24th TUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing
Journal of Physics: Conference Series 454 (2013) 012082 doi:10.1088/1742-6596/454/1/012082

Multi-threaded adaptive extrapolation procedure for
Feynman loop integrals in the physical region

E de Doncker!, F Yuasa® and R Assaf!

! Department of Computer Science, Western Michigan University, Kalamazoo MI 49008, U. S.
2 High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki,
305-0801, Japan

E-mail: elise.dedoncker@umich.edu, fukuko.yuasa@kek.jp, rida.assaf@umich.edu

Abstract. Feynman loop integrals appear in higher order corrections of interaction cross
section calculations in perturbative quantum field theory. The integrals are computationally
intensive especially in view of singularities which may occur within the integration domain. For
the treatment of threshold and infrared singularities we developed techniques using iterated
(repeated) adaptive integration and extrapolation. In this paper we describe a shared memory
parallelization and its application to one- and two-loop problems, by multi-threading in the
outer integrations of the iterated integral. The implementation is layered over OpenMP and
retains the adaptive procedure of the sequential method exactly. We give performance results
for loop integrals associated with various types of diagrams including one-loop box, pentagon,
two-loop self-energy and two-loop vertex diagrams.

1. Introduction
Feynman loop integrals are generally affected by non-integrable singularities, through vanishing
denominators in the interior and/or at the boundaries of the integration domain. In order to
handle singularities inside the domain, the value for the integral is calculated by introducing a
parameter 70 in the integrand denominator, effectively moving the singularity into the complex
plane, and by taking the limit of the integral as § — 0. We make use of numerical iterated
integration and a procedure for convergence acceleration or extrapolation of a sequence of
integral values as § decreases.

A loop integral for a diagram with L loops and N propagators is given in Feynman parameter
space as

(N - nb) N . ON-n(L+1)/2
1 = W(—l) /D jljldmjé(l_ij)(D—icSC’)N—”L/?’ (1)

where C' and D are polynomials in x1,x2,...,2xy, determined by the topology of the
corresponding diagram and the physical parameters. Here D represents the N-dimensional
unit hypercube integration domain, and the delta function §(1 —)" z;) reduces the integration
to the (N — 1)-dimensional unit simplex.

Loop integrals are generally divergent when denominators vanish in the integration region. We
assume Z does not suffer from other divergences, such as infrared (IR) divergence, and exists in
the limit as the parameter § — 0. To calculate the limit numerically [1], we generate a sequence

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

24th TUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing
Journal of Physics: Conference Series 454 (2013) 012082 doi:10.1088/1742-6596/454/1/012082

of T = Z(9) for (geometrically) decreasing values of 0, and apply convergence acceleration or
extrapolation to the limit with the e-algorithm [2, 3].

We have implemented the basic method in DCM (Direct Computational Method) for loop
integrals. The technique can achieve high accuracies compared to, e.g., Monte Carlo integration,
and it has been shown to successfully handle some singular problems which are problematic for
other adaptive multivariate integration programs. The obtained accuracy helps controlling the
accumulation of numerical error in large-scale calculations, where the precision of the end-results
is fundamental for comparisons between theoretical and experimental results.

In previous work [4] we introduced a technique utilizing multi-threading for a parallel
computation of the integrals. In this paper we add a parallelization on possibly multiple levels
of the iterated integral, and focus further on testing the application to loop integrals. The
implementation is layered over OpenMP [5] and retains the adaptive procedure of the sequential
method exactly. Thus, each parallel execution performs the same subdivisions and function
evaluations as the corresponding sequential run and can be regenerated; which is an important
issue in the verification and debugging of parallel programs, and for avoiding useless parallel
work. The parallelization is with respect to the function evaluations in the iterated method,
where each function evaluation is itself an integral (except at the lowest level). This is important
to guarantee a large enough granularity for the parallel procedure.

Concepts underlying automatic adaptive integration are reviewed in section 2 below. Their
incorporation within an extrapolation strategy as implemented in DCM is outlined in section 3.
section 4 describes our parallelization of iterated integration for a multi-threaded environment.
Applications to the computation of Feynman loop integrals are given in section 5, with timing
results using the OpenMP Application Program Interface (API).

2. Automatic adaptive integration
An automatic integration procedure can be considered as a black-box approach to produce (as
outputs) an approximation Q(f) to an integral

17 = [1@ az (2)

and an error estimate £f of the actual error Ef = |Qf — I f], in order to satisfy an accuracy
requirement of the form

’Qf_lf| < &f < max{ta,truﬂ}’ (3)

where the integrand function f, region D and (absolute/relative) error tolerances t, and t,,
respectively, are specified as part of the input.

