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Abstract. In this paper we give the results of four methods of calculating uncertainty 
associated with a mass calibration problem, three based on different implementations – the first 
and second order law of propagation of uncertainty and the Monte Carlo method – of the 
general methodology described by the Guide to the Expression of Uncertainty in Measurement, 
the fourth based on a Bayesian formulation. The nonlinearities present in the model for the 
calibration problem means that the first order approach can be an unreliable method for 
evaluating uncertainties, relative to the other three approaches. 

1. Introduction 

The application of the GUM (Guide to the Expression of Uncertainty in Measurement) [1] uncertainty 
framework to the evaluation of uncertainty is accepted as adequate in most fields of metrology, 
including mass metrology. The methodology has, as its starting point, an input-output model 
describing the measurand as a function of influence quantities and the assignment of probability 
distributions or probability density functions (PDFs) to the influence quantities. Once these two 
elements are in place, the PDF associated with the measurand, the output quantity is defined. The issue 
is how to determine information about this PDF in a computationally convenient way.  

 The GUM uncertainty framework, as usually implemented,  involves two types of approximation, 
i) linearization, i.e., first order Taylor expansion, of the function relating the output to the inputs, and 
ii) an appeal to asymptotic results derived from the Central Limit Theorem to associate a Gaussian 
distribution to the output quantity. (The GUM also provides a methodology for associating a student t-
distribution to the output quantity, using a scheme to determine effective degrees of freedom of the t-
distribution. We do not consider this more general scheme in this paper.) For linear models and 
Gaussian inputs, the GUM uncertainty framework is exact. In all other cases, it will only provide an 
approximate solution. The quality of the approximation is however difficult to predict, a priori. The 
GUM also discusses the use of a second order Taylor expansion, which should lead to more accurate 
approximations.  GUM Supplement 1 [2] describes the use of a Monte Carlo method (MCM) to 
propagate the distributions associated with the input quantities through to that associated with the 
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output quantity. The MCM does rely on approximating the function nor on asymptotic results 
associated with the output distribution and can be used to test the validity of the GUM approach or as 
the main computational tool for evaluating the uncertainty [3].  Moreover, an important advantage of 
MCM is that it goes beyond the evaluation of the measurement result and its associated standard 
uncertainty since it propagates the probability density functions instead of just the uncertainties of the 
input quantities. This leads to an estimate of the PDF of the output quantity, and thus any required 
statistic, including the measurement result, the associated standard uncertainty and coverage intervals, 
can be obtained from this distribution, as represented by the Monte Carlo sample. Another important 
advantage of MCM is its applicability regardless of the nature of the model, e.g., those incorporating 
strong nonlinearities. As mentioned above, the GUM uncertainty framework does in fact encompass 
second order methods to deal, at least partially, with nonlinearity.  

 The three approaches mentioned so far, the GUM first and second order and MCM, can be viewed 
as computational approaches that attempt to evaluate summary information about the same PDF, that 
associated with the output quantity, defined in terms of the input-output model and the PDFs assigned 
to the input quantities [4]. In a Bayesian formulation of uncertainty evaluation, the starting point is 
somewhat different, in that a prior PDF has also to be assigned to the measurand. However, the MCM 
method coincides with the Bayesian approach for a particular choice of prior and the sample produced 
using the MCM approach is a sample for the Bayesian posterior distribution constructed using that 
particular prior [5,6]. The MCM sample can be used to generate a sample from the posterior 
distribution constructed using another (perhaps more appropriate) prior for the measurand through the 
application of an extremely simple Markov chain Monte Carlo (MCMC) algorithm [7]. In this context, 
the GUM and MCM methods can be viewed as approximate computational approaches to Bayesian 
uncertainty evaluation.  

2. The mass calibration model 

See for example [3, section 9.10]. The model concerns the calibration of a weight W of mass density 
Wρ against a reference weight R of mass density Rρ . It is assumed that the two masses are nominally 

the same. The calibration is performed using a balance operating in air of density aρ  and provides an 

estimate of the mass Rmδ  of a small weight Rδ , also of density Rρ , needed to achieve a balance. 
Taking into account buoyancy effects, the application of Archimedes’ principle leads to the following 
model equation. 

