
 
 
 
 
 
 

Ab-initio calculations of the photoelastic constants of the cubic 
SiC polytype  

P Djemia1 and Kh Bouamama2 
1LSPM-CNRS, Sorbonne Paris Cité, Université Paris 13, 99 Avenue J.B. Clément, 
93430 Villetaneuse, France.  
2LOC, Département de Physique, Université Ferhat Abbas, 19000 Sétif, Algeria. 
 
E-mail: khaled_bouamama@univ-setif.dz 
 
Abstract: Residual defects after growth of semiconductors crystals is a hot issue to be solved 
for manufacturing new efficient electronic or optic devices. These defects can be conveniently 
observed using birefringence optical microscopy for extended defects that will create a local 
strain field which in turn can cause a nominally isotropic optical material to become 
anisotropic and induce birefringence. In order to perform a quantitative analysis, the 
knowledge of the photoelastic constants (Pij) of the material that measure the strength of the 
change of the refractive index under application of strains or stresses is necessary. As an 
experimental determination of the whole set of constants is not always possible, a theoretical 
evaluation can be of valuable interest. In this work, we propose ab-initio calculations by the 
WIEN2k program of the optical properties of the zinc blende silicon carbide polytype with a 
self-consistent scheme by solving the Kohn-Sham equations using a full potential linearized 
augmented plane waves (FPLAPW) method in the framework of the density functional theory 
(DFT) along with the generalized gradient approximation (GGA) pseudo-potentials. A 
combination of specific compressive and tensile strains is applied to the two atoms unit cell 
and the tensor containing each specific combination of the Pij constants is extracted. 

1. Introduction 
People pay more attention to SiC because of its great technological importance for high temperature, 
high power, high critical breakdown field and high frequency applications in microelectronic and 
photoelectronic devices [1]. Elaboration is principally done via the seeded physical vapor transport 
(PVT) technique [2, 3] on silicon substrate or 3C-SiC platelets. Many extended defects can appear 
during the growth of the crystals such as dislocations [4-8] that constitute a major issue that hampers 
the development of electronic-grade semiconductors also for diamond [9], which should bring an 
undisputable advantage over their GaN or SiC counterparts. In case of LaBr3 that is a viable 
scintillator for gamma ray, the knowledge of the dislocations [10] that can appear in this material 
during the elaboration process is essential in order to minimize the fracture during the growth and 
increase further its size. These defects can be conveniently observed using birefringence optical 
microscopy [4-8] for extended defects such as dislocations that will create a local strain field which in 
turn can cause a nominally isotropic optical material to become anisotropic and induce birefringence 
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in light passing between cross-polarizers. In order to perform a quantitative analysis, the knowledge of 
the photoelastic constants (Pij) of the material that measure the strength of the change of the refractive 
index under application of strains is necessary. Experimental determination of the (Pij) constants is 
possible for large enough transparent anisotropic crystals, as for example, silicon [11], diamond [12], 
ZnTe [13] and ZnO [14], by the Brillouin light scattering technique [15], and other acousto-optical 
method as demonstrated for silicon, diamond, germanium and gallium-arsenide crystals [16-18]. 

It is also very important to know the optical properties of SiC due to their contributions to the 
photoelectronic device design and as fundamental inputs for radiative transfer models of astrophysical 
dust environments [19]. It is also useful for electron energy loss spectroscopy (EELS) analysis that can 
be used to image the dislocations as it was done for diamond [20]. However, the theoretical studies on 
the optical properties of zinc blende SiC are scarce up to now [21-24] in comparison to experimental 
works [25-28], and photoelastic data are still not available in the literature. 

In this paper, we report a first-principle predictive calculation of the optical and photoelastic 
properties of β–SiC by using the FPLAPW method based on density functional theory. Firstly, 
calculations are performed for silicon (Si) and diamond (C), those are compared to the available 
experimental and theoretical results. 

2. Calculation method 
The calculation of the optical properties of silicon, carbon and silicon carbide in zinc blende structure, 
were carried out with a self-consistent scheme by solving the Kohn-Sham equation using a full 
potential linearized augmented plane waves (FPLAPW) method in the framework of the DFT along 
with the GGA method [29] as implemented in WIEN2k package [30, 31]. In the calculations, 
RMTKmax=7 is used, which determines the matrix size, where Kmax is the plane wave cut-off and RMT is 
the smallest of all atomic sphere radii. Since calculations of the optical properties require denser k-
space matrix, we used 28000 k-points in whole Brillouin zone. We chose the muffin–tin radii of 1.4, 
2.1 Bohr for C and Si, respectively. We used the experimental values of the lattice parameters 
a0 = 0.356685 nm [32], 0.5429 nm [33], 0.43596 nm [34] for C, Si and β-SiC, respectively. 