A versatile type of algorithm to implement the black-box approach performs an adaptive
partitioning of the integration region as shown in figure 1. At each step, a region is subdivided,
integral and error estimates are computed over the subregions, and the overall result and error
estimate are updated. Various strategies are possible for the selection of the region to be
subdivided at each step. A global adaptive strategy maintains a priority queue on the subregion
collection (e.g., a linked list or a heap), keyed with the local error estimates of the subregions,
and selects the region with the highest (absolute) error estimate for subdivision at each step. As
a result of the region selection in adaptive procedures, sample points tend to be concentrated
in the vicinity of irregular behavior such as singularities, discontinuities, peaks or ridges and
troughs of the integrand function.

Examples of adaptive integrators include the 1D adaptive programs of the QUADPACK [6]
package, the program DCUHRE [7] for multivariate integration over a cube, and programs in
CUBPACK [8] for adaptive integration over cubes and simplices.

24th TUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing
Journal of Physics: Conference Series 454 (2013) 012082 doi:10.1088/1742-6596/454/1/012082

Evaluate initial region and update results
Initialize priority queue with initial region
while (evaluation limit not reached and
estimated error too large)

Retrieve region from priority queue

Split region into subregions

Evaluate new subregions and update results

Insert new subregions into priority queue

Figure 1. Adaptive Integration Meta-Algorithm

The local integral (over a subregion/interval) is approximated by a (cubature/quadrature)
rule which is a linear combination of function values, of the form Zszl wkf(q:gk), l‘ék), e ,xg\’;)).
By evaluating more than one rule over the subregion, a local error estimate can be obtained
as a function of the difference between local integral approximations. For example, the (1D)
program DQAGE of the QUADPACK package uses a pair of approximations, given by an r-point
Gauss rule and the interlacing (2r + 1)-point Kronrod rule. The QUADPACK user has the option
of choosing one of the pairs with » = 7,10, 15, 20,25 or 30. The Kronrod rule supplies the local
integral approximation, and the Gauss rule (together with the Kronrod rule) serves to obtain
the local error estimate. The r-point Gauss rule is of polynomial degree of accuracy 2r —1 (i.e.,
it integrates all polynomials of degrees 0, - - - , 2r — 1 exactly, and there are polynomials of degree
2r which are not integrated exactly). The Kronrod rule is of polynomial degree 3r + 1 if r is
even, and of degree 3r 4+ 2 when r is odd (because of symmetry). The multivariate program
DCUHRE applies an embedded sequence of cubature rules [9] for the local integral and error
approximations over a subregion.

3. Integration and extrapolation strategy

The infinitesimal parameter ¢d in the denominator of (1) prevents the integral from diverging
and in that sense plays the role of a regulator. We consider the integral as a function of § and
construct a sequence of approximations to Z = Z(0) for a decreasing sequence of ¢, in order to
perform an extrapolation to the limit as § — 0. Methods for an extrapolation of the sequence rely
on the existence of an asymptotic expansion () ~ I +a1¢1(d)+azp2(d)+--- , as 6 — 0. Linear
or nonlinear extrapolation methods can be explored under certain conditions on the functions
©we(9) (see, e.g., [1]). DCM implements a nonlinear extrapolation or convergence acceleration
with the e-algorithm of Wynn [2, 3|, which can be applied under more general conditions than
linear extrapolation.

A schematic view of the program flow of DCM is given in figure 2 [10]. Note that 6 = 0 is valid
in cases with unphysical kinematics, that is, where no divergence appears and no extrapolation
is required, so the multi-dimensional integration only can be carried out.

For the numerical integration, we use iterated integration with the QUADPACK programs
DQAGE or DQAGSE [6]. The extrapolation is applied to a sequence of Z(J;) computed for
a geometric progression of d;, such as c(1.277),5 > 0 where c is a constant. We have used
DCM for automatic integration without explicit information about the location or nature of the
singularity, for various cases of one- and two-loop diagrams including 3-point (vertez), 4-point
(box) [1, 11, 12, 13], 5-point (pentagon) and, after reductions, 6-point (hezxagon) diagrams [14];
as well as two-loop self-energy [15], double box, ladder and crossed vertex [16, 17, 18, 19, 20, 21]
diagrams with masses. The techniques were further incorporated for semi-automatic calculations

24th TUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing
Journal of Physics: Conference Series 454 (2013) 012082 doi:10.1088/1742-6596/454/1/012082

Physical N
kinematics ?
i

initialize set
regulator regulator=0

—— |

Integrate, set
next sequence

element i
i v
Done
Y Abnormal Extrapolate the
Done

Integration

termination? sequence of |

Update
regulator

Done

Figure 2. Program flow of DCM

of loop integrals with infrared divergences, in [18, 22].