 )/1)(()/1( RaRRWaW mmm ρρδρρ −+=−  (1) 

involving the masses  and  of W and R, respectively. It is usual to work in terms of 
conventional masses relating to a standard density 

Wm Rm

0ρ  = 8 000 kg/m3 for the weight and that 
of

0aρ  = 1.2 kg/m3 for air, so that, for example, the conventional mass  corresponding to  

is given by 
cWm , Wm

 )/1()/1( 0, 00 ρρρρ acWWaW mm −=−  

 Working in terms of conventional masses, (1) becomes 
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from which we obtain (using an approximation adequate for most purposes) 
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 In this paper, we compare the MCM against the first and second order propagatio
and also compare the MCM method with a Bayesian evaluation of uncertainty

3. erent approaches used in this study for the evaluation of uncertainty 

3.1. Uncertainty evaluation using the first and higher order GUM approach 
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assuming that the jξ  are independently distributed. The expression for the uncertainty )(2 yu  given 
in Eq. 3 is derived from a first order approximation to the function f. A more accurate estimate can be 
made by using a higher order approximation. The general approach is as follows [3 8]. If we a][ sume 
that the input quantities are independently distributed, and make the further assum  
distributions are mmetric, there will be important simplifications tage of, and the some 
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 If jξΔ  is associated with a normal or rectangular distribution centred at 0, then 

 and , respectively. The calculation also requires the evaluation 2 22
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mptions of normality. For many
implement. 

3.2. Uncertainty evaluation using MCM 

The Monte Carlo Method (MCM) [1][2] is a way of evaluated the uncertainty associated with the 
estimate cWm ,  derived from Eq. 2 without linearising approximations or, for the calculation of 

 problems, the method is straightforward to 
If the input variable j
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ξ is associated with a distr with probability density function 
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)( qq fy ξ=  are draws from the distribution associated with )(ξf=η . Means, standard deviations and 
orresponding sample statistics derived from coverage intervals can be estimated easily from the c
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3.3. Uncertainty evaluation using a Bayesian approach 
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easurem δ  and the prior information on the oth r parameters. The noninformative 
prior 1)( , ∝cWmp  was chosen for cWm , . The posterior distribution is rel  distribution )(

e
ated to the ηp  

for   )(ξf=η  by a factor that depends on the partial derivative of f with respect to cRm ,δ . The MCMC 

qqapproach follows that described in ] and starts with the draws fy ξ [7 )(= but also requires 

)(
,

q
cR

q m
fd ξ

δ∂
∂

=  to be recorded. The aim of the MCMC algorithm is to modify the MCM sample in a 

simple sequential accept-reject scheme involving qd , so that the odified sample represents a s

for . Means, standard deviations, etc., can be estimated 
om the sample statistics as in the MCM approach. 

 

m ample 

om the Bayesian posterior distribution cWm ,fr
fr

 

IMEKO 2013 TC1 + TC7 + TC13 IOP Publishing
Journal of Physics: Conference Series 459 (2013) 012033 doi:10.1088/1742-6596/459/1/012033

4



 
 
 
 
 
 

4. Discussion of results 

As an example calculation, we assume that the information about cRm , and cRm ,δ  is taken from 
calibration certificates and for which it is appropriate to assign Gaussian distributions. We assume that 
the density information is given in terms of upper and lower limits for which it is appropriate to assign 
rectangular distributio  This information is summarised in Table 1. The uncertainty associated with 
the density estimate W

ns.
ρ  is perhaps unrealistically high but it is u  be  to illustrate how 

onlinearities in 
 

Ta le s assoc ith the inpu

seful to  able
n the model affect the uncertainty evaluations. 

b 1. Distribution iated w t quantities with mW,c. 

jξ  Distribution Mean Standard uncertainty 

cRm ,  Gaussian 100 000.000 mg 0.050 mg 

Gaussian 1.234 mgcRm ,δ  0.02  0 mg

aρ 1.20 kg/m3 Rectangular 10.0)3/1( ×  kg/m3

Wρ  Rectangular 3100.8 × 3100.1)3/1( ×× kg/m3  kg/m3

Rρ  Rectangular  kg/m331000.8 × 31005.0)3/1( ××  kg/m3

 
 For the data in Table e estimate of  1, th the deviation of 0, mm cW −  from a nominal mass of 100 g 

ociat ese quantities do not contribut

= 0.075 mg y the simpler 

 the input-outp

evaluated from Eq. 2 is =m̂δ 1.234 0 mg. 

 The fact that the sensitivity coefficients associated with the density quantities are zero means that, 
to first order, the uncertainties ass ed with th e to the uncertainty 
associated with the estimate of cWm ,  so that 2/122 )020.0050.0()ˆ( +=mu δ  mg = 0.053 9 mg. 
However, for the second order approach, with the same example data, the measurement uncertainty 
yields ( yyu Δ+ ) , suggesting a clear underestimation entailed b
implementation. 

