken into 
account by von Mises in his approach [5] developed in terms of success or error chance of the test 
(von Mises’ use of the term ‘chance’ rather than probability was intended to point out that no 
randomization was required in his approach) starting from the assumption of the need of a prior 
distribution function. Fisherian and N–P theories of testing hypotheses (and related theories of point or 
interval estimation) were set by Wald in the overall context of the problem of statistical inference [6].  
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2.2.  Role of posterior probability 
An early Bayesian approach to this problem was developed by Jeffreys [8]. The conflict between 
frequentist interpretation and Bayesian interpretation of statistical testing was modelled by Lindley as 
a paradox showing how the posterior probability of an hypothesis conditional on experimental result 
e,  Hep | , is affected by prior probability  Hp : for quite small values of  Hp ,  Hep | may become 

as high as 0.95, while a significance test may state that result e is significant for H at the 05.0 level 
(in terms of p-value, values   05.0| Hep are compatible with   95.0| eHp , being dependent on 

assigned values of prior  Hp as per inverse probability calculation) according to Bayes’ formula: 

                   |1|||| 1 HpHpHpHpHpHpHpHp  (1) 

For example, the characteristics of two diagnostic tests are shown in table 1, where the hypothesis 
tested is H ‘disease is present’ and the sign + (–, respectively) stands for ‘test result is positive 
(negative, respectively)’. The significance level is α=0.05 for test1 (0.04 for test2) and the power 
is   98.0|1  Hp  (for test2: 0.99). Power may be translated into test specificity: 

thus  Hp  | is an index of accuracy in making the negative diagnosis (i.e., correctly reporting 

absence of disease);    1| Hp is an index of the accuracy in making the positive diagnosis, 

called the test sensitivity: with data in table 1, for test1   0.95|  Hp  (for test2: 0.96).  
  
Table 1. Tests for the presence of a disease (H).  Table 2. Test2: numerical example, p(H)=0.005. 

 

 
 

  
 
 

 
 

 

A rationale diagnostic criterion is to require     || HpHp . Both tests exhibit reliable 
performance. For test2, comparatively more sensitive and specific, baseline condition to 
obtain   2/1| Hp  is   01.0Hp , i.e. a disease prevalence greater than 1%. Note that rare diseases 
do not satisfy such a condition (Poisson distribution is the probability paradigm of rarely occurring 
events). More generally, experiments designed to detect any rare events, for which baseline percentage 
is under the threshold of 1–2%, should take into account dependence of inverse probability on prior 
probability – other factors in Eq. (1) being equal. For example, using test2 with   005.0Hp , Eq. (1) 

yields   675.0| Hp : in this case, although test2 is quite sensitive (type I error probability is 0.04) 
and very specific (type II error probability is 0.01), the probability of an incorrect diagnose is almost 
twice the probability of a correct one. This is known as the false-positive paradox. Moreover, the 
probability of missed positives (false negatives)  |Hp  results slightly larger than 0.0002. Table 2 
reports an approximate experimental realization of test2, where the relative frequency of correct 
diagnosis is   |133.014748 Hp  and the relative frequency of false negatives is 

  |0002.098532 Hp . Data in table 2 show accuracy values in accordance with declared 
characteristics of test2: namely 0.96 of sensitivity and a specificity of approximately 0.99. 

2.3.  Controversy: from theory to practice 
However this is not a paradox, as it follows from Bayes’ formula; the conflict arises in acceptance of 
an inference criterion or another: is the significance of H best expressed by  Hep | or by  eHp | ? 

