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Abstract. We theoretically study optical Hall conductivities for ABA and ABC trilayer
graphenes. In ABA-stacked trilayer, the resonance spectrum is shown to be a superposition
of effective monolayer and bilayer contributions with band gaps, while ABC trilayer exhibits a
distinct spectrum peculiar to the cubic-dispersed bands with a strong trigonal warping, where we
found the signals associated with low-energy Dirac cones are conspicuous enough to be directly
observable owing to a large Lifshitz-transition energy (∼ 10 meV). We have also revealed how
the presence or absence of the inversion symmetry affects the optical Hall conductivities.

1. Introduction
While the observation of the anomalous quantization of the static quantum Hall effect in
graphene has established the existence of massless Dirac-quasiparticle in graphene [1, 2], physics
of the optical (ac) Hall effect has only begun. The optical Hall conductivity σxy(ω) is an
ac-extension of the static Hall conductivity, which has theoretically been proposed to be an
interesting dynamical property to look at in the quantum Hall regime [3]. Experimentally,
the optical Hall conductivity is measurable through Faraday rotation, since Faraday rotation
angle is proportional to σxy(ω), where the angle is of the order of the fine-structure constant
in the quantum Hall regime, as subsequently detected in a two-dimensional electron gas [4].
For graphene, giant cyclotron resonances in Faraday rotation is observed in the quantum Hall
regime [5].

In the graphene physics, on the other hand, there are growing interests toward multilayer
graphene, whose electronic structures are distinct from that of monolayer graphene. Especially,
trilayer graphenes show various electronic structures according to the stacking order, where an
ABA stacked trilayer has a monolayer-like linearly dispersed band plus a bilayer-like pair of
parabolic bands, while an ABC stacking has a pair of cubic-dispersed bands. While the optical
longitudinal conductivity σxx(ω) is mainly discussed so far, the the optical Hall conductivity
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σxy(ω) has not been fully studied for multi-layer graphene in the quantum Hall regime. We have
previously studied the optical Hall conductivities in trilayer graphene [6].

In the present paper, we discuss how the presence or absence of the inversion symmetry affects
the optical Hall conductivities. It is argued that, when both the inversion symmetry and the
time reversal symmetry are respected, the gaplessness of the bands are topologically protected
in the graphene systems [7].

For ABA trilayer, we show the optical responses basically comes from Dirac contribution and
bilayer contribution, which are both massive due to the lack of the inversion symmetry. The
inversion symmetry is retained in ABC trilayer, so that the bands are gapless and zero energy
LLs appear consequently.[8] We also show for ABC trilayer that the Lifshitz transition due to
the trigonal warping affects the optical responses, where even away from the Lifshitz transition
the trigonal warping effect manifest itself as satellite resonances.

2. ABA-stacked trilayer
For ABA stacked trilayer, the effective Hamiltonian around K+/K− points is given by a 6 × 6
matrix (the dimension being 2 sublattices × 3 layers) as [9, 10, 11, 12]

HABA =


0 vπ† 0 v3π γ2/2 0
vπ ∆′ γ1 0 0 γ5/2
0 γ1 ∆′ vπ† 0 γ1

v3π
† 0 vπ 0 v3π

† 0
γ2/2 0 0 v3π 0 vπ†

0 γ5/2 γ1 0 vπ ∆′

 , (1)

where π = ξπx + iπy, π
† = ξπx − iπy, π = p + eA, with A being the vector potential arising

from the applied magnetic field, and the valley index ξ = ±1 for K± points. The coefficient
v =

√
3aγ0/(2h̄) is the band velocity for monolayer graphene, a ≈ 0.246 nm the distance between

the nearest A sites, and v3 =
√
3aγ3/(2h̄) a velocity related to γ3 that causes the trigonal

warping. ∆′ is the on-site energy difference between the atoms with and without vertical bond γ1,
and γ2(γ5) are the next-nearest interlayer hoppings between A1 and A3 (B1 and B3). We adopt
the values for bulk graphite: γ0=3.2eV, γ1=0.39eV, γ3=0.32eV, γ2=-0.020eV, γ5=0.038eV, and
∆′=0.050eV. [13, 14] There is another interlayer hopping parameters, γ4, connecting A1 (B1)
and A2 (B2), which introduces a small electron-hole asymmetry to the band structure and we
do not consider in this paper.

