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E-mail: bockhorn@nano.uni-hannover.de

Abstract. In a high mobility two-dimensional electron gas (2DEG) realized in a
GaAs / Al0.3Ga0.7As quantum well we observe changes in the Shubnikov-de Haas
oscillations (SdHO) and in the Hall resistance for different sample geometries. We observe
for each sample geometry a strong negative magnetoresistance around zero magnetic field which
consists of a peak around zero magnetic field and of a huge magnetoresistance at larger fields.
The peak around zero magnetic field is left unchanged for different geometries.

1. Introduction
The increased mobility of the two-dimensional electron gas (2DEG) has allowed not only the
observation of the fractional quantum Hall effect (FQHE)[1],[2] at low magnetic fields but also
many new effects. While the mobility and quality of the samples increases the electron-electron
interaction becomes more important for the magnetotransport at low magnetic fields. One
effect influenced by the electron-electron interaction is the observation of a strong negative
magnetoresistance around zero magnetic field. This strong negative magnetoresistance consists
of a peak around zero magnetic field and of a huge magnetoresistance at larger magnetic fields,
both effects show a parabolic field dependence [3].

We study here the influence of the sample geometry on the strong negative magnetoresistance,
whereas in previous measurements the temperature dependence and the electron density
dependence of the strong negative magnetoresistance was analyzed [3, 4].

2. Sample Information
Our samples were cleaved from a wafer of a high-mobility GaAs/Al0.3Ga0.7As two-dimensional
electron system (2DES) grown by molecular-beam epitaxy. The quantum well has a width of
30 nm and is Si-doped from both sides. The 2DES is located 150 nm beneath the surface and has
an electron density of ne = 3.2·1011 cm−2 and a mobility of μe = 11.9·106 cm2/Vs. The different
geometries were defined by photolithography and by wet etching. Our measurements were
performed in a dilution refrigerator with a base temperature of 20 mK. The magnetotransport
measurements were carried out by using low-frequency (13 Hz) lock-in technique.
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Figure 1. (a) The Hall resistance Rxy and the longitudinal resistance Rxx vs. the magnetic
field B. (b) Observation of the reentrant integer quantum Hall effect (RIQHE).

The different geometries produced from the high-mobility 2DES will be discussed in the
following section. In the next sections we present our magnetotransport measurements for a
Hall geometry, especially for the magnetic field range of the strong negative magnetoresistance.
The second geometry consists of four Hall bars with different length-to-width ratios.

3. Hall Geometry
The Hall bars have a total length of 1.2 mm, a width of w = 200 μm and a potential probe
spacing of l = 300 μm. Different ungated and gated samples were used for the magnetotransport
measurements. In case of the gated sample there is an additional layer of 600nm PMMA between
the Hall bar and the metallic topgate to avoid leakage current.

Figure 1 (a) shows the Hall resistance Rxy and the longitudinal resistance Rxx vs. magnetic
field B to demonstrate the quality of our samples. The longitudinal resistance decreases to zero
between the integer filling factors ν = 4 and ν = 6 (see Figure 1 (b)), but the corresponding
Hall plateaus are quantized at integer values, e.g. at B = 3.0 T. This phenomenon is called
the reentrant integer quantum Hall effect (RIQHE) and is often observed in high mobility
samples [5, 6]. We observe a clear minimum in the longitudinal resistance for the filling factor
ν = 5/2 at B = 5.1 T. The filling factor ν = 5/2 is only observed in high mobility samples and
low temperatures. Also a series of different fractional quantum Hall states is observed for filling
factors ν < 2. The fractional filling factors ν = 5/3 and ν = 4/3 are marked in Figure 1 (a).

We observe a strong negative magnetoresistance around zero magnetic field which can be
divided into two regions (see Figure 2). The two regions consist of a peak around zero magnetic
field and of a huge magnetoresistance at larger fields.

3.1. Peak around zero magnetic field
The longitudinal resistivity vs. the magnetic field is shown in Figure 2. The peak around zero
magnetic field is fitted to a parabolic magnetic field dependence. In previous experiments we
observed that the curvature of the peak is left unchanged by increasing the temperature to 0.8 K
[3]. This temperature independence of the peak is a sign for the absence of weak localization.
Also for different electron densities the curvature of the peak is left unchanged. We assume
according to Mirlin et al. [7] that the peak is induced by an interplay of smooth disorder and
rare strong scatteres.
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Figure 2. The longitudinal resistivity ρxx vs. the magnetic field B. The strong negative
magnetoresistance is divided into two sections.

3.2. Huge Magnetoresistance
Previous publications reported on a strong negative magnetoresistance, which vanished by
increasing the temperature [3, 4]. The huge magnetoresistance in Figure 2 depends not only
strongly on the temperature, it depends also strongly on the electron density and it becomes
more pronounced by decreasing the electron density. Also the huge magnetoresistance is fitted
by a parabolic magnetic field dependence.