4. Parallel numerical iterated integration

4.1. Iterated integration

In this paper we are dealing with iterated 1D integration over a finite d-dimensional product
region, i.e., the integral I f in (2) can be written as

B B2 d
If = dml/ dacg.../ drg f(x1,22,...,249), (4)
[e%} a2 Qg

and the limits of integration may in general be functions, o; = aj(x1,22,...,2;-1) and
Bj = Bj(x1,x2,...,2;-1). The integration over the interval [, 3;] will be performed with a
1D adaptive integration code, and different 1D integration programs may be applied in different
directions 1 < j < d.

If an interval [a, b] arises in the subdivision of [a;, 3;] for 1 < j < d, then the local integral
approximation over [a, b] is of the form

b K
/ d.iEj F(cl,...,cj_l,wj) ~ Zka(Cl,...,Cj_l,LE(k)), (5)
a k=1

24th TUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing
Journal of Physics: Conference Series 454 (2013) 012082 doi:10.1088/1742-6596/454/1/012082

where the wy, and z(¥),1 < k < K, are the weights and abscissae of the local rule scaled to the
interval [a,b] and applied in the xj-direction. For j = 1 this is the outer integration direction.
The function evaluation

Bi+1 Ba
F(Cl,...,le,lL'(k)):/ dajj+1'-' dl’d f(Cl,...,ijl,ZU(k),l'jJrl,...,ZL‘d), 1§k3§K7
e

1 g
(6)
is itself an integral in the x;41,...,z4-directions, and is computed by the method(s) for the
inner integrations. For j = d, (6) is the evaluation of the integrand function

F(Clu -y Cd—1, x(k)) = f(Cl, cee 7cd717$(k))'

Note that the error incurred in the inner integration is subject to an error control condition of
the form (3) and will contribute to the overall integration error. Work on the integration error
interface is reported in [23, 24, 25].

Subsequently, in section 5, we give results obtained with 1D repeated integration by the
program DQAGE from QUADPACK, where the local integration is performed with the (7, 15)-
or the (10, 21)-points Gauss-Kronrod pairs. We will refer to the latter as GK15 and GK21,
respectively.

The inner integrals given by (6), which appear in the local rule sum of (5), are independent
and can thus be evaluated in parallel, by multiple threads. In previous work [4, 26] we reported
results of this parallelization applied to the outer direction of integration using OpenMP.
Important properties of this method include that: 1) the granularity of the parallel integration is
large, especially when the inner integrals given by (6) are of dimension greater than two; 2) apart
from possibly the order of the summation in the local rule evaluation, the parallel calculation is
the same as the sequential evaluation.

Nesting of parallel constructs is also feasible, for a parallel evaluation of the rule in multiple
coordinate directions of the iterated integral. The current implementation allows for a nested
parallelization in the outer and the next to outer level (corresponding to the x; and x5 directions
in the iterated integral (4)); this can be extended to more or different levels. This feature is
beneficial when the inner integral evaluations at the xi-level are very time-consuming, so the
work can be further distributed to new threads, on systems where a large number of threads are
available.

5. Results for Feynman loop integrals
We implemented the methods of section 4 as a multi-threaded application layered over
OPENMP [5], and report timing results on: a multi-core Intel workstation with Xeon X5680
@3.33GHz, 6-core (12 logical)-core CPU (“minamivt005”); the Hitachi SR16000/M1 with
POWERT @3.83GHz, 32-core processors at KEK; and the Intel cluster (“thor”) at WMU with
Xeon E5-2670 processors, 16 cores per node.

The compilers used were: on minamivt005, the Intel ifort Fortran XE compiler with flag
-openmp; the f90 compiler with flag -omp on SR16000; and the gfortran compiler with flag
-fopenmp on thor. Furthermore we are working on a C version of the package, which is being
tested with gecc -fopenmp.

