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Abstract. Collapse transition of the lattice polymer on a square lattice is studied by
calculating the exact partition functions up to chain length 38; they are obtained by enumerating
the number of possible conformations for each energy value. We observe that the locus of
partition function zeros approaches the positive real axis as the chain length increases, providing
evidence of the collapse transition. The crossover exponent and the transition temperature are
estimated from the scaling behavior of the first partition function zeros with increasing chain
length.

1. Introduction

A flexible polymer chain in a dilute solution is influenced by both hydrophobic interactions
between the monomers and the excluded volume effect. The attractive interactions are neglected
at high temperatures or in a good solvent, but become significant as the temperature T is lowered.
As T reaches a special temperature 6, the linear polymer undergoes an abrupt change from an
expanded conformation for 7' > 6 to a fully compact conformation for 7' < 6 [1, 2, 3]. A long
polymer in a good solvent is a critical system, and the collapse transition at 7' = 6 has been
identified as a tricritical transition [3, 4]. The 0 point behavior is well-described by self-avoiding
walks with attractive interaction energy assigned for each pair of nonbonded nearest-neighbor
(NN) monomers. The tricritical exponents take the mean-field values for d > 3, and there are
logarithmic corrections at d = 3 [3, 4, 5, 6, 7, 8, 9]. A great deal of studies have been performed
to understand the nature of the collapse transition in two dimensions, which is expected to
exhibit much more non-trivial behavior than its higher dimensional counterparts.

In this work, we calculate the exact partition function of a polymer on a square lattice
with chain length 38 for the first time, and obtain the crossover exponent and the tricritical
temperature by examining their scaling behavior of the partition function zeros with increasing
chain length.

2. Number of conformations
By using self-avoiding walks on a square lattice, conformations of a polymer chain with N
monomers are modeled. The position of a monomer i is expressed as r; = (a,b) with integer
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values of the coordinates a and b. Chain connectivity requires bond length is unity, |r;—r;y1| = 1,
and the excluded volume effect does allow only one monomer on each lattice, r; # r; for i # j.
We consider the Hamiltonian with the nearest-neighbor interaction:

H: —EZA(I‘i,I‘j), (1)
1<)
where L o[> 1 and | =1
I |2—7| > an r, —r;| =
Alri 1) = { 0 otherwi]se, ’ 7 (2)
and € is set to a positive value to incorporate the attractive interaction between the monomers.
Assuming that the polymer chain has an intrinsic direction, the conformations with reverse
labels ¢ <+ N —i+ 1 for all (i = 1,2,---,N) are considered distinct. The total number of
conformations generated by rotations and reflections from a given two-dimensional conformation
is 8, since the rigid rotations and reflections in two dimensions form an 8-fold symmetry. The
straight chain is an exception, however, a one-dimensional conformation invariant with respect
to reflection perpendicular to the chain, where the total number of conformations generated by
rotations and reflections is 4. Here, we define the reduced number of conformations wy (K),
where conformations related by rigid rotations, reflections, and translations are regarded as
equivalent, and counted only once. Consequently, the number of conformations with rigid
rotations and reflections considered distinct, denoted by Qn(K), can be easily obtained by

[ Swn(K)—4 if K =0,
v (K) = { 8wy (K) otherwise. (3)

Thus, one can achieve about 8-fold reduction in the computing time by enumerating the reduced
number of conformations wy (K) instead of Qn(K) [10, 11]. We obtained wy (K) up to N = 38
by the help of a parallel algorithm classifying conformations by sizes of rectangles they span [12].
The number of conformations Qn(K) for N = 38 is presented in table 1.

3. Partition function zeros in the complex temperature plane

Partition function zeros have been the subject of interest as a sensitive indicator of a phase
transition [10, 11, 13, 14, 15, 16]. Partition function zeros were introduced by Yang and Lee
in the complex fugacity plane of a fluid system and the complex magnetic-field plane of the
nearest-neighbor Ising ferromagnet (Yang-Lee zeros), to study the phase transition driven by
the fugacity or the magnetic field [17]. Later, Fisher [18] used the partition function zeros
in the complex temperature plane (Fisher zeros) of the square-lattice Ising model, to study the
temperature driven transition. In the thermodynamic limit, the locus of zeros forms a continuous
curve which crosses the real axis if a transition exists. Thus, the theory of partition function
zeros provides the explanation on how the partition function, which is an analytic function
of thermodynamic parameters at a finite size, acquires the singularities necessary for a phase
transition in the thermodynamic limit. In the case of Fisher zeros, the transition temperature in
the thermodynamic limit is the intersection point of the locus of zeros with the real temperature
axis. Therefore, the conjugate pair of zeros closest to the positive real axis, called the first zeros,
determine the leading singular behavior of the partition function. Since the behavior of the first
zeros can be analyzed separately from the other zeros, the phase transition can be analyzed
more accurately by computing the partition function zeros than studying real-valued quantities
such as the specific heat which includes the effect from all the zeros [11].

The partition function of our model is

Kmax(N)

Z=> = P Qv (K)y", (4)
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Table 1. The number of conformations Q(K) on a square lattice as a function of the number
of contacts K for chain length 38.