 Test results  
 Positive, + Negative, – 

 test1 test2 test1 test2 

H 0.95 0.96 0.05 0.04 

H  0.02 0.01 0.98 0.99 

 + – total 

H 48 2 50 

H  99 9851 9950 

total 147 9853 10000 
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According to Bayesian scholars, a strict logical line of reasoning leads to the probability of the 
hypothesis conditional on experimental result, i.e. p(H|e) – the other one being flawed in principle. On 
the other hand, frequentist scholars insist on p-value p(e|H); this position is stated in famous Fisher’s 
statement: “The force with which such a conclusion is supported [by a significantly small p(e|H0)] is 
logically that of a simple disjunction: Either an exceptionally rare chance has occurred [in our 
symbols: e] or the theory of random distribution [H0] is not true” [3: p. 42]. (Crediting the first 
alternative, H0 may show what can be miscalled its trueness, after the occurrence of an unlikely event.) 
Ever since, the controversy among schools of thought has been continuously fed from diverse 
theoretical perspectives (see e.g. [9–18]) and in view of a variety of applied statistics fields, including 
signal detection techniques (false vs. missed alarms), social sciences (e.g., criminal-court cases), 
therapeutic industry (e.g., new treatment efficacy vs. placebo), and metrology (outliers in 
measurements). A thorough review of  uses and misuses of null hypothesis significance testing can be 
found in [19], proposed by “the editor of an empirical journal […] in attempting to develop a policy 
that would help ensure the journal did not publish egregious misuses” [19: pp. 241–242]. More 
recently, Fisher’s, N–P’s and Jeffrey’s approaches were compared and contrasted in [20]. 

3.  False discoveries in multiple hypothesis tests  

3.1.  Rise and consequence of the FDR  problem 
Problems with statistical significance become more complex when a multiplicity of hypotheses is 
under test. Tukey’s account of the philosophy of multiple comparison is introduced by a very severe 
criticism [21: p. 100]: “Statisticians classically asked the wrong question and were willing to ask with 
a lie […]”. Multiple hypotheses testing is of current interest to applied researchers involved in almost 
all of scientific disciplines [22]; in biology, e.g. with application to microarray experiments and 
bioinformatics [23–27]. An issue that gained attention in terms of false discovery can be described 
after the formulation by  Sorić [28]. A provisional rejection of a null hypothesis is called a discovery, 
false discoveries are related to type I errors; let a large number n of independent experiments be 
contextually performed at a significance level α each, with an unknown large number N0 of “true” 
nulls, and let ρ=αN0r denote the quotient of false discoveries among r declared ones: if almost all of 
those r discoveries are reported in scientific publications, it can be inferred that a non negligible – 
unless ρ is very small – part of research work may have been misled by false discoveries. Sorić in the 
above cited paper of 1989 [28] credits Edwards, Lindman, and Savage [29] for having drawn attention 
to the probability of false discoveries, although diversely alluded to in their Bayesian work published 
in 1963. However, according to Seeger [30], Eklund in three unpublished reports (in Swedish) 
archived in 1961–1963 at Uppsala University Institute of Statistics under the title 
“Massignifikansproblemet” already took into account and proposed solution to a problem relevant to 
large exploratory investigations: to keep low the proportion of predicted number of false significances 
to the observed number of significances – that was called by Eklund the “mass-significance” problem. 
However, pioneering work on this matter can be traced back towards the middle of the nineteenth 
century (references can be found to Cournot [31]: see e.g. [32]). A classical method – proposed by 
Bonferroni in 1935 [33] (as cited e.g. in [34]) – is known with the name of Bonferroni’s correction. 

3.2.  FDR: estimation and control methods 
The main problem in testing a family of hypotheses at a time, is that the overall significance level 
increases with the number of hypotheses. Suppose the significance level for a single hypothesis is α, 
and that n such hypotheses are under test: if these statistical hypotheses are mutually independent, the 
overall significance level is 1–(1– α)n, that for small α is approximately nα. Bonferroni’s correction 
leads to downscale the individual α by a factor 1/n (thus n times the p-value computed for each 
hypothesis, the so called adjusted p-value, is checked not to exceed α), so that the overall significance 
level is closely reset to value α. Improving on proposed solutions, the problem to bound the overall 
type I error has been approached in diverse terms, mainly based on estimating and controlling its 
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probability, or the expected value of its relative frequency or its rate (see Shaffer [32] for a thorough 
review), till in 1995 Benjamini and Hochberg [35] introduced the formulation of a false discovery rate 
(FDR) and developed a methodics to control FDR in multiple testing. More historical notes are 
reported by Benjamini and Hochberg [36]. Another historical perspective is given by Tukey [21]. A 
unified (frequentist/Bayesian) approach to FDR estimation can be found in [34]. 

Table 3 summarizes results of multiple test of n hypotheses, of which N0 are “true” null. R are 
declared discoveries. N0, R, U: random variables (RVs), n0, r, u respective realizations; n is known.  

 

Table 3. U/N0 is the “false positive” fraction, U/R  the fraction of “false discoveries”. 
 

 Hypotheses supported by test  
 null  alternative  total 

“true” null N0–U U  N0 

“false” null  n–R–(N0 –U) R–U  n–N0 

total n–R R  n 
 

The FDR can be expressed in the following form, where the symbol   in the denominator signifies 
that in case R=0 the expected value, E[·], is set to zero (to overcome the problem of the division 0/0).  