 Compared to the second order approach (and even the GUM first order approach), the MCM 
method is straightforward to implement. Fig. 1 shows the normalised histogram of 100,000 MCM 
samples generated using the input distributions specified in Tab. 1 and ut model given in 

Eq. (2). These samples were used, along with the partial derivatives )(
,

q
cR

q m
d ξ

δ∂
= , as the input to 

the MCMC algorithm  a sample from the Bayesian posterior distribution for cWm , using a 
noninformative prior 1)( , ∝cWmp . The degree to which the MCMC algorithm modifies the MCM 
sample depends on the extent that qd varies. For the mass calibration example, these partial 
derivatives vary by less than 5 parts in 10

f∂

to produce

6, which means that the MCMC sample is essentially the 
same as the MCM sample. In fact, all of the 100,000 of the MCM samples were accepted so that the 
two samples are identical. For larger MCM samples, some would be rejected but would not introduce 
any meaningful differences. The good agreement between the two approaches is due to the fact that 
the dependence of the measurement equation on cRm ,δ is almost linear. For such cases, the MCM 
approach is an extre proach fo pling from the Bay
[6,7]. 

mely effective ap r sam esian posterior distribution 
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 The results of the four methods of evaluating an estimate of 0, mm cW −  are given in Table 2. The 
first three methods all attempt to provide summary information about the same probability 
distribution, namely the output distribution associated with Eq. 2. The differences are in the level of 
approximation, in the case of the GUM methods, a first or second order approximation, in the case of 
MCM, the approximation of a continuous distribution by a discrete sample. As the number of MCM 
trials increases, the discrete approximation can becomes more exact. Due to nonlinearities in the 
model, the first order GUM method significantly underestimates the standard deviation of the output 
distribution. (For a smaller uncertainty associated with the density quantity Wρ , the 1st order GUM 
gives a more accurate estimate of the uncertainty.) The GUM 2nd order method gives satisfactory 
estimates and can be implemented for the mass calibration problem without much complicated 
calculation. For a general model, there can be a considerable (or prohibitive) amount of work 
involved.  

 As indicated above, the MCM and MCMC approaches give identical results. Fig. 1 also shows the 
Gaussian distributions determined by the GUM 1st and 2nd order methods. It is noted that the GUM 2nd 
order distribution looks a very good representation of the frequency distribution derived from the 
Monte Carlo samples. This can be explained by the fact that the dominant influence quantities  
and 

cRm ,

cRm ,δ  are associated with Gaussian distributions and these quantities appear linearly in the 
measurement equation, Eq. 2. 

 
Figure 1. Frequency histogram for MCM  compared with the Gaussian 
distributions determined by the GUM 1st and 2nd order approaches.  

 
 

Table 2. Parameter estimates and associated uncertainties associated  
with the mass calibration problem for four methods of evaluation. 

Method m̂δ /mg )ˆ( mu δ /mg 
GUM(1st order) 1.234 0.054 
MCM 1.234  0.075 
GUM(2nd order) 1.234 0.075 
Bayes 1.234 0.075 
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5. Conclusions 

Four computational approaches have been applied to evaluating the uncertainty associated with a mass 
comparison. Three, the GUM 1st order, GUM 2nd order and the Monte Carlo Method (MCM) all 
involve the same distribution determined by the measurement equation and the assignment of 
distributions to the influence quantities. The differences between them therefore reflect the degrees of 
approximation implicit in the computational approaches. The GUM 1st and 2nd order approaches 
involve truncation approximations and assign Gaussians of the basis of the estimated first and second 
moments of the distribution. The MCM method is approximate in the sense that only a finite sample is 
constructed. The MCM method and GUM 2nd order method are in close agreement for the calculated 
example.  

 The fourth method involved a Bayesian formulation of the mass comparison measurement and 
necessarily involves the assignment of a prior distribution for the quantity of interest. If a 
noninformative prior is chosen, the Bayesian posterior distribution is essentially the same 
distribution from which the MCM determines a sample. This means that the MCM sample can also be 
regarded as a sample from the Bayesian posterior corresponding to the assigned prior, as confirmed by 
the application of the Markov chain Monte Carlo (MCMC) scheme. Thus, three approaches give 
essentially the same results: GUM 2

1)( , ∝cWmp

nd order, MCM and the Bayesian approach. The GUM 1st order 
approach is not recommended for the mass comparison measurement problem. Of the three 
approaches, the MCM method is the easiest to implement. The MCMC scheme implementing a 
Bayesian approach requires a modest extension of the MCM approach.  
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