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Abstract. One of the major challenges in nuclear theory is to reproduce and to predict nuclear
structure from ab initio calculations with realistic nuclear forces. As the current limitation
of direct diagonalization of Hamiltonian matrices by Lanczos iteration method is around the
order of matrix dimensionality 1010 in shell-model calculations, it is difficult to access heavier
nuclei beyond the p shell with sufficiently large basis spaces. It is possible to overcome this
difficulty by utilizing efficient approximate methods to reproduce full ab initio solutions with
good precision and quantified uncertainties. Following the major success of the Monte Carlo
shell model (MCSM) with an assumed inert core in the sd- and pf -shell regions and also by
recent developments in the MCSM algorithm, the no-core MCSM is expected to be one of the
most powerful tools to meet these conditions. We have performed benchmark calculations in the
p-shell region. Results of energies are compared with those in the full configuration interaction
and no-core full configuration methods. These are found to be consistent with each other within
quoted uncertainties when they could be quantified. We also compare and discuss the radial
density of the helium-4 ground state extracted from the MCSM and FCI many-body wave
functions.

1. Introduction
One of the major challenges in nuclear physics is to understand nuclear structure and reactions
from ab initio calculations with realistic nuclear forces. Such calculations have recently
become feasible for nuclear many-body systems beyond A = 4 due to the rapid evolution of
computational technologies. Together with the Green’s Function Monte Carlo [1] and Coupled
Cluster theory [2], the No-Core Shell Model (NCSM) is one of the relevant ab initio methods
and has been emerging for about a decade. It is now available for the study of nuclear structure
and reactions in the p-shell nuclei [3].

As the NCSM treats all the nucleons democratically, computational demands for the
calculations explode exponentially as the number of nucleons increases. Current computational
resources limit the direct diagonalization of the Hamiltonian matrix using the Lanczos algorithm
to M -scheme basis spaces (total angular momentum projection is fixed in the basis) with a
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dimension of around 1010 as indicated in figure 1 (left). In order to access heavier nuclei
beyond the p-shell region with larger basis dimensions, many efforts have been devoted to the
NCSM calculations. One of these approaches is the Importance-Truncated NCSM [4] where
the model spaces are extended by using an importance measure evaluated with perturbation
theory. Another approach is the Symmetry-Adapted NCSM [5] where the model spaces are
truncated by the selected symmetry groups. Similar to these attempts, the no-core Monte
Carlo Shell Model (MCSM) [6, 7, 8] is one of the promising candidates to go beyond the Full
Configuration Interaction (FCI) method which is a different truncation of the basis states than
the one commonly used in the NCSM. Shell-model calculations with an assumed inert core by the
MCSM have succeeded in obtaining the approximated solutions where the direct diagonalization
is difficult due to large dimensionalities as described in figure 1 (right).

In these proceedings, we focus on the latest application of the MCSM toward the ab initio
no-core calculations, which has become viable recently with the aid of major developments in
the MCSM algorithm [8, 9, 10] and also a remarkable growth in the computational power of
state-of-the-art supercomputers. The overview of the benchmarks in the no-core MCSM is based
on the results presented in [7, 8]. Moreover, we compare the radial density of the 4He 0+ ground
state from the MCSM and FCI methods. An initial attempt to draw the intrinsic density from
no-core MCSM wave functions can be found in [8].
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Figure 1. M -scheme dimension for light nuclei as a function of basis space cutoff, Nshell

(left) and M -scheme dimension for conventional shell-model calculations with an assumed inert
core as a function of publication year (right). Red squares are for the MCSM results, and black
circles are for the conventional shell-model results by the direct diagonalization with the Lanczos
technique.

2. MCSM
The MCSM has been developed mainly for conventional shell-model calculations with an
assumed inert core [11]. Recently the algorithm and code itself have been heavily revised and
rewritten so as to accommodate massively parallel computing environments [8, 9, 10]. In this
section, we briefly overview the MCSM and introduce some of recent developments. An initial
attempt for the application on K computer is also presented shortly.

