
 
 
 
 
 
 

Why should correction values be better known than the 
measurand true value? 

Franco Pavese 

Torino, Italy 

E-mail: frpavese@gmail.com 

Abstract. Since the beginning of the history of modern measurement science, the 
experimenters faced the problem of dealing with systematic effects, as distinct from, and 
opposed to, random effects. Two main schools of thinking stemmed from the empirical and 
theoretical exploration of the problem, one dictating that the two species should be kept and 
reported separately, the other indicating ways to combine the two species into a single 
numerical value for the total uncertainty (often indicated as ‘error’). The second way of 
thinking was adopted by the GUM, and, generally, adopts the method of assuming that their 
expected value is null by requiring, for all systematic effects taken into account in the model, 
that corresponding ‘corrections’ are applied to the measured values before the uncertainty 
analysis is performed. On the other hand, about the value of the measurand intended to be the 
object of measurement, classical statistics calls it ‘true value’, admitting that a value should 
exist objectively (e.g. the value of a fundamental constant), and that any experimental 
operation aims at obtaining an ideally exact measure of it. However, due to the uncertainty 
affecting every measurement process, this goal can be attained only approximately, in the sense 
that nobody can ever know exactly how much any measured value differs from the true value. 
The paper discusses the credibility of the numerical value attributed to an estimated correction, 
compared with the credibility of the estimate of the location of the true value, concluding that 
the true value of a correction should be considered as imprecisely evaluable as the true value of 
any ‘input quantity’, and of the measurand itself. From this conclusion, one should derive that 
the distinction between ‘input quantities’ and ‘corrections’ is not justified and not useful.  

1.  Introduction 
Since the beginning of the history of modern measurement science, the experimenters faced the 
problem of dealing with systematic effects, as distinct from, and opposed to, random effects.  

Two main schools of thinking stemmed from the empirical and theoretical exploration of the 
problem, one dictating that the two species should be kept and reported separately, the other indicating 
ways to combine the two species into a single numerical value for the total uncertainty (often indicated 
as ‘error’ in past years). The second way of thinking was adopted by the GUM, and, generally, adopts 
the method of randomising the systematic effects (i.e. assuming that their expected value is null), by 
requiring, for all systematic effects taken into account in the model, that corresponding ‘corrections’ 
are applied to the measured values before the uncertainty analysis is performed.  

On the other hand, about the value of the measurand (the quantity intended to be the object of 
measurement), classical statistics calls it ‘true value’, admitting that the value should exist objectively 
(e.g. the value of a fundamental constant), and that any experimental operation aims at obtaining an 
ideally exact measure of it—GUM omits ‘true’ as an unnecessary specification. However, due to the 
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uncertainty affecting every measurement, this goal can be attained only approximately, in the sense 
that a range of values is measured and nobody can ever know exactly how much any measured value 
differs from the true value. A frequent way to try to overcome the issue is to use a “confidence 
interval” or a “degree of belief”, assumed to allow one to estimate the probability for the true value to 
fall within the aimed interval.  

The paper discusses the credibility of the numerical value attributed to an estimated correction, as 
compared with the credibility of the estimate of the location of the true value of a quantity.  

2.  Input quantities and corrections 
The Guide to the expression of uncertainty in measurement (GUM) [1] introduced since 1995 methods 
to be used in the field of metrology for evaluating the measurement uncertainty. According to this 
Guide, “it is assumed that the results of a measurement have been corrected for all recognised 
significant systematic effects and that every effort has been made to identify such effects” (3.2.4), 
before the issue of evaluating their uncertainty is tackled. 