The dielectric function of a solid is usually described in terms of complex ε(ω) = ε1(ω) + iε2(ω), the 
imaginary part of the dielectric function ε2(ω) being obtained directly from the band structure 
calculation. The real part of the dielectric function ε1(ω) can be derived from the imaginary part ε2(ω) 
by using Kramers–Kronig dispersion relationship. When a strain is applied to a crystal there is a 
corresponding change in the refractive index, arising from a change in the dielectric function. The 
photoelastic tensor (Pij) relates the change of the inverse dielectric function with the applied strain. 
The presence of a dislocation or of an extended defect in a crystal causes a local strain field which in 
turn can lead a nominally isotropic material to become anisotropic and induce birefringence in light 
passing through cross-polarizers [4]. The accidental birefringence due to dislocations in silicon has 
been observed [35] and modelled theoretically [36]. However, these calculations require the 
photoelastic tensor which is not well known in diamond [12, 37-39], compared to silicon [18] or even 
unknown in the case of the β-SiC polytype. 

The change in the inverse dielectric function due to strain is given by equation (1):  
 

! !!! !" = !!"#$!!" ≈ − !
!!
! !"!"    (1) 

where Pijkl is the fourth rank Pockels photoelastic tensor, µkl is the strain tensor and εb is the value of 
the dielectric function in the unstrained material. Adopting a contracted notation where 11 → 1, 22 → 
2, 33 → 3 and 23, 32 → 4, Pijkl reduces to a symmetric matrix with three non-zero elements for cubic 
structures: 
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To determine the P11, P12 and P44, we calculate the change in the dielectric function for three 
different strains [µ]: 

1) Hydrostatic strain ! = !"
!!
, !"
!!
, !"
!!
, 0,0,0

!
 

!!"!"
!!
! = !"

!!

!!! + 2!!" 0 0
0 !!! + 2!!" 0
0 0 !!! + 2!!"

  (3) 

where a0 is the lattice constant and δa/a0 is the relative strain. The P11 + 2P12 can be obtained from the 
difference between strained and unstrained dielectric constant. 

2) Strain along the [001] direction ! =    0,0, !"
!!
, 0,0,0

!
   

!!"!"
!!
! = !"

!!

!!" 0 0
0 !!" 0
0 0 !!!

    (4) 

3) The P44 can be determined by changing the length !"
!

 in the [111] direction by applying the strain 

! = !
!
!"
!
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!!
! = !

!
!"
!
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2!!! !!! + 2!!" 2!!!
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  (5) 

 
The unit cells with two atoms are taken and the lattice vectors changed to apply strain in the [001] 

and [111] directions, and hydrostatically. The values of strain applied do not exceed ±0.4 % and the 
considered energy is below the first gap, typically below 3 eV. The values of P11, P12 and P44 are found 
for an average of these compressive and tensile strains. In the case of strain in the [111] direction, we 
consider both results from relaxed and un-relaxed unit cell. The relaxed positions of the two atoms 
along this direction are obtained by minimization of the forces that act on them, for no symmetry 
arguments can fix them. 

3. Results and discussion 

3.1. Permittivity function 
Figure 1a shows the real and imaginary parts of the calculated dielectric function of silicon (Si). These 
results compare well to the experimental data from Biegelsen et al. [18] and the previous ab-initio 
studies [40, 41] on the dielectric response of silicon, those are partially reported in the table 1. The 
direct band gap is found to be ~ 2.76 that underestimates the experimental value ~3.45 eV [42]. For 
theoretical DFT calculations, the use of a rigid shift to compensate for the LDA underestimation of the 
band gap affects all levels above the valence band top, to the same extent. It was used with some 
success by Levine et al. [40] and Hounsome et al. [41], and is often referred to as a ’scissors shift’. 
The scissors shift becomes important for defective crystals where states are introduced into the band 
gap and lead to additional optical transitions. In the work of Hounsome et al. [41] a shift of 0.52 eV 
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was used to correct the silicon band gap calculated with the AIMPRO program. Nevertheless, it has 
been shown that the scissors shift technique of correcting the LDA underestimation of the band gap for 
one material does not in the same time, uniformly improve the calculated photoelastic constants that 
will be discussed in the next section. Hence, we will not try to use this technique in this work despite 
improvement of the DFT+LDA that is called generalized density functional theory (GDFT) [22] and 
provides appropriate corrections to the energy of conduction bands, to investigate the band structure of 
semiconductors or insulators, and thus obtains band gaps that are in agreement with experimental 
results. 