2.1. Brief overview
The MCSM approach [11] proceeds through a sequence of diagonalization steps within the
Hilbert subspace spanned by the deformed Slater determinants in the harmonic oscillator (HO)
single-particle basis as the selected importance-truncated bases. Here in this subsection, we
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describe our many-body wave function and Hamiltonian adopted. Some technical details and
equations needed for the discussion in the following subsections are also presented shortly. See
regular and review articles [8, 9, 10, 11] for a detailed account.

2.1.1. Many-body wave function A many-body basis state |ΨJπM 〉 is approximated as a linear
combination of non-orthogonal angular-momentum (J) and parity (π) projected deformed Slater
determinants with good total angular momentum projection (M),

|ΨJπM 〉 =
Nb∑
n=1

fn

J∑
K=−J

gnKP
J
MKP

π|φn〉, (1)

where Nb is the number of the Slater determinants selected stochastically. P JMK is the projection
operator for the total angular momentum J with its z-projection in the laboratory (body-fixed)
frame, M (K). P π is the projection operator for the parity.

In the actual computations, the integrations for the angular-momentum and parity
projections are performed in parallel by discretizing the integrals on discrete mesh points. The
angular-momentum projection operator is discretized as

P JMK =
2J + 1

8π2

∫
dΩDJ

MK
∗
R(Ω)→

Nλ∑
λ

W
J(λ)
MK R

(λ), (2)

with the Euler angles, Ω ≡ (α, β, γ), and the Wigner D matrix, DJ
MK . R(Ω) is the rotation

operator, R(α, β, γ) ≡ eiαJzeiβJyeiγJz . Nλ is the number of mesh points for discretized Euler
angles. In the discretized summation over λ,

W
J(λ)
MK =

1

Nλ

2J + 1

8π2
DJ
MK

∗
(αλ, βλ, γλ), (3)

is the weight for the sum and R(λ) = R(αλ, βλ, γλ) is the rotational operator at the Euler angle
Ωλ = (αλ, βλ, γλ). The parity projection operator is written as

P π =
1 + πΠ

2
=
∑
ν=1,2

W π(ν)Π(ν), (4)

with the parity transformation, Π, and the weight for positive and negative parity,

W π(ν) = π(ν). (5)

Note that π(1) = 1/2, π(2) = π/2, Π(1) = 1, and Π(2) = Π.
The deformed Slater determinant in (1) is described as

|φ〉 =
A∏
i=1

a†i |−〉, (6)

with the vacuum |−〉 and the creation operator,

a†i =

Nsp∑
α=1

c†αDαi. (7)

Nsp is specified by the cutoff of the single particle basis space, Nshell. The transformation
coefficients Dαi form the complex Nsp ×A matrix with the normalization condition, D†D = 1.
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2.1.2. Hamiltonian In usual ab initio shell-model calculations, the intrinsic Hamiltonian is
expressed as

H = Trel + VNN + V3N + · · ·+ VCoulomb, (8)

where Trel is the relative kinetic energy. The VNN and V3N represent two- and three-nucleon
interactions, respectively. The VCoulomb denotes the Coulomb interaction. As explicit three-
nucleon forces have not yet been treated in the MCSM algorithm, the Hamiltonian considered
in this work consists of one- and two-body interactions only,

H = H(1) +H(2) = Trel + VNN

=
∑
ij

tijc
†
icj +

1

2

∑
ijkl

vijklc
†
ic
†
jclck, (9)

where H(1) and H(2) are one- and two-body terms. c†i and ci are the creation and annihilation
operators of single-particle state i, respectively. Here, the Coulomb interaction is also omitted
in this study.

In order to obtain eigenvalues and eigenfunctions, the coefficients, fn and gnK , in (1) are
determined by solving the generalized eigenvalue problem,∑

nK

HmM,nKfngnK = E
∑
nK

NmM,nKfngnK , (10)

with the normalization condition, 〈ΨJπM |ΨJπM 〉 = 1, so that
∑
n f
∗
nfn = 1 and

∑
K g
∗
nKgnK = 1.

NmM,nK and HmM,nK are the norm and Hamiltonian matrix spanned by the deformed Slater
determinants,(6), respectively.