In all cases the main loop in the rule routines DQK15 and DQK21 of QUADPACK was
parallelized (for the outer two integrations), by means of an OpenMP omp parallel do for the
Gauss and Kronrod rule evaluations. On comparing loop schedules, we found that the dynamic
loop schedule outperforms the default static schedule in selected test problems, on minamivt005
and on thor. In the static schedule, the participating threads are assigned their loop iterations at
the beginning of the loop, in a round-robin fashion; thus the assigned iterations are determined

24th TUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing

Journal of Physics: Conference Series 454 (2013) 012082 doi:10.1088/1742-6596/454/1/012082
1 T T T T T
ggtth real part (SR16000) —F—
\\ ggtth real real part (minamivt)
o8l |\ -
\
0.6 | \\ —
F \
e \
04 \ B
\\H\
\% e ~—
02 ~—N~— I .
— |
0 1 1 1 1 1
2 4 6 8 10 12

number of threads (p)

Figure 3. p, vs. # threads p on SR16000 and minamivt005 for vy — t ¢ H (1-loop pentagon)

only by the thread ID and the total number of iterations. The dynamic schedule adjusts the
assignments at runtime. The threads can request more work at the completion of their previously
assigned iterations, which is beneficial for load balancing in cases where the integrand behavior
over the subregion is non-uniform. On SR16000 the dynamic schedule is not available, and
neither is nested loop scheduling.

In [4] we reported timings for a one-loop non-scalar box problem, My(f,g;d) from [27].
Presently we give timings for loop integral computations corresponding to the one-loop pentagon,
two-loop self-energy, and two-loop ladder vertex diagrams and parameters specified below.
The running times are total elapsed times spent in the integration code. The time for the
extrapolation is negligible compared to the integration time.

For the one-loop pentagon diagram corresponding to the interaction vy — t¢H, the
integral (1) with L =1, N =5, n = 4, reduces to

1 11—z l—-z—y l—-z—y—u C
I:—2/ dx/ dy/ dz/ du ————
0 0 0 0 (D —1i6)3

via the simple transformation 1 =1, ze =1 -2 —y—2z—u, v3 =y, x4 = 2z, x5 = u (and
i 1
omitting the factor W)' Here
D — 2 2 2 2 2 . .
= x1m] + Tomy + T3mz + Tymy + LMy — L1T281 — L2T352 — L3T4S3
— T4T584 — T5X185 — T1T3812 — L2X48523 — L3L5534 — L4X1545 — L5L2851,

=1, (7)

and the m; are masses, the p; are external momenta, s; = pJQ- and s;5.. = (pi +pj + ..)2 0<
i,7 < 5. Figure 3 displays the parallel running time 7}, scaled by the sequential time 71, i.e.,
pp = Tp/T1 as a function of the number of threads p, on minamivt and SR16000. The parallel
time for the integration decreases significantly particularly on the Intel system (from 77 = 2726
sec to Tho = 287 sec, so p12 ~ 0.105). The extrapolation converges to about 5 digits.

24th TUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing
Journal of Physics: Conference Series 454 (2013) 012082 doi:10.1088/1742-6596/454/1/012082

T T
2loop selfenergy real part (SR16000) —+—

\ 2loop selfenergy real part (minamivt)
0.8 \ E
0.6 | %\ —
= \
: \
0.4 Ry -

number of threads (p)

Figure 4. p, vs. # threads p on SR16000 and minamivt005 for 2-loop self-energy diagram

Two-loop self-energy integral results are reported for the integral

5

1
1
I:/ dxldx2d$3d£v4dl'5(5l—g Ti) =,
0 (pt)CD

with

D= —kQ(x5(ZL‘1 + SU3)(:U2 + .’JU4) + (%1 + xg)x3x4 + (.1‘3 + $4)ZL‘1$2) + C'MQ,
C=(x1+ 22+ 23+ 24)25 + (21 + 22) (73 + 24),

5
T2 § 2
1=1

The masses are m; = mg = mz = my = my (= 150 GeV, top quark mass), and ms = my (=
91.17 GeV, Z-boson mass). The integral is considered for an energy parameter k? = 45000 with
k%/m? = 2 and can be evaluated without extrapolation, in sequential time 7} = 27 seconds on

minamivt005. Figure 4 displays p, as a function of the number of threads p on minamivt and
SR16000.