In addition, in the GUM it is also required that a model is used, expressing the functional 
dependence of the measurand on the identified input quantities Xi: (GUM, 4.1.1) “In most cases, a 
measurand Y is not measured directly, but is determined from N other quantities X1, X2, ..., XN through 
a functional relationship f : Y = f(X1, X2, ..., XN)”; (GUM, 4.1.2) “The input quantities X1, X2, ..., XN 
upon which the output quantity Y depends may themselves be viewed as measurands and may 
themselves depend on other quantities, including corrections and correction factors for systematic 
effects, thereby leading to a complicated functional relationship f that may never be written down 
explicitly. Further, f may be determined experimentally … or exists only as an algorithm that must be 
evaluated numerically. The function f as it appears in this Guide is to be interpreted in this broader 
context, in particular as that function which contains every quantity, including all corrections and 
correction factors that can contribute a significant component of uncertainty to the measurement 
result” (boldface added here). 

The function may remain implicit f(Y, Xi) = 0, where the effect of each Xi on Y is obtained through a 
Type A method of variation of each influence parameter for the determination of the “sensitivity 
coefficients”, or based on Type B information; or, the function can be an explicit mathematical 
expression, the values of whose parameters are determined experimentally, or via Type B information. 

The wished effects of correction for systematic effects are, as expressed in the GUM, that: “it is 
assumed that, after correction, the expectation or expected value of the error arising from a systematic 
effect is zero” (3.2.3); this outcome “… is based on the concept that there is no inherent difference 
between an uncertainty component arising from a random effect and one from a correction for a 
systematic effect.” (E.1.1), because “… this Guide treats uncertainty components arising from random 
effects and from corrections for systematic effects in exactly the same way in the evaluation of the 
uncertainty of the result of a measurement.” (E.3). 

However, in the GUM, after having admitted in clause (4.1.2) that corrections are included in the 
model, they are then treated differently from the other ‘input quantities’ when clause (3.2.4) requires 
that the results of a measurement must preliminarily be “corrected”. This induces an ambiguity in the 
GUM modelling procedure. To show it, let us take a simple explicit model Y = X1·X2, where Y is 
measured indirectly by measuring X1 and to X2, with corrections included according to clause (4.1.2): 

 

Y = (X1 + C1) · (X2 · C2) ,     (1) 

where X1 and X2 are two measured ‘input quantities’, and C1 and C2 are ‘corrections’,1 respectively to 
X1 and to X2. The corrections can also be measured quantities, or their values and uncertainties can be 
obtained from Type B evaluations. 

The expression (1) is the GUM model according to clause (4.1.2). However, according to clause 
                                                        
1  C1 is an offset correction, typically small in value (E(C1) ≈ 0 relative to E(X1). C2 is a scale-factor correction, typically with 
E(C2) ≈ 1 
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(3.2.4), model (1) is only the initial model. In fact, after the required corrections are applied, model (1) 
should be rewritten as 

Y ≈ (X1
* + C1

*) · (X2
*·(1 + C2

*)) 2    (2) 

where all quantities on the right of (2) are different from those in (1): X1
* = X1 + E(C1); X2

* = X2· E(C2); 
C1

* = C1 – E(C1); C2
* = C2 – E(C2), where, in general, E(C1) ≠ 0 and E(C2) ≠ 0.3 According to GUM, 

the new quantities C1
* and C2

* have zero expectation: E(C1
*) = 0 and E(C2

*) = 0. Expression (2) is the 
actual GUM model subject to the uncertainty analysis. 

3.  Can the value of a correction be known exactly? 
Correction for systematic effects may actually be affected by limitations, as also recognised in limited 
cases in the GUM: “It is now widely recognized that, when all of the known or suspected components 
of error have been evaluated and the appropriate corrections have been applied, there still remains an 
uncertainty about the correctness of the stated result, that is, a doubt about how well the result of the 
measurement represents the value of the quantity being measured.” (0.2); “The result of a 
measurement after correction for recognized systematic effects is still only an estimate of the [true] 
value of the measurand because of the uncertainty arising from random effects and from imperfect 
correction of the result for systematic effects.” (3.3.1); “A corrected measurement result is not the 
value of the measurand—that is, it is in error—because of imperfect measurement of the realized 
quantity due to random variations of the observations (random effects), inadequate determination of 
the corrections for systematic effects, and incomplete knowledge of certain physical phenomena (also 
systematic effects). Neither the value of the realized quantity nor the value of the measurand can ever 
be known exactly; all that can be known is their estimated values.” (D.4).  