From (2) and (4), the norm matrix can be expressed as

NmM,nK = 〈φm|P JMKP
π|φn〉 →

∑
λν

W
J(λ)
MKW

π(ν)〈φm|φ(λν)
n 〉, (11)

with
〈φm|φ(λν)

n 〉 = det
(
Dm†Dn(λν)

)
. (12)

Note that |φ(λν)
n 〉 = R(λ)Π(ν)|φn〉 and the matrix Dn characterizes the n-th single Slater

determinant |φn〉 as in (7).
The Hamiltonian matrix can be also written as

HmM,nK = 〈φm|HP JMKP
π|φn〉

→
∑
λν

W
J(λ)
MKW

π(ν)〈φm|HR(λ)Π(ν)|φ(λν)
n 〉

=
∑
λν

W
J(λ)
MKW

π(ν)〈φm|φ(λν)
n 〉Tr

(
ρ(λν)

(
t+

1

2
Γ(λν)

))
, (13)

where the generalized density matrix, ρ(λν), and the self-consistent field, Γ(λν), are defined,
respectively, as

ρ
(λν)
ij =

〈φm|c†jci|φ
(λν)
n 〉

〈φm|φ(λν)
n 〉

=

(
Dn(λν)

(
Dm†Dn(λν)

)−1
Dm†

)
ij
, (14)

Γ
(λν)
ik =

∑
jl

v̄ijklρ
(λν)
lj , (15)

with the antisymmetrized two-body matrix element (TBME), v̄ijkl = vijkl − vijlk. The most-

time consuming part in the MCSM is the computation of Γ
(λν)
ik . Recent improvement for the

computation related to the TBMEs is discussed in section 2.2.1.
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2.1.3. Basis search First, we stochastically sample the coefficients Dαi in (7) among all possible
many-body basis states around the mean field solutions through the auxiliary fields ~σ with the
aid of the imaginary-time evolution of the state vector,

|φ(~σ)〉 ∝ e−∆βh(~σ)|φ(0)〉, (16)

where ∆β is the time slice of the evolution and h is the one-body Hamiltonian derived by using
the Hubbard-Stratonovich transformation [11]. We then diagonalize the Hamiltonian matrix
within the subspace spanned by these Nb bases, and obtain the coefficients fn and gnK in (1).
Stochastically sampled bases are accepted so as to minimize the energy variationally. Therefore
the MCSM can evade the so-called negative sign problem, which is the fundamental issue that
cannot be avoided in quantum Monte Carlo methods. With increasing MCSM basis dimension,
Nb, the ground state energy of a MCSM calculation converges from above to the exact value.
The energy, therefore, always gives the variational upper bound in this framework. Recently,
in the step of the basis search, we adopt the conjugate gradient (CG) method by using D as a
gradient vector for minimizing the energy in addition to the initial basis search with a stochastic
sampling of D through ~σ [8, 10]. The CG process gives the reduction of the number of basis
states around 30% to obtain the same level of accuracy in the existing code which generates
candidates of the Slater determinant only by the stochastic sampling.

An exploratory no-core MCSM investigation demonstrating a proof-of-principle has been
performed for the low-lying states of the beryllium isotopes by applying the existing MCSM
algorithm without introducing the recent developments [6]. Recent improvements on the MCSM
algorithm have enabled significantly larger calculations [8, 9, 10]. We adopt these improvements
in the present work [7, 8].

2.2. Recent developments
Among the recently achieved developments of our MCSM algorithm [8, 9, 10], in this subsection,
we focus on two improvements; (1) the efficient computation of the TBMEs for the most time-
consuming part in our calculations [8, 9] and (2) the energy-variance extrapolation for our
MCSM (approximated) results to the FCI (exact) ones [8, 10]. There are other improvements,
such as the CG method in the process of the basis search and the reordering technique in the
energy-variance extrapolations. We refer for the details of these improvements to [8, 10].

2.2.1. Efficient computation of the TBMEs One of the main issues in the shell-model
calculations is to evaluate TBMEs efficiently. As the matrix for the TBMEs is sparse in general,
the indirect-index (list-vector) method is usually adopted by storing only the values of the non-
zero matrix element and their indices. The indirect-index method is also known as the coordinate
format (COO) in computer science, which is one of the most flexible and simplest formats for the
sparse matrix representation. However, it tends to give slow performance due to the irregular
memory access patterns.