 

 

 

 
Figure 1. (a) Calculated dielectric function for silicon: real part ε1(ω) and imaginary part ε2(ω). (b) 
Calculated photoelastic constants for silicon compared to experimental data from [11, 17, 18] and 
calculated data from [40, 41]. 
 

Figure 2a shows the real and imaginary parts of the dielectric function of diamond (C) that compare 
well to the experimental [43, 44] and theoretical [41, 45] data. Some results are partially reported in 
the table 1 and compared to available data. In ref. [43], the experimental spectrum for ε2 shows a 
threshold around the direct band gap at ~7 eV and a broad peak at ~12 eV due to band-band 
transitions. It then falls slowly with increasing energy. The theoretical curve displays a threshold at 
~5.5 eV, and a peak around ~11.5 eV, which are downshifted from the experimental values due to the 
underestimation of the gap. In contrast with other semiconductors, diamond does not exhibit additional 
sharp peaks in this region, due to its band structure. Note that in the long wavelength limit, the 
calculated value of the real part of the dielectric function ε1 = 5.77 agree well with the experimental 
value of the static dielectric function 5.82 [43] and other theoretical ones 5.89 [41] and 5.86 [45]. The 
experimental peak at 7 eV [43] appears much sharper than the calculated one due to the neglect of 
excitonic effects in our calculations. However the energy where ε1 = 0 is in good agreement and 
corresponds to maximum absorption of light. 
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Figure 2. (a) Calculated dielectric function for diamond: real part ε1(ω) and imaginary part ε2(ω). (b) 
Calculated photoelastic constants for diamond compared to experimental data from [12, 16, 37, 38] and 
calculated data from [41]. 
 

Figure 3a shows the real and imaginary parts of the dielectric function of zinc blende silicon 
carbide (SiC) that compare well to the experimental [25-28] and theoretical [21-24] data. Some results 
are partially reported in the table 1 and compared to available data. In refs. [26, 28], the experimental 
spectrum for ε2 shows a threshold around the direct band gap at ~5 eV and one broad peak at ~7.2 eV 
due to band-band transitions. It then falls slowly with increasing energy. The theoretical ε2 curve 
displays a threshold at ~5 eV, one peak at ~7 eV which are not downshifted from the experimental 
values as surprisingly noticed by Logothetidis et al. [26] and a shoulder at 8 eV,. Note that in the long 
wavelength limit, the calculated value of the real part of the dielectric function ε1 = 7.05 agree well 
with the experimental value of the static dielectric function of 7.29 [25, 26] and other theoretical ones 
7.1 [22], 5.03 [24] and 6.95 [45]. The energy ~7.5 eV where ε1 = 0 is also in good agreement. 

 

 

 

 
Figure 3. (a) Calculated dielectric function for zinc blende silicon carbide: real part ε1(ω) and 
imaginary part ε2(ω). (b) Calculated photoelastic constants for zinc blende silicon carbide. 
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Table 1. Permittivity (εb) and photoelastic constant (Pij) for silicon, diamond and zinc blende silicon carbide. 
Experimental and previous ab-initio work is shown for comparison. All values for silicon refer to a 
wavelength of 3542 nm (0.35 eV), for diamond (2.27 eV) and for β-SiC (0.35, 2.27 and 3 eV). 
Material εb  P44 P11+2P12 P11-P12 Ref.  
Silicon 
(Si) 
0.35 eV 
0.35 eV 
0.35 eV 
0.35 eV 
 

 
 
13.33 
13.67 
13.2 
11.83 
 

 
 
-0.051 
-0.051 
-0.046 
-0.051 
 

 
 
-0.067 
-0.058 
-0.085 
-0.054 
 

 
 
-0.112 
-0.109 
-0.105 
-0.112 
 

 
 
Wien2k (this work) 
AIMPRO [41] 
DFT+LDA [40] 
Exp. [18] 
 

Diamond  
(C) 
2.27 eV 
2.27 eV 
2.27 eV 
2.3 eV 

 
 
6.01 
6.17 
5.819 
- 

 
 