The integral for the two-loop ladder vertex is (1) with N =6, n =4, and C, D given by

D = —C(a1(pf —m3) + x2(p3 — m3) — x3m3 + wa(pf —m3) + w5(p3 — m3) — xemp)
O (2202 + 222 — 2 2 9 (2202 + 2292 — 9 2 .9
+ Cr(x5p3 + 24p] — Taw5(p5 — p1 — p3)) + Cow3ps + 21p] — T172(P5 — PT — P3))
+ 229w375p3 + 2217374pT — T3(T2T4 + T175)(P3 — PT — P3),
xg =1—mx1 — w2 — 13 — 14 — T3,
Ci=x1+ 22 + 3,
Co=1—-2x1 — 9,
C=x3(l —z1 —x2—23) + (x1 + 22)(1 — 21 — x2). (8)

24th TUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing

Journal of Physics: Conference Series 454 (2013) 012082 doi:10.1088/1742-6596/454/1/012082
25000 t\\jk I I 2loop Iaddelr vertex fs=5 (Intel cltllster) —f
20000 E
g 15000 | i
g \
[x

\
10000 | \ -
4\‘\‘\# \+\\
5000 +—

+—1_ i
L e e A —
1 1 1 1
5 10 15 20
number of threads (p)

Figure 5. Time T}, vs. # threads p on WMU Intel cluster for 2-loop ladder vertex, k*/m? =5

The parameters are m; = mg = my = ms = my (= 150 GeV, top quark mass), and
mg = mg = myz (= 91.17 GeV, Z-boson mass). Figure 5 gives the running time 7}, (on thor)
for the real part integral (in seconds) as a function of the number of threads p, for parameter
k% = 112500 with k?/m? = 5 (denoted by fs = 5 in the key of figure 5). It is shown that
the parallelization yields a spectacular savings in time for this compute-intensive problem (from
T, = 25800 sec to 1oy = 3897 sec).

Figure 6 gives corresponding times for the case k2/m? = 1 which is part of the unphysical
region for this problem; it is thus obtained without extrapolation by setting 6 = 0. The two
curves in figure 6 represent the computations carried out with the GK15 and GK21 Gauss-
Kronrod pairs in the x; dimension; the pair GK15 is used in the other dimensions. The (5D)
integral is computed using the transformation derived in [1].

6. Concluding remarks

In addition to the lowest order or tree level, higher order corrections are required for an accurate
theoretical prediction of the cross section of particle interactions, and for checking its agreement
with the data observed at colliders. Feynman loop diagrams need to be taken into account,
necessitating the calculation of loop integrals. While packages based on symbolic integration
are available for one-loop integrals, symbolic reductions may lead to large sets of integrals, and
analytic integration is not generally possible. The intensive nature of the direct computation
performed by DCM motivates a parallelization of the individual problems, in particular for 3D
and higher-dimensional integrals.

We have developed a multi-core parallelization on one or more function evaluation levels in the
iterated integration procedure. In this paper we give timing results of the method implemented
in OPENMP, which show good parallel performance for problems executed on a Xeon X5680, 6-
(12 logical)-core CPU workstation, and furthermore on the (Hitachi) SR16000 system at KEK
(Japan), and the Intel cluster (based on Xeon E5-2670 processors with 16 cores per node) at
WMU. The Intel cluster at WMU and the SR16000 are suited for multi-threaded computations
on each node and message passing between nodes. Future plans include hybrid (distributed

24th TUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing

Journal of Physics: Conference Series 454 (2013) 012082 doi:10.1088/1742-6596/454/1/012082
I 2loop ladder vértex fs=1 (SR16000) IGK15 —t
45+ GK21 E
4 H i
35 — i
(= \
2+ 0\ E
15 | \ i
1t ~_ i
<
Byt
0s | e et M RSN NS S S
5 10 15 20
number of threads (p)

Figure 6. Time T}, vs. # threads p on SR16000 for 2-loop ladder vertex, k?/m? =1

shared memory) parallelizations using OpenMP and MPI.

Our future work will naturally involve implementations and testing for other and more

computational intensive loop integrals.

Acknowledgments

We acknowledge the support from the National Science Foundation under Award Number
1126438. This work is further supported by Grant-in-Aid for Scientific Research (24540292)
of JSPS and the Large Scale Simulation Program No.12-07 of KEK. We also want to thank PhD
student Vasilije Perovic at WMU, who generated a first version of the C code.