Alternatively, in our recent MCSM code, we transform the sparse matrix to a block matrix
with dense blocks by utilizing the symmetries of the two-body interaction [9]. The one-body
density-matrix elements ρij are grouped as ρ̃(∆m) according to ∆m ≡ jz(j)− jz(i) where i and
j are the labels for the state. The TBMEs, v̄’s, are also similarly categorized into ṽ. Then, the
two-body part of the Hamiltonian overlap can be expressed as

Ns∑
ik

ρki Γ
(λν)
ik =

Ns∑
ijkl

ρki v̄ijkl ρ
(λν)
lj =

∑
∆m

∑
αβ

ρ̃(−∆m)αṽ(−∆m,∆m)αβ ρ̃
(λν)(∆m)β, (17)

where the last equality is derived from the necessary condition for ṽijkl being non-zero:
jz(i) + jz(j) = jz(k) + jz(l), i.e., ∆m ≡ jz(k) − jz(i) = −(jz(l) − jz(j)). Ns represents
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Figure 2. Schematic illustration of the (vector)t × (matrix) × (vector) operation.
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Figure 3. Comparison of the computational performance among the indirect-index method
(Ind.), matrix-vector method (M-V) and matrix-matrix method (M-M) with different Nvec

measured on the SPARC64 VII and Xeon X5570 systems. The values are normalized by their
theoretical peak performance. See [9] for the details.

the single-particle state in a given model space. Note that v̄ is the antisymmetrized TBME.
Figure 2 is the schematic illustration of the (vector)t × (matrix) × (vector) operation expressed
with (17), (matrix) × (vector). As seen in figure 2, the sparse matrix v̄ is transformed to a
block-antidiagonal matrix ṽ whose blocks are dense submatrices.

Furthermore, most of the computational time is devoted to the (matrix) × (vector) operation.
It is usually repeated a number of times for different vectors, ρ̃(λν) with the same matrix, ṽ.
By binding Nvec ρ̃

(λν)-vectors into a matrix, θ(λν), repeated (matrix)×(vector) operations are
replaced by a (matrix) × (matrix) operation at once,

(Γ̃
(λν)
1 , Γ̃

(λν)
2 , . . . , Γ̃

(λν)
Nvec

) = (ṽρ̃
(λν)
1 , ṽρ̃

(λν)
2 , . . . , ṽρ̃

(λν)
Nvec

) ≡ ṽθ(λν), (18)

where the number of columns Nvec can be chosen arbitrarily. As shown in figure 3, this matrix
product is computed with the BLAS level 3 library and we can achieve 70 − 80% of the peak
performance with Nvec ∼ 30− 100 in the test case of the (matrix) × (matrix) operation [9].

2.2.2. Energy-variance extrapolation to the FCI results With increasing Monte Carlo basis
dimension Nb, the MCSM results converge to the FCI results from above. In order to estimate
the exact FCI answer, we extrapolate the energy and other observables evaluated by MCSM
wave functions using the energy variance [8, 10]. That is, the MCSM results are plotted as a
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function of the evaluated energy variance,

∆E2 = 〈Ψ|H2|Ψ〉 − (〈Ψ|H|Ψ〉)2 (19)

and then extrapolated to zero variance.
This kind of extrapolation has been enabled recently by the growth of the computational

power and the factorization of the formula. In order to evaluate the expectation value of H2,
we have to compute

〈ΨJπM |H2|ΨJπM 〉 =
∑

m,M,n,K,λ,ν

f∗mg
∗
mMfngnKW

J(λ)
MKW

π(ν)〈φm|H2|φ(λν)
n 〉. (20)

The obstacle in the implementation was the large amount of computation to evaluate

〈φm|H2|φ(λν)
n 〉. Suppose H2 is a general four-body operator, the evaluation of the matrix element

involves the eightfold-loop summation of the 24 terms of products of four generalized one-body
density matrices, ρ. However, due to the separability of H2, the evaluation of the matrix element
can be factorized as