K Q(K)

0 128296079455572
1 515427549335840
2 1128115046251464
3 1756218784960648
4 2184512179070336
5 2306182278125992
6 2144957763099744
7 1799694003510208
8§  1385401931446192
9 990209382129048
10 663137244947784
11 418840297796560
12 250761159690416
13 142813585256872
14 77560661732336
15 40218582883856
16 19921507091832
17 9413632521400
18 4236279016096
19 1807558226256
20 725595746792
21 271663920168
22 93029010016
23 28148212408
24 7210320464
25 1082656960
26 45293464

Total 15968852281708724

where y = exp(fe), 8 = 1/kpT, and Kpax(N) is the maximum number of possible contacts for
polymer length N [19],

[ N-2m for m? < N <m(m+1),
Kmax(N)_{ N—-2m—1 for m(m+1) <N < (m+1)? ©)

where m is a positive integer. Then, the partition function becomes a Ky ax-th order polynomial
of y and can be expressed in the form,

Z(y) = Aly) [T — ), (6)

]

where A(y) is a function which is analytic in the whole complex plane and the partition function
zeros y; (i = 1,2,---, Kpax) are obtained by solving the polynomial equation Z(y) = 0 with
MATHEMATICA. Figure 1 shows the partition function zeros for N = 38 in the complex
temperature plane. One can realize that the first zeros approach the positive real axis in the
complex temperature plane as polymer length increases (figure 2).
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Figure 1. Positions of the partition function zeros in the complex temperature (y = eﬁf) plane
for N = 38. The first zeros are the ones closest to the positive real axis.

4. Crossover exponent and tricritical temperature
The crossover exponent ¢, introduced in the Introduction, also describes how rapidly the first
zeros approach the positive real axis as N increases [11, 13],

Im(yy (N)] ~ N72, (7)

where y1(N) is a first zero for a polymer chain with N monomers. In finite-size systems
(N = even), the crossover exponent is approximated as

~ In{Im[y (N + 2)]/Tm[y: (V)]}

PN = In{(N + 2)/N} ’ (8)

which reduces to the exact value of ¢ in N — oo limit, estimated by using the Bulirsch-Stoer
(BST) extrapolation [20]. We obtain ¢ = 0.430(29) from the data for even N with N > 22, where
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Figure 2. Positions of the first zeros in the first quadrant of the complex temperature (y = e7)
plane for even lengths N = 10, 12, 14, ---, 38 from left to right. The first zeros approach the
positive real axis as IV increases.

the estimated error can be further reduced by removing unreliable data obtained from N < 22.
The error is estimated by examining the robustness of the extrapolated value with respect to
perturbations of the data points, but it is not a statistically rigorous confidence level [11, 20].
The value of ¢ we obtained agrees quite well with the exact value 3/7 obtained by analytic
calculation on the polymers on the hexagonal lattice [8], which is believed to be in the same
universality class as those on the square lattice.

With the value of ¢, the tricritical temperature can be obtained by estimating the point on
the positive real axis where the first zeros approach in the limit of N — oo,

Re[y1 (V)] — ye ~ N2 (9)

The value of y. = 2.15(30), which corresponds to § = 1.31(32), is obtained by extrapolating the
data for even N with N > 22. In table 2, our results given in the first line are compared with
those from the earlier works.
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Table 2. The tricritical temperature # and the crossover exponent ¢ obtained in the current
work, displayed in the first line, are compared with those in the literature. 6 is displayed only
for the model of the current work.

Method lattice Nmax 0 )
Exact partition function zeros square 38 1.31(32) 0.430(29)
Field theory [5] N/A N/A - L (= 0.64)
Monte Carlo [6] square 160  1.31(6) -
Renormalization group [21] N/A N/A - 19 (~0.86)
Monte Carlo [22] square 200  1.55(15) 0.6(1)
Transfer matrix [7, 23] square N/A  1.42(4) 0.48(7)
Series expansion [24] triangular 16 - 0.64(5)
Coulomb gas method [8§] hexagonal N/A - 2 (~0.43)
Monte Carlo and RG [25] square 40  1.54(7) 0.52(7)
Monte Carlo [26] hexagonal 300 - 0.5(1)
Scanning simulation [27] square 240  1.52(1) 0.530(4)
Recursive enrichment method [28] square 2048  1.504(5) 0.435(6)
The pruned-enriched Rosenbluth method [29]  square 256 1.4993(23) -
Interacting growth walk [30] square 2000 0.419(3)

square 1600 1.50

Monte Carlo [31] 0.545(4)

Monte Carlo [32] square 300 1.505(18) -

Monte Carlo [33] square 3200 1.4986(11) 0.46(3)
Exact enumeration [34] square 26 1.515(47) -

Monte Carlo [34] square 71 1.529 -

5. Discussion

With the number of all possible conformations obtained by exhaustive enumeration up to chain
length N = 38, we studied the collapse transition of a polymer on a square lattice by calculating
the partition function zeros. We observed that the first zeros tend to approach the positive real
axis as the chain length increases, and we measured the crossover exponent ¢ and the tricritical
temperature 6 by the BST extrapolation.

The maximum chain length in our study is so much shorter in contrast to Monte Carlo
approaches with polymer lengths up to several hundreds or thousands. According to the
exactness of our data, however, we could use a powerful extrapolation method and then
estimated reasonably accurate values of the crossover exponent and the tricritical temperature.
Furthermore, the partition function zeros allow us to carry out much more accurate analysis of
the collapse transition than examining the radius of gyration or specific heat.
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