References

(1]
2
3

de Doncker E, Shimizu Y, Fujimoto J and Yuasa F 2004 Computer Physics Communications 159 145-156
Shanks D 1955 J. Math. and Phys. 34 1-42

Wynn P 1956 Mathematical Tables and Aids to Computing 10 91-96

de Doncker E and Yuasa F 2012 JUPAP C20 Conference on Computational Physics (CCP 2011) vol 402
(The Journal of Physics: Conference Series Dec. 2012)

| OPENMP web site, http://www.openmp.org

Piessens R, de Doncker E, Uberhuber C W and Kahaner D K 1983 QUADPACK, A Subroutine Package for
Automatic Integration Springer Series in Computational Mathematics (Springer-Verlag)

Berntsen J, Espelid T O and Genz A 1991 ACM Trans. Math. Softw. 17 452-456

Cools R and Haegemans A 2003 ACM Transactions on Mathematical Software 29 287-296

Berntsen J, Espelid T O and Genz A 1991 ACM Trans. Math. Softw. 17 437-451

de Doncker E and Yuasa F 2012 Measurements in Quantum Mechanics ISBN 978-953-51-0058—4

de Doncker E, Shimizu Y, Fujimoto J, Yuasa F, Cucos L and Van Voorst J 2004 Nuclear Instruments and
Methods in Physics Research A 539 269-273 hep-ph/0405098

de Doncker E, Shimizu Y, Fujimoto J and Yuasa F 2007 PAMM - Wiley InterScience Journal 7

Yuasa F, de Doncker E, Fujimoto J, Hamaguchi N, Ishikawa T and Shimizu Y 2007 XI Adv. Comp. and
Anal. Tech. in Phys. Res. PoS (ACATO07) 087, arXiv:0709.0777v2 [hep-ph]

de Doncker E, Fujimoto J, Kurihara Y, Hamaguchi N, Ishikawa T, Shimizu Y and Yuasa F 2010 X/V Adwv.
Comp. and Anal. Tech. in Phys. Res. PoS (ACAT10) 073

24th TUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing
Journal of Physics: Conference Series 454 (2013) 012082 doi:10.1088/1742-6596/454/1/012082

[15] Yuasa F, Ishikawa T, Fujimoto J, Hamaguchi N, de Doncker E and Shimizu Y 2008 XII Adv. Comp. and
Anal. Tech. in Phys. Res. PoS (ACATO08) 122; arXiv:0904.2823

[16] de Doncker E, Shimizu Y, Fujimoto J and Yuasa F 2006 LoopFest V, Stanford Linear Accelerator Center
http://www-conf.slac.stanford.edu/loopfestv/proc/present/ DEDONCKER.pdf

[17] de Doncker E, Fujimoto J, Hamaguchi N, Ishikawa T, Kurihara Y, Shimizu Y and Yuasa F 2010 Springer
Lecture Notes in Computer Science (LNCS) 6017 139-154

[18] de Doncker E, Fujimoto J, Hamaguchi N, Ishikawa T, Kurihara Y, Ljucovic M, Shimizu Y and Yuasa F 2010
Extrapolation algorithms for infrared divergent integrals arXiv:hep-ph/1110.3587; PoS (CPP2010)011

[19] Yuasa F, Ishikawa T, Kurihara Y, Fujimoto J, Shimizu Y, Hamaguchi N, de Doncker E and Kato K
2010 Numerical approach to calculation of Feynman loop integrals arXiv:1109.4213v1 [hep-ph]; PoS
(CPP2010)011

[20] de Doncker E, Fujimoto J, Hamaguchi N, Ishikawa T, Kurihara Y, Shimizu Y and Yuasa F 2011 Journal of
Computational Science (JoCS) doi:10.1016/j.jocs.2011.06.003

[21] Yuasa F, de Doncker E, Hamaguchi N, Ishikawa T, Kato K, Kurihara Y and Shimizu Y 2012 Journal
Computer Physics Communications 183 2136-2144

[22] de Doncker E, Yuasa F and Kurihara Y 2012 XV Adv. Comp. and Anal. Tech. in Phys. Res. vol 368 (The
Journal of Physics: Conference Series)

[23] Fritsch F N, Kahaner D K and Lyness J N 1981 ACM TOMS 7 46-75

[24] Kahaner D, Moler C and Nash S 1988 Numerical Methods and Software (Prentice Hall)

[25] de Doncker E and Kaugars K 2010 Procedia Computer Science 1 117-124

[26] de Doncker E and Yuasa F 2012 Int. Conf. on Math. Modeling in Phys. Sciences

[27] de Doncker E, Kaugars K, Cucos L and Zanny R 2001 Proc. of Computational Particle Physics Symposium

(CPP 2001) pp 110-119