〈φm|H2|φ(λν)
n 〉

〈φm|φ(λν)
n 〉

=
∑

i<j,α<β

∑
k<l

v̄ijkl
[
(1− ρ(λν))kα(1− ρ(λν))lβ − (1− ρ(λν))lα(1− ρ(λν))kβ

]
×

∑
γ<δ

v̄αβγδ(ρ
(λν)
γi ρ

(λν)
δj − ρ(λν)

δi ρ
(λν)
γj )


+Tr

[
(t+ Γ(λν))(1− ρ(λν))(t+ Γ(λν))ρ(λν)

]
+

{
Tr

[
ρ(λν)

(
t+

1

2
Γ(λν)

)]}2

. (21)

Here, the trivial summations and their indices for the matrix products are omitted for readability.
This factorization reduces the eightfold loop into a sixfold loop and decreases the computation
time drastically. Note that the similar transformation to block matrices discussed in section 2.2.1
is also utilized in the evaluation of (21) so that the computation time is further reduced.
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Figure 4. 4He ground-state energies as functions of number of basis states (left) and energy
variance (right). From the above to the bottom, the symbols (horizontal dashed lines in the left
figure and open symbols at the zero energy variance in the right figure) are the MCSM (FCI)
results in Nshell = 2, 3, 4 and 5, respectively. See [7] for the details.

As a typical example of the implementation, the behavior of the ground-state energies of 4He
(0+) with respect to the number of basis states and to the energy variance are shown in figure 4.
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From figure 4, one can see that the MCSM results can be extrapolated into the FCI ones by
using the quadratic fit function of E(∆E2) = E(∆E2 = 0) + c1∆E2 + c2(∆E2)2 with the fit
parameters, E(∆E2 = 0), c1, and c2.

2.3. Test runs on K computer
At the initial stage of the implementation of K computer, we have performed some test
calculations to measure our code performance. In this subsection, we show some of the test
calculations: the ratio to the peak performance and the parallel efficiency of our code.

2.3.1. Ratio to the peak performance In order to measure our code performance on K computer,
we have chosen the optimization of 15th basis dimension of the wave function in Nshell = 5 with
100 CG iterations without the preprocessing as a test case. The code has run on K computer
by using MPI/OpenMP with 8 threads.

Figure 5 illustrate our recent MCSM code performance. The left panel of figure 5 shows
the ratio to the peak performance in the calculation of the 4He 0+ ground state. Although the
performance decreases as the number of CPU cores increases, it is around 30 - 40% up to 30720
cores (8 cores per node). The right panel of figure 5 shows the ratio to the peak performance
as a function of the atomic numbers. The nuclear states listed in the figure are for the ground
state of each nucleus. From the figure, the dependence of the performance on atomic number A
is relatively weak for the number of nucleons at least up to A = 12.
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Figure 5. Ratio to the peak performance of the MCSM test calculations. Peak ratio of the
calculation for the 4He (0+) ground state as a function of the number of cores (left). Peak ratio
of the calculation for the ground states as a function of the number of nucleons (right). Red
circles denotes the results with 30720 cores, and blue squares are with 15360 cores.

2.3.2. Parallel efficiency For testing the parallel efficiency, we have measured the dependence
on the number of CPU cores. Figure 6 demonstrates the speedup (left) and the strong scaling
(right) of our MCSM code on K computer as a function of the cores. The test case is the
optimization of the 15th (48th) basis for 4He 0+ ground state in Nshell = 5 (6) with 100 CG
iterations without the preprocessing. Each setup has been chosen so that the number of MPI
tasks is divisible by Nprocs, for simplicity. 32 × 32 × 30 mesh points are used for the angular
momentum projection, and 2 for the parity projection.

The left panel describes the speedup with arbitrary unit. In figure 6, the dotted line
describes the perfect (ideal) scaling. The right panel of figure 6 is about the strong scaling.
Here αstrong is defined by the ratio of the time T with the number of CPU cores Nprocs as
αstrong ≡ T (Nprocs)/(T (Nprocs/2)×2). In this definition, αstrong = 1 describes the perfect strong
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scaling. As seen in figure 6, the strong scaling is nearly perfect up to 98304 cores both in
Nshell = 5 and 6.