   1FDR  RU  (2) 

Conditioning on R>0, a positive FDR is obtained [37]: 

  0pFDR  R
R
U   (3) 

Diverse control methods (single- or multi-stage) have been proposed to guarantee a FDR under a 
preset overall significance level, say q. It should however be stressed that FDR control is involved 
with an expected rate, thus some combinations of observed values of U=u and R=r>0 may result into 
u/r>q, even if pFDR≤q. Benjamini and Hochberg [35, 36] introduced a method based on reordering 
the p-values observed in n simultaneous tests; to distinguish them from the pi before reordering (when 
the subscript individuates the i-th test), indices of p-values after monotonic reordering are bracketed: 

       njppp nj  1,1   (4) 

This gives rise to a step-up procedure, for each  jp  is matched against the quantity njq ; 

eventually, it is defined the index   njqpjJ j  :max  that must be estimated, say by Ĵ . After that, 

all the hypotheses pointed to by the indices Jj ˆ are rejected. Finally, the so-called Benjamini–

Hochberg (BH) rule for the correction of the original ip -values, results into the BH–corrected values, 

where index(pi) denotes the position (j) of the observed pi in the succession of Eq. (4): 

  iii pnpp indexBH    (5) 

A twofold insight into the possible usage of FDR can be articulated. On one hand, a threshold on 
can be pre-set and a multiple test be designed so that the attainable FDR level does not exceed the 
threshold: this approach is aimed at performing what is appropriately called FDR control [32, 35]. 

On the other hand, after having fixed the acceptance p-values threshold, a point-wise estimator of 
the FDR is constructed so that the expectation of this estimator is not less than the FDR value 
calculated at that threshold: this is the estimation approach. A point estimation approach can be 
summarized starting from Eq. (2). Putting      ipU :hypotheses nulltrue""#  and 

     ipR :hypotheses null# , where the operator #  returns the cardinality of the set defined 
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inside brackets:        1FDR   RU . According to Storey [37], an estimator of  FDR for a 

given α is       1ˆF̂ 0DR   RN , where is a tuning parameter and  0N̂ is the estimate of total 

number 0N of “true” null hypotheses: 

        1ˆ
0 RnN   (6) 

The estimator of Eq. (6) is justified by approximate equalities     UN 0
ˆ ,     RR 1 : it 

was shown [37] that conditions can be stated in order to grant that the inequality      DRDR FF̂E   

holds: based on this estimator  DRF̂ , a unified approach to FDR control and estimation is presented 
in [38]. More on unified approaches can be found in [34]. 

A Bayesian approach is illustrated in terms of a so-called two-class model. It assumes that a set of 
(null) hypotheses niH 1:0i under test can be represented by identically distributed RVs – 

supposed sharing a Bernoullian distribution, say H0– associated to the same test statistics   with 
significance region ω. By assumption, the set can be bi-partitioned: each 0iH is assigned to one or the 

other partition according to its truth state – either “true” or “false”. Let associate 0H to the binary 

indicator 0H


, such that 00 H


 with probability   00 0Pr H


 if 0H  is “true”, otherwise 

10 H


,   00 11Pr H


 (the frequency nn0 can be an empirical estimate of prior 0 ). Storey [39] 
proves a theorem, equating a “posterior Bayesian type I error probability function” to pFDR (Eq. (3)):  
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

 R
R

U

HH

H
H 




  (7) 

4.  Conclusion 
The problem of hypothesis testing about the (unknown) magnitude of a quantity x being estimated (in 
measurement science term: the measurand) is the reverse of the coin of interval estimation of x along 
with its measurement uncertainty. However there is no (neither in Bayesian nor in frequentist 
statistical inference) experimentum crucis to discriminate “true” hypotheses from “false” ones. This is 
a complex problem that rises even extra-difficulties when a multiplicity of hypotheses are tested for 
significance at a time, as it happens in a variety of bio-scientific experiments. 

 Techniques for estimation and control of the probability of incurring in false discoveries (i.e., test 
results erroneously qualified as significant) are available to reduce to manageability – on the average – 
such a complexity. This paper was focused on main points selected from foundational issues and state 
of the art developments (a rich bibliography can be found in [40]). 

Coverage probabilities of multiple confidence intervals will be the matter of next efforts addressed 
to evaluation and expression of uncertainties of a multiplicity of quantities under interval estimation. 
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