As a consequence, a problem arises about the way to comply with the GUM requirements, and, 
more in general, to comply with the need of performing corrections for known ‘biases’, or for ‘biases’ 
estimated at various levels of confidence—as occurring also in the testing field. In fact, the above 
caveats should concern not only the uncertainty, but also the value of the correction, since a model is 
likely to be imperfect for several reasons, most not of random nature: 

(i) Non-uniqueness of the measurand (epistemic uncertainty, intrinsic); 
(ii) Incomplete list of influence quantities (epistemic uncertainty); 
(iii) Imperfect knowledge of the input quantities (re model functional form and the values of its 

parameter). 
In addition, in tackling the problem, one is often confronted with issues arising from practical 

difficulties, especially when: 
(a)  Applying a significant recognised correction with large uncertainty; 
(b) Handling uncertainty for uncorrected results.  
Concerning issue (a), two conditions have to be noted: to be “recognised” (be known) and, to be 

"significant”, also embedded in the GUM: “In some cases, … although the uncertainty has been 
evaluated, it may be ignored if its contribution to the combined standard uncertainty of the 
measurement result is insignificant. If the value of the correction itself is insignificant relative to the 
combined standard uncertainty, it too may be ignored” (3.4.4). However, e.g., CITAC [2] 
recommends instead correcting also for non-significant effects. As to issue (b), the preference for this 
choice is widespread. 

Actually, the corrections are fundamental good practice in science, because they are to be 
considered as an integral part of the process of sufficiently understanding and modelling an 
experiment. They are as essential as the practice of replicating the measurements.  

In practice, there are several conditions under which the correction of the measured value is not 
desirable, and this is not explicitly deprecated in the GUM but allowed in special cases. In the GUM 
                                                        
2 Notice that E(1 + C2

*) ≈ 1, so that the second term is approximately (X2
*·C2). 

3 Obviously here we assume that a correction is not a fixed value as in the VIM [3], see Footnote 5. 
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the difficulties in applying a correction are recognised: “The error arising from imperfect 
compensation of a systematic effect cannot be exactly known” (3.2.3. Note), but the specified way-out 
is “The uncertainty of a correction for a known systematic effect may in some cases be obtained by a 
Type A evaluation while in other cases by a Type B evaluation, as may the uncertainty characterizing 
a random effect” and, then, the “Guide treats uncertainty components arising from random effects and 
from corrections for systematic effects in exactly the same way in the evaluation of the uncertainty of 
the result of a measurement.” (E.3). 

GUM’s recipe is basically Gauß’ one: should one recognise a systematic effect, a correction must 
be applied to measured data before the uncertainty analysis is undertaken. In fact, fixed effects are 
assumed in the GUM to be fully taken into account by the corrections (zero-expectation after 
correction), so that only random effects apply to the corrected values.   

4.  The true value of a correction 
The very distinction between ‘input quantities’ relevant to a measurand and corrections to these 
quantities is basically artificial, though customary: the fact that a ‘correction’ may be ignored, or that 
its value can be zero [4], has possibly promoted this distinction. 

However, in principle, ‘corrections’, when performed, are simply compensations for deviations of 
measured from reference states of specified quantities due to perturbations caused by other influence 
quantities or by off-set conditions. These deviations are customarily called ‘bias’: in VIM bias is 
defined “estimate of a systematic measurement error” (2.18). Actually, “systematic” should rather 
mean that bias is relative to a standard condition that is not met (bias value different from zero), or to 
an unexpected deviation from a standard condition, so that the measurement results are systematically 
‘off centre’ in the variations of their values. 

These other quantities are also measured, or the deviations from the reference state are estimated 
from Type B evaluations, exactly as for the previous ‘input quantities’: in the vast majority of cases 
the values of the corrections are non-zero, as are the values of the input quantities.  In all respects, as 
recognised by the GUM, they are part of the input quantities. By definition, once the influence 
quantities have been identified, no other quantity outside the set of ‘input quantities’ plus ‘corrections’ 
can influence the value of the measurand. 