 0

 50

 100

 0  24576  49152  73728  98304 122880

S
p

e
e

d
u

p

Number of cores

Nshell = 5

Nshell = 6

Ideal

4
He(0

+
)

 0.7

 0.8

 0.9

 1

 0  24576  49152  73728  98304 122880

α
s
tr

o
n

g

Number of cores

Nshell = 6

Nshell = 5

 Ideal

4
He(0

+
)

Figure 6. Speedup of the parallel computation with arbitrary unit (left), and the strong scaling
(right).

3. Application
In this section, we show some of benchmark results for light nuclei. Also, the comparison of the
radial density from the MCSM and FCI many-body wave functions are briefly presented in the
case of 4He ground state as an example.

3.1. Benchmarks
Owing to the recent development of the MCSM algorithm [8, 9, 10], we have performed the
benchmark of no-core MCSM calculations [7, 8]. Figure 7 is the main outcome of the benchmark.
In figure 7, we illustrate the comparisons of the energies for each state and model space between
the MCSM and FCI methods. The FCI gives the exact energies in the finite model spaces, while
the MCSM gives approximated ones. Thus the comparisons between them show how well the
MCSM works in no-core calculations. Furthermore, we also plot the No-Core Full Configuration
(NCFC) [12] results for the states of 4 ≤ A ≤ 10 as the fully converged energies in the infinite
model space, with assessed uncertainties visible in some cases.

For this benchmark comparison, the JISP16 two-nucleon interaction [13] is adopted and the
Coulomb force is turned off. Isospin symmetry is assumed. The energies are evaluated for the
optimal HO frequencies where the calculated energies are minimized for each state and model
space. Here the contributions from the spurious center-of-mass (CM) motion are ignored for
simplicity. The comparisons are made for the states; 4He (0+), 6He (0+), 6Li (1+), 7Li (1/2−,
3/2−), 8Be (0+), 10B (1+, 3+) and 12C (0+). The model space ranges from Nshell = 2 to 5 for
A ≤ 6 (4 for A ≥ 7). Note that the energies of 10B (1+, 3+) and 12C (0+) in Nshell = 4 are
available only from the MCSM results. The M -scheme dimensions for these states are already
close to or above the current computational limitation in the FCI approach. The numbers of
MCSM basis states are taken up to 100 in Nshell = 2− 4 and 50 in Nshell = 5.

As seen in figure 7, the energies are consistent with each other where the FCI results are
available to within ∼ 100 keV (∼ 500 keV) at most of the MCSM results with(out) the energy-
variance extrapolation of the MCSM results. The other observables; the point-particle root-
mean-square matter radii and electromagnetic moments also give reasonable agreements between
the MCSM and FCI results. The detailed comparisons among the MCSM, FCI, and NCFC
methods are discussed in [7].
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Figure 7. Comparisons of the energies between the MCSM and FCI along with the fully
converged NCFC results where available. The NCFC result for the 10B(1+) state has a large
uncertainty indicated by the grey band. The MCSM (FCI) results are shown as the solid
(dashed) lines that nearly coincide where both are available. The extrapolated MCSM results
are illustrated by bands. From top to bottom, the truncation of the model space is Nshell = 2
(red), 3 (green), 4 (blue), and 5 (purple). Note that the MCSM results are extrapolated by the
energy variance with the second-order polynomials. Also note that all of the results of 10B and
12C at Nshell = 4 were obtained only with MCSM. Taken from [7].

3.2. Radial density of the 4He ground state
The intrinsic local density is one of the basic quantities to understand the structure of nuclei
intuitively. It is, however, challenging to obtain it from ab initio calculations. For example,
the α-cluster structure of the ground and two excited states of 8Be has been studied by the
Variational Monte Carlo (VMC) and GFMC calculations with realistic nuclear forces [14]. They
have attempted to obtain the intrinsic density in body-fixed coordinates by computing the
moment of inertia matrix for each configuration and then diagonalizing them to rotate the
configurations along the principal axis. Motivated by these analyses, we try to extract an
intrinsic density from MCSM wave functions in a similar way adopted in the VMC and GFMC
calculations [8, 15].