With a unitary transformation [12, 15, 16, 17, 18], this Hamiltonian is decomposed into two
blocks corresponding to a 2 × 2 massive Dirac Hamiltonian with a shift in Fermi energy and a
4× 4 gapped bilayer Hamiltonian with another energy shift. So the low-energy physics of ABA
trilayer amounts to a superposition of gapped monolayer and gapped bilayer band contributions
as seen in the low-energy band structure (Fig.1(a)).

In Fig.1(b), LLs are plotted against magnetic field B, which are labeled with M (B) for
monolayer (bilayer) blocks, Landau index n, and band index ± (for n ≥ 1). For moderate
magnetic fields B ∼ 1 T, the Landau level spacing ∝

√
B for monolayer is much larger than that

for bilayer ∝ B. ABA trilayer lacks an inversion center and bands are gapped. As a consequence,
zero-energy LLs of monolayer and bilayer appear at the bottom (top) of the conduction (valence)
bands for K+ (K−) valley.

Now let us move on to the optical Hall conductivity (σxy(ω)), which is evaluated from the
Kubo formula as

σαβ(ω) =
h̄

iL2

∑
ab

jabα j
ba
β

f(ϵb)− f(ϵa)

ϵb − ϵa

1

ϵb − ϵa − h̄ω − iη
, (2)
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Figure 1. (a) Band structure and (b) Landau levels against magnetic field for ABA-stacked
trilayer graphene. (c) Optical Hall σxy(ϵF , ω) grey-scale plotted against the Fermi energy ϵF and
the frequency ω for a magnetic field B = 1T (a dashed line in (b)). (d) A diagram indicating
allowed resonances in σxy.

where f(ε) is the Fermi distribution, ϵa the energy of the eigenstate |a⟩, jab = ⟨a|j|b⟩ the matrix
element of the current operator j = ∂H/∂A, and η a small energy cutoff for a stability of the
calculation[3]. In order to show the resonance structures in optical responses clear, we set to
η = 0.15 meV, which is a small value compared to realisitic situations. Larger η makes the
resonances more broadened, while it does not alter their qualitative behaviors.

The result for the optical Hall conductivity σxy(ϵF , ω) is plotted against the Fermi energy ϵF
and frequency ω for ABA stacked trilayer graphene QHE system in Fig.1(c). We can discern
contributions from monolayer-like Dirac LLs and those from bilayer LLs, both of which exhibit
intra-band and inter-band transitions. Since Dirac cone is massive due to a breaking of an
inversion symmetry and M0 LL is situated at the bottom of conduction band for K+ valley
and the top of valence band for K−, M0 → M1+ resonance occurs at a lower energy than
M1− → M0 for K+, and vice versa for K− valley. A cancellation of resonances in σxy, due to
opposite signs in current matrices, occurs between M1− → M0 for K+ and M0 → M1+ for
K− for a region of Fermi energy between M0(K+) and M0(K−), while this is not the case with
σxx. For bilayer contributions satellites appear due to the trigonal warping from the transitions
(n, s) ↔ (n+1+3m, s′) and (n, s) ↔ (n+2+3m, s′), since the trigonal warping due to γ3 term
mixes (n, s) and (n+ 3m, s′).

The resonance frequency for intra-band transition within the conduction band is larger than
those within the valence band, which is a consequence of an electron-hole asymmetry in the
bilayer bands. Different cyclotron masses for electron and hole bands prevent a complete
cancellation between (n,−) → (n + 1,+) and (n + 1,−) → (n,+) transitions, which results
in small interband transitions in a wide region of Fermi energy.

3. ABC-stacked trilayer
If we turn to ABC stacked bilayer graphene, the effective Hamiltonian around K point is a 6×6
matrix as [9, 19, 20]

HABC =


0 vπ† 0 v3π 0 γ2/2
vπ 0 γ1 0 0 0
0 γ1 0 vπ† 0 v3π

v3π
† 0 vπ 0 γ1 0

0 0 0 γ1 0 vπ†

γ2/2 0 v3π
† 0 vπ 0

 . (3)
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Figure 2. (a) Landau levels against magnetic field for ABC-stacked trilayer graphene. (b)
Optical Hall σxy(ϵF , ω) grey-scale plotted against the Fermi energy ϵF and the frequency ω for
a magnetic field B = 1T (a dashed line in (a)). (c) A diagram indicating allowed resonances in
σxy.