We examine the electron-electron interaction correction to the conductivity in the situation
of a long-range fluctuation potential and in the regime of ballistic transport [8]-[11] to describe
the huge magnetoresistance. In accordance with Gornyi et al. [11] we assume a model of mixed
disorder to fit the huge magnetoresistance. The electron interaction induced correction to the
conductivity considering the model of mixed disorder is expressed by

ρxx = ρ0 − ρ0
c0

n2
e π h

√
h̄

T τ kB
· α · B2 (1)

with c0 = 0.276. ρ0 is the longitudinal resistivity at zero magnetic field, ne is the electron
density, τ is the transport scattering time, T is the electron temperature and kB is the Boltzmann
constant. The factor α is in accordance with Gornyi et al. [11] expressed by α = 4(τsm/τ)−1/2

with τsm = (kF d)
2τq depending on the quantum scattering time τq. The expected temperature

dependence of T−1/2 from the electron interaction correction to the conductivity is observed for
temperatures below 400 mK. Above 400 mK the curvature is approximately proportional to T−1

as long as the huge magnetoresistance is observable.
We observed a discrepancy between our measurement and theory. The factor α determined

from the curvature of the huge magnetoresistance is larger than the expected value. A possible
origin of this discrepancy between theory and experiment is that the quantum scattering time τq
is dominated by smooth disorder. The influence of the strong scatterers should also be considered
in the quantum scattering time because of the description of the peak around zero magnetic field.

4. Four-in-a-row Hall bar
The second geometry we discuss here consists of four Hall bars with different length-to-width
ratios (Figure 3). On the basis of this special geometry we could measure the influence of the
geometry on the strong negative magnetoresistance in one cooling cycle. Several samples were
produced and measured and all of them showed similar results.
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Figure 3. Schema of the four-in-a-row Hall bar. Each section of this geometry has a different
width w and a different potential probe spacing l, which are note below the corresponding
section.

4.1. Geometry Information
The four-in-a-row Hall bar has a total length of 2.7 mm and is separated into four sections. Each
section consists of a Hall bar with a different length-to-width ratio. The first section in Figure 3
has a width of w = 130 μm and a potential probe spacing of l = 195 μm. The second section
has the same length-to-width ratio as section I. The width of the section II is w = 65 μm and
the potential probe spacing is l = 97.5 μm. Section III has the smallest width (w =32.5 μm)
and a potential probe spacing of l = 195 μm. The section IV has a width of w = 130 μm and a
potential probe spacing of l = 82.25 μm.

Two types of contact geometries are used for the four-in-a-row Hall bar. The potential probe
spacing of section I and of section III is large enough to put the ohmic contacts in the middle of
the side contact. The situation is changed for the other sections. The potential probe spacing
is here too small. The size of the ohmic contacts can’t be reduced, so the ohmic contacts are
shifted to one side.

4.2. Magnetotransport Measurement
Figure 4 (a) shows the longitudinal resistivity ρxx and the Hall resistance Rxy vs. the magnetic
field B for section I of the four-in-a-row Hall bar (red). Also a corresponding measurement of
a reference Hall bar (black) is shown. The length-to-width ratio of section I is the same as
for the reference Hall bar, so one could expect a similar behavior of the longitudinal resistivity
and the Hall resistance. We observe instead that the minima of the longitudinal resistivity of
section I increase till filling factor ν = 4, then the longitudinal resistivity decreases. Also the
slope of the Hall resistance of section I changes at small magnetic fields and the values of the Hall
plateaus are lower than usually. The Hall plateaus are the expected ones only at filling factor
ν = 4/3 for magnetic fields B > 12 T. This astonishing behavior is observed for each section
of the four-in-a-row Hall bar for different samples. The minima of the longitudinal resistivities
increase till filling factor ν = 4 for each section of the geometry and then drop to zero. Also the
Hall resistances deviate at small magnetic fields for each length-to-width ratio from the linear
behavior with magnetic field. The increase of the longitudinal resistivity is stronger for the
smallest length-to-width ratio, while the Hall plateaus decrease to lower values for the highest
length-to-width ratio.

A possible origin of the unexpected behavior considers charge puddles in the doping layer.
The influence of the charge puddles for wide samples is negligible as long the extension of the
charge puddles is much smaller than the width of the sample. In the situation of the narrowest
section of the four-in-a-row Hall bar the size of the charge puddles could be in the range of
the width of the Hall bar and short-circuit the sample in this way. Hence all magnetotransport
measurements of this geometry will be influenced by these charge puddles due to the short-
circuit in the narrowest part and the interconnection of the whole sample in the quantum Hall
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Figure 4. (a) The Hall resistance Rxy and the longitudinal resistivity ρxx of section I vs. the
magnetic field B at 45 mK. The dotted line is the corresponding measurement of a reference Hall
bar. (b) The longitudinal resistivity ρxx reduced by the corresponding ρ0 around zero magnetic
field for different geometries.

regime.
Figure 4 (b) shows the longitudinal resistivity ρxx reduced by the corresponding ρ0 vs.

the magnetic field B around zero magnetic field for different geometries. The strong negative
magnetoresistance around zero magnetic field is observed for each section of the geometry. The
curvature of the peak around zero magnetic field is left unchanged for different length-to-width
ratios, while the height of the peak is changed. Differences in the curvature are observed for
different sample materials. The situation of the huge magnetoresistance is here more complicated
and a conclusion for a geometry dependence is not possible.

5. Conclusion
We observe for each sample geometry a strong negative magnetoresistance around zero magnetic
field which consists of a peak around zero magnetic field and of a huge magnetoresistance at larger
fields. The huge magnetoresistance depends strongly on temperature and electron density, while
the peak around zero magnetic field is left unchanged. The peak around zero is left unchanged
also for different geometries.
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