In shell-model calculations, we use single-particle coordinates, and the A-body wave function
describes both the CM and relative motions. Using HO single-particle wave functions in
combination with the Nmax truncation (a truncation on the total number of HO quanta in the
many-body basis), as is commonly done in the NCSM, the CM and relative wave functions
factorize exactly. This allows for a deconvolution of the CM and translationally-invariant
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densities using three-dimensional Fourier transformations [16]. In [17], this method is used
to show α-cluster structure for the ground state of 9Be. Neither in the FCI calculations nor in
the MCSM, however, do we have such an exact factorization.

In the MCSM, the one-body density is computed by using the MCSM wave function, equation
(1),

ρ(~r) = 〈ΨJπM |
∑
i

δ3(~r − ~ri)|ΨJπM 〉 (22)

with the coordinate of the i-th nucleon, ~ri. Integrated over the angular directions, this gives the
radial density, ρ(r) =

∫
dΩρ(~r). Note that this density includes the CM motion. In principle,

we could obtain the translationally-invariant one-body density in relative coordinates from the
two-body density in single-particle coordinates, analogous to the calculation of the intrinsic rms
radius by using a two-body operator, r̂2 = (r̂i − r̂j)2, whereas the naive one-body operator, r̂2

i ,
gives us the rms radius that includes the effects of the CM motion.
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Figure 8. The radial density ρ of the 4He ground state as a function of radius r for various
HO energies h̄ω’s in the basis cutoff Nshell = 3 (left), and for various Nshell’s with h̄ω = 25 MeV
(right). Both in the figures, the dashed (solid) curves denote the MCSM (FCI) results. In the
left figures, the MCSM and FCI results agree well, and the differences are unrecognizable. For
comparison, in the right figure, we include NCFC results before and after the deconvolution of the
CM effect, corresponding to the lab-frame and translationally-invariant densities, respectively.

Figure 8 is the comparison of the radial densities of 4He ground state using MCSM, and
FCI, including the effects of the CM motion. The left figure shows the dependence of the radial
density ρ on the HO parameter h̄ω, while the right figure is for the dependence on the basis cutoff
Nshell. For comparison, we also include the NCFC result in the right figure, both before and
after the deconvolution of the CM motion. In the figure, these are labeled by “lab-frame” and
“trans-inv”, respectively. From figure 8, the MCSM and FCI results agree quite well. The small
discrepancies (especially for the case of Nshell = 5 in the right figure) come from the fact that
MCSM results for ρ are not extrapolated to the FCI basis cutoff by using the energy variances.
The left figure clearly shows that there is a strong dependence on HO parameter h̄ω. This is due
to the fact not only that ρ is not converged in such a small basis space, Nshell = 3, but also that
the CM motion is strongly h̄ω dependent. Even in the limit Nshell to infinity, these densities
will depend strongly on h̄ω. Furthermore, the convergence with Nshell is not monotonic, as can
be seen in the right figure, most likely because the CM motion is different for different Nshell

values. Note that the density is comparable to the density in lab-frame coordinates obtained
with the NCFC approach, suggesting that in the MCSM and FCI approaches the CM motion
is approximately a 0s HO wave function. The translationally-invariant density, however, has a
significantly larger central density, and falls off more rapidly: the effect of the CM motion is to
smear out the translationally-invariant density [16].
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4. Summary
By exploiting the recent development in the computation of the Hamiltonian matrix elements
between non-orthogonal Slater determinants and the technique of energy-variance extrapolation,
the no-core calculations with the MCSM algorithm can be performed efficiently on massively
parallel supercomputers. From the benchmark calculations, the observables give good agreement
between the MCSM and FCI results in the p-shell nuclei. The code performance of our MCSM
on K computer was tested at the initial stage of implementation. We also present the comparison
of the radial density of 4He ground state among MCSM, FCI, and NCFC methods as an initial
demonstration towards the intuitive description of nuclear shapes from shell-model calculations.
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