In actuality, due to the fact that no value of a quantity can be exempt from an uncertainty about the 
actual location of the true value, irrespective to the process (either Type A or Type B) bringing to its 
evaluation, there is not in principle a difference between ‘input quantities’ Xi and ‘biases’ Bn—the 
‘corrections’ merely being Cn = –Bn: 

 

Xi = E(Xi) + Xi
*,  Bn = E(Bn) + Bn

*,    (3) 

where, as seen in the expressions (1) and (2) of the initial example, the star quantities have zero mean 
(the normally non-zero mean value having been ‘extracted’ from the not-starred quantities) and take 
into account the variability of the results.  

Furthermore, for additive biases, Xi = Xi
o + Bn—the symbol of ‘standard state’ o is borrowed here 

from physical chemistry to indicate the reference condition for which E(Bn) =: 0. Thus Xi
o = Xi – Bn = 

Xi + Cn.4  
The measurement equation for a measurand Y, written in the general way, is: 
 

Y = µX + ΔX + εr + εs     (4) 

where X = f(Xi) with Xi the ‘input quantities’, µX is the mean, ΔX (sometimes indicated with b or B) is 
the deviation from the mean, εs is the zero-mean random error associated to the systematic effects, and 
εr is the zero-mean random error associated to X (often only ε = εr + εs is indicated). Comparing with 
                                                        
4 The only functional characteristics of a ‘correction’ Cn is that it applies to an ‘input quantity’ Xi, or to another correction.   
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(3), one can write the following equivalence expressions: µX = E(X), εr = X*, ΔX = ∑ nBn, εs = 
conv(Bn

*)—the convolution of the Bn
*. In addition, Xo = X – ΔX. 

The existence of an uncertainty always associated to a correction,5 should prevent to omit any 
correction from the initial model, unless, according to the GUM, one wants to label it as non-
significant, so neither including its contribution to uncertainty. Thus, as a random variable, any 
summary statistics of the true value of a correction is only providing a ‘best estimate’. The (true) value 
of a correction remains as unknowable as that of any ‘input variable’, and that of the measurand 
itself. However, the bias terms should remain explicit also in the model for the corrected measurement 
results [5, 6] because they carry in an uncertainty component. 

5.  Possible ways out and conclusions 
In [4] the main reasons why the most difficult issue, trusting a correction value, cannot be solved 
easily, or universally, are summarised. 

When the decision is to apply a correction, an edge-cutting solution is to consider, and treat, all 
‘corrections’ as they actually are: a type of ‘input quantities’, to be included in the model—e.g. model 
(1)—and treated as any other input quantity. From this viewpoint, one does not need anymore to make 
a distinction between Xi and Cn, and the uncertainty analysis should concern all relevant quantities in a 
single step.  

Therefore, the model (1) should be explicitly modified as 

Y = f(W1, W2, …, Wm, …, WM),  Wm = X1, …, XI, C1, …, CN, with i = 1…I, n = 1…N, M = I + N  (5) 

where the distinction between the Xi and the Cn is left here only for clarity. 
Basically, the practical difference between what is considered a (primary) ‘input quantity’, Xi, and a 

correction, Cn, is the fact that the measurement results concerning the former always involve Type A 
uncertainty components, while the evaluation of a correction may involve only Type B components. 

