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Abstract. A simple one-dimensional model is proposed, in which N spinless repulsively 

interacting fermions occupy M>N degenerate states. It is argued that the energy spectrum and 

the wavefunctions of this system strongly resemble the spectrum and wavefunctions of 2D 

electrons in the lowest Landau level (the problem of the Fractional Quantum Hall Effect). In 

particular, Laughlin-type wavefunctions describe ground states at filling factors v = N/M = 1/q, 

q odd.. Within this model the complimentary wavefunction for v=11/q is found explicitly, and 

extremely simple ground state wavefunctions for arbitrary odd-denominator filling factors are 

proposed. 

1. Introduction 

Thirty years after the discovery of the Fractional Quantum Hall Effect [1] the understanding of this 

extraordinary phenomenon is still only partial and a consistent theory is absent. After Laughlin’s 

famous article [2], the intriguing concept of composite fermions advanced and developed by Jain [3, 

4] became the generally accepted physical description: the fractional QHE is the integer QHE of new 

particles, moving in a reduced magnetic field. While what exactly a composite fermion is, remains 

unclear (“electron + 2p zeros of the many-electron wavefunction” is not really comprehensible), it was 

proved by numerical calculations that the proposed ground states for fractional fillings are virtually 

exact [4], and this justifies the rather bizarre construction of these states involving higher Landau 

levels which physically are irrelevant.  

     Currently, we are still in an awkward position: on the one hand many experimental facts support 

Jain’s idea [3] of composite fermions moving in a reduced effective magnetic field, and this is the only 

physical description available. On the other hand [5], nobody has really shown theoretically, apart 

from what may be described as wishful thinking, the existence of composite fermions, as (quasi) free 

particles. So, the nature of the object whose properties are measured experimentally remains a 

mystery.  

    While Laughlin’s idea [2] certainly gave a clue to understanding the FQHE, some important 

questions remain unanswered. One of them concerns the v=2/3 state (and, generally, all the v=11/q 

states with odd q). Because of the electron-hole symmetry, this state, 2/3, can be regarded as the 

v=1/3 hole state described by the Laughlin wavefunction, 1/3, depending on the coordinates of N 

holes in a completely filled Landau level. The physical properties should be (and, in fact, are) quite 

similar to those at v=1/3.  
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     Suppose, however, that one wants to have a look at the 2/3 function written in terms of 2N 

electron coordinates. To do this, one must (i) write down the Laughlin function 1/3 as a superposition 

of N×N determinants involving one-particle hole wavefunctions, and (ii) leaving the coefficients in the 

superposition unchanged, replace each determinant by its complimentary 2N×2N electron determinant. 

The resulting unwieldy expression, which nobody knows how to write down explicitly, will represent 

the v=2/3 ground state, 2/3. It will go to zero at zi  zj as (zizj), just like any antisymmetric function, 

and we will hardly be able to understand why this function should minimize the interaction energy! 

     This shows the existence of wavefunctions that are as good as the Laughlin function, but which do 

not have higher order zeros when the electron coordinates coincide. In this sense the 2/3 function 

resembles the wavefunctions for other rational fillings, such as 2/5. It remains an open question, what 

are the relevant properties of these ground state wavefunctions, and this is a clear signal that our 

understanding is not complete.  

 

2. One-dimensional model for FQHE  

It was argued [5, 6] that the energy spectrum responsible for the FQHE arises whenever N spin 

polarized (or “spinless”) fermions with appropriate repulsive interaction occupy M>N initially 

degenerate states. Thus it makes sense to look for other, more simple, problems of this kind. In Ref. 6 

a one-dimensional model with M degenerate states on a circle was proposed with ψk(φ) = 

(2)
1/2

exp(ikφ), k=0..M1. Alternatively, another basis of one-particle states n(φ) localized at φ 

=2n/M can be used [6].  

     The Laughlin-like N-particle wavefunction 1/q (q odd) has the familiar form: 
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This can be rewritten in the n(φ) basis as 
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where the coefficients C (providing just another representation of the same function) are given by: 
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with a known normalization constant A [6] (it was calculated by Dyson [7, 8] a long time ago).  

 

3. The wavefunctions for v=11/q 

Rather surprisingly, within my model it can be proved that the wavefunctions 11/q, corresponding to 

fillings 2/3, 4/5, 6/7… have coefficients C given by exactly the same expression (3), the powers of  
n
  

higher than M1 being automatically reduced to the interval [0, M 1]. 

     In summary, starting from the Laughlin-like wavefunction (1) for v=1/q we find the following exact 

result. For both cases when either qN=M, v=1/q (q odd), or qN=(q-1)M, v=11/q, the wavefunction in 

the n representation (which from now on we denote as ) has the same form: 
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the only difference being in the number of variables (ni). 

HMF-20 IOP Publishing
Journal of Physics: Conference Series 456 (2013) 012008 doi:10.1088/1742-6596/456/1/012008

2



 

3. Conjecture  

On the basis of this striking result, it is tempting to make the following conjecture: in our model all the 

ground states for arbitrary rational fillings ν=p/q, or qN=pM (q odd, p and q do not have common 

divisors) are described by the extremely simple and universal formula (4). As we have seen, this is 

true for p=1 and p=q1. We now suggest that this is true for all p. 

     This conjecture is further supported by the fact that is self-consistent. Indeed, it can be proved that 

if it is true for some filling v, it is also true for filling 1v.  

     Of course, only numerical calculations with small numbers of particles within the proposed model 

will show whether this conjecture is correct or not. 

4. Relation between the model and the true FQHE problem  

Such a relation is provided by some fascinating properties of the matrix  Minmnm /2exp   . 

Consider a set of one-particle wavefunctions n (m) of a discrete variable m, labelled by the index n: 
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This is analogous to plane waves, where both the momentum and the coordinate are discrete. Now 

introduce the operators X and Y, which shift by 1 the numbers m and n respectively, so that 
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Obviously, X
M

=1, Y
M

=1, and XY=YX.  These are exactly the properties of the elementary magnetic 

translations in the x and y directions for an electron in magnetic field in the (twisted) torus geometry, 

if M is the number of magnetic fluxes through the surface of the torus (number of degenerate states in 

a given Landau level). 

     While Eqs. (5, 6) provide a direct link to the true FQHE problem on a torus, it still remains to be 

seen whether the true 2D problem can be in some sense reduced to the 1D model considered here. 
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