-0.189 
-0.171 
-0.172 
-0.172 

 
 
-0.207 
-0.160 
-0.164 
-0.160 

 
 
-0.362 
-0.335 
-0.292 
-0.292 

 
 
Wien2k (this work) 
AIMPRO [41] 
Exp. [12, 39, 43, 44] 
Exp. [38] 

      
Silicon carbide  
(β-SiC) 
0.35 eV 
2.27 eV 
3 eV 
3 eV 

 
 
7.06 
7.71 
8.34 
7.29 

 
 
-0.087 
-0.084 
-0.080 
 

 
 
-0.163 
-0.196 
-0.224 
 

 
 
-0.083 
-0.074 
-0.063 
 

 
 
Wien2k (this work) 
Wien2k (this work) 
Wien2k (this work) 
Exp. [25, 26] 

    
 

3.2. Photoelastic constants 
Initially, values of P11, P12 and P44 are calculated for silicon and diamond for these properties are 
unknown for the zinc blende polytype of SiC (β-SiC). These should demonstrate the reliability of the 
methodology, as the photoelastic constants for silicon are more studied [11, 17, 18, 40, 41] and in a 
less extent those of diamond [12, 38, 39, 41, 43, 44]. Previous ab-initio studies on the dielectric 
response of silicon and diamond [40, 41] have reviewed the available experimental data. The 
photoelastic constants are found using the calculated values of εb for various strains and considering an 
averaged combination of tensile and compressive strain for accuracy. 

Figure 1b shows the variation of the calculated photoelastic constants with frequency for silicon. 
No scissors shift is applied, as described above. Comparisons with experimental values [11, 17, 18] 
and previous ab-initio calculations [40, 41] are shown. Some results are partially reported in the table 
1 and compared to available data. The values of P11 - P12 are slightly larger than experiment by about 
3% but the slow dispersion with frequency is in good agreement. Excellent agreement is achieved for 
P44. The calculated values for P11 + 2P12 are in good agreement with experiment until ~ 1 eV but 
disperse quite strongly with increasing frequency. The calculated constants for silicon display on 
overall agreement with the results of Hounsome et al. [41] and relatively little dispersion except for 
the calculated values of P11 + 2P12. As stated above, this is due to the lowering of band gap and can be 
reduced if a shift is used [41] or if excitonic effects are taken into account [22]. One should also notice 
that calculations of this constant are very sensitive to the value of the lattice parameter used as input 
[40]. 
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The values of the photoelastic constants for diamond in the literature differ widely and have been 
reviewed recently [39], where there is very little information on the variation of the constants with 
frequency. Grimsditch et al. [12] evaluate one set of results as being “most reliable”, these results are 
from [38]. In figure 2b, it is evident that P11 - P12 and P11 + 2P12 are underestimated by ~20-25 % 
whereas P44 is underestimated by ~10 %. Some results are partially reported in the table 1 and 
compared to available data. The calculated constants for diamond underestimate the results of 
Hounsome et al. [41] by ~10% and show relatively little dispersion. Further experiments are suitable 
to confirm this behavior. 

Figure 3b shows the variation of the calculated predictive photoelastic constants with frequency for 
β-SiC. P11 - P12 and P44 have closed values (~-0.08) and increase slowly with frequency. P11 + 2P12 is 
decreasing rapidly as in the case of silicon with values in the same range as for diamond [-0.15, -0.25] 
for energy below 3 eV. 

4. Summary and conclusion 
The dielectric function and photoelastic constants for silicon, diamond and β-SiC have been calculated 
for a large energy range using density functional theory applied to strained unit cells. Experimental 
[18] and other theoretical [40, 41] data for silicon are accurately reproduced with absolute values and 
variation with frequency matched for all the constants. Experimental data for diamond is still limited 
to a very few number of frequencies and recently re-discussed by Lang et al. [39]. One particular 
experimental set [16] has previously been regarded as “most reliable” [12, 38]. However, our 
calculated values underestimate this particular result from ~10 % for P44 and ~25 % for P11 - P12 and 
P11 + 2P12.  

The agreement for silicon [18, 40, 41] and diamond [12, 16] gives confidence that the β-SiC 
theoretical photoelastic values should reasonably predict experimental results, unfortunately not yet 
available. Undoubtedly, synthesis of larger crystal size will motivate this work. Satisfactory agreement 
is found between our theoretical value of the dielectric function with the experimental ones [26, 28]. 
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