Let us make two examples, one for an ‘indirect’ measurement, another for a ‘direct’ measurement. 
Gas thermometry. The basic model for the indirect measurement of the intensive quantity T is: p·V = 
n·R·T, with p, pressure; V, volume; n, amount of substance; T, temperature; R, gas constant. In the 
constant-volume type, V and n are assumed constant during the measurement of p, for the purpose of 
obtaining measurement results for Tb = f(pb), where Tb and pb are the thermodynamic values of the gas 
in the thermometer bulb. In the actual measurements, many “corrections” are to be applied, some due 
to the gas thermodynamics, some to the technical apparatus, some to the measuring system. Part of 
them (i) are obtained from measurement of subsidiary quantities, different from pb, so affected (also) 
by at least a Type A component of uncertainty; another part (ii) are obtained from calibration 
certificates, handbook, etc, i.e. by means of Type B components of uncertainty. Among (i), for 
example, all the corrections for temperature-dependent parameters require the measurement of T in the 
relevant locations (room, apparatus, equipment, …), using calibrated thermometers affected by 
calibration and measurement uncertainty components. Among (ii), one can list, e.g.: (a) as to gas, 
impurities (chemical and isotopic), non ideality, changes in n (adsorption on walls, diffusion outside 
the bulb, leaks), amount of gas outside the bulb, difference between pmeas and pb; (b) as to the 
experimental apparatus, changes in Vb due to thermal expansion or finite stiffness of the bulb material, 
temperature distribution in the dead-volume and non-uniformities; (c) as to the measuring apparatus, 
pressure gauge corrections and calibration concerning pmeas, calibration of instruments measuring 
electrical quantities (V, I, R), laboratory standards, and vacuum gauges—also mechanical standards for 
volume Vb measured dimensionally.  
Mass measurement. A model for the direct measurement of the extensive quantity m is m = ∑ imci, 
with the mass m placed on one balance pan and calibrated masses mci put on the other pan, and where i 
                                                        
5 Corrections are variables in the GUM, though the ‘bias’ intended to be corrected is often considered instead a fixed value—
the most notable case is VIM [3], where bias is defined in (2.18)—see above—where the systematic error is a “component of 
measurement error that in replicate measurements remains constant or varies in a predictable manner” (2.17). 
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of the latter masses are necessary to obtain the exact balance (Δm ≡ 0). In the actual measurements, 
many “corrections” are to be applied, some due to m itself, other to the mci, other to the technique used. 
Apart from the possible calibration corrections of each mci for deviations from the nominal values, all 
other corrections requires the measurement (or knowledge) of the value of subsidiary quantities.  A list 
of the main, not in a particular order is: for buoyancy, involving air thermodynamic state (p, T and 
density d) and volume of m and each mci; for mass magnetism, involving permanent magnetisation and 
magnetic susceptibility; for mass and balance cleanliness, involving also adsorption; for linearity, 
sensitivity, drift, hysteresis, eccentricity of the balance. 
 

Incidentally, as shown in these typical examples, in most cases the actual measurement procedure 
requires a multidimensional capability—in particular temperature and pressure being often involved 
even in ‘direct’ measurement, carrying a Type A component—and, traceability of the measurements 
always requires involving calibration certificates, carrying a Type B component. 

 
Customary, corrections—measured, computed or stipulated—are applied separately. However, an 

overall model could obviously be constructed by merging all in a single analytical expression 
whenever an explicit model is feasible. Sometimes the resulting model may look exceedingly 
complicated. This fact is mitigated today by the use of automatic computing. However, some simple 
corrections not placing critical problems might remain applied separately. 

In many cases, this overall-merging procedure is more straightforward, not needing to separate a 
first step of application of the corrections of the measurement results from a subsequent distinct step of 
taking into account its uncertainty. In some cases, it may also overcome the dilemma introduced in [4] 
and the consequent need for methods of uncertainty-increase evaluation in the absence of a correction. 
It would also avoid the confusion often observed about the correct handling of ‘corrections’ [4].  

In conclusion, Y should be computed by using the overall model (5), including the explicit 
functional form of all corrections. This is possible in many cases.  

When the model remains instead in an implicit form, or when one likes to avoid embarking in 
exceedingly complicated analytical computations of uncertainty propagation, a suggestion for a simple 
way can be to apply the Monte Carlo method. In this case, in addition to the variability distributions of 
the Xi, one would include, for each ‘correction’ term, Ci, its probability distribution; E(Ci) is the 
contingent value attributed to ‘bias’—zero, only when justified—i.e. the one that would derive from 
the GUM clause (3.2.4). In this way, E(Y) directly embeds also the effect of the current ‘corrections’.  
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