We can derive a low-energy effective Hamiltonian as a 2 × 2 matrix with basis for A1 and B3,
where we eliminate the states coupled by γ1. As in the case of bilayer, a perturbation in ε/γ1
gives the effective Hamiltonian for ABC trilayer graphene as [20],

H
(eff)
ABC =

v3

γ21

(
0 (π†)3

π3 0

)
+

(
γ2
2

− 2vv3π
2

γ1

)(
0 1
1 0

)
, (4)

where π2 = (π†π + ππ†)/2. In zero magnetic field, the first term gives a pair of cubic-dispersed
bands touching at zero energy, while the second term involving γ2 and v3 causes a trigonal
warping in the band dispersion. In a low-energy region, the cubic bands are reformed into three
Dirac cones at off-center momenta located in 120◦ symmetry around K± point. The Lifshitz
transition occurs at ELifshitz ≈ γ2

2 ∼ 10meV, which is an order of magnitude greater than in
bilayer’s.

If we first neglect γ2 and v3 to consider the cubic part alone in Eqn. 4, LLs are[9, 20]

εn,s = sh̄ωABC

√
n(n+ 1)(n+ 2), (5)

where n ≥ −2 is the Landau index, s = ± (only for n ≥ 1) the band index, and h̄ωABC =
v3

γ2
1
(2h̄eB)

3
2 . A peculiar magnetic field dependence of cyclotron energy ∝ B

3
2 for ABC trilayer

graphene implies a smaller LL spacing as compared with the monolayer’s LL ∝ B
1
2 and bilayer’s

LL ∝ B for weak magnetic fields.
The trigonal warping due to γ2 and v3 hybridizes ψn,s with ψn+3m,s′ . In the low-energy region

|E| < ELifshitz, the spectrum is reconstructed into the monolayer-like Landau levels from small

Dirac cones as a series εN = sgn(N)
√
Nh̄ωtrig, with h̄ωtrig ≃ 10

√
B
1T meV.

Now we go back to the original 6 × 6 Hamiltonian (Eqn.3) to discuss the optical Hall
conductivity calculated with diagonalization and Kubo formula. In the LL spectrum in Fig.2(a),
a Lifshitz transition is clearly identified at ELifshitz = 10meV, which separates Dirac LLs and
ABC cubic LLs. Since the inversion symmetry is preserved in ABC trilayer so that the band
cannot be gapped, 3 zero-energy LLs appear which correspond to 3 gapless Dirac cones within
the Lifshitz transition energy.
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Figure 2(b) shows the optical Hall conductivities σxy(ϵF , ω) plotted against the Fermi energy
ϵF and frequency ω for ABC stacked trilayer graphene QHE system with B = 1T. At this
magnetic field, there are three Landau levels n = −1, 0, 1 in each Dirac cone, where the n = ±1
levels are close to the Lifshitz transision. The higher levels are outside the Dirac cones, and
can be regarded to belong to the the cubic dispersion. Accordingly we see cyclotron resonances
between 1− → 0 and 0 → 1+ in EF < ELifshitz, while outside we see transitions between cubic

LLs ∝ B
3
2 with much smaller level spacings than for Dirac LLs ∝

√
B. In addition to resonances

n↔ n+1, the trigonal warping again gives rise to satellite transitions, n↔ n+4 and n↔ n+2,
with opposite resonance weights. There also emerge small resonances between Dirac n = 0 LL
and cubic LLs across the Lifshitz transition energy. Due to the ABC trilayer LLs arising from
the cubic dispersion (Eqn.5) the intra-band transition energies show behaviors ∝ n1/2 against
the Landau index n, which is different from monolayer (∝ n−1/2) or bilayer (constant), while
the inter-band transition energies are qualitatively similar to ∼ 2ϵF .

4. Summary
We have studied the optical Hall conductivities for ABA and ABC trilayer graphenes. The ac
optical responses in the ABA-stacked trilayer graphene accommodates a mixture of contributions
from an effective massive monolayer and from an effective gapped bilayer with the trigonal
warping effect. In the case of ABC trilayer graphene the trigonal warping effect is an order of
magnitude enhanced than in bilayer graphene, so it will be experimentally more feasible to access
the effects induced by the trigonal warping. We have discussed how the differences between ABA
and ABC trilayers are related to the absence or presence of the inversion symmetry.
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