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Abstract. Bose-Fermi mixtures with attractive Bose-Fermi interactions in one-dimensional
optical lattices are studied by using Quantum Monte Carlo simulations of an extended Bose-
Fermi Hubbard model. We first derived the extended Hubbard model with the hopping terms
of each species modified to include interaction effects. Bosonic Mott transition induced by
introducing fermions into bosons is demonstrated by the simulations.

1. Introduction

Ultracold atoms in optical lattices presented a new way of analyzing particles on periodic
potentials [1]. Various phenomena have been realized in the experiments. For example,
superfluid-Mott insulator transition [2], shell structure formation in real-space distribution under
a confining potential [3], and localizations [4, 5, 6] were observed in bosonic systems. These
phenomena can be well described with conventional Hubbard models.

Bose-Fermi mixtures are also an interesting target of ultracold atom experiments and physical
properties of the mixtures are well described with a Bose-Fermi-Hubbard model [7]. However,
phenomena that this model cannot explain have been observed in experiments of Bose-Fermi
mixtures in optical lattices [8, 9, 10]. In these experiments, bosons lost their coherence and
underwent a Mott transition as fermions, which attractively interacted with the bosons, were
introduced to the system. The analysis of ordinary Bose-Fermi-Hubbard model with a confining
potential however showed an opposite result that the bosons maintained the superfluid coherency
even in the presence of the fermions [11, 12].

Lühmann et al. [13] discussed a self-trapping effect caused by the attractive boson-fermion
interactions to explain the disappearance of the superfluid coherency. When there are some
bosons in a well of the lattice potential, the wave function of the fermion in the same well
would be squeezed through the boson-fermion interactions. Then the squeezed wave function
would produce a narrower and deeper effective potential for the bosons, which makes the bosonic
hopping parameter smaller and induces a bosonic Mott transition.

We propose another scenario about the change of the hopping parameters with focus on
the terms that are usually ignored in the Hubbard model. In the followings it will be shown
that the hopping parameter of the bosons/fermions could locally changes depending on the
presence/absence of the fermions/bosons nearby.
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For the observation of physical properties of our extended Hubbard model, numerical
simulations were conducted and the fermion-induced Mott transition of the bosons was
successfully demonstrated. In the simulations the superfluid density and the visibility were
calculated as functions of the number of the fermions. It was then confirmed that the superfluid
coherency of the bosons vanished with the introduction of the fermions when the attractive
boson-fermion interactions were large enough.

The paper is organized as follows. We derive an extended Hubbard model in section 2.
Section 3 presents the results of the simulations. A brief summary and discussions are given in
section 4.

2. Extended Bose-Fermi Hubbard model

We introduce an effective model of bosons and fermion strongly correlating with each other. One-
dimensional bosons and (spin-polarized) fermions in an optical lattice with contact interactions
can be generally written as follows.

H =

∫

dxψ†
B(x)

[

p2x
2mB

+ V (x)

]

ψB(x) +

∫

dxψ†
F (x)

[

p2x
2mF

+ V (x)

]

ψF (x) (1)

+
gBB

2

∫

dxψ†
B(x)ψ

†
B(x)ψB(x)ψB(x) + gBF

∫

dxψ†
B(x)ψ

†
F (x)ψF (x)ψB(x),

where V (x) presents the optical lattice potential and ψB(x) and ψF (x) are the boson and fermion

field operators respectively. The coupling constants are given by gBB = 4πaBB h̄2

mB
and 2πaBF h̄2

M

where M = 2mBmF

mB+mF
is the reduced mass, and aBB and aBF are boson-boson and boson-fermion

s-wave scattering lengths respectively.
In the periodic optical lattice, the field operators can be expanded by Wannier functions

as ψB(x) =
∑

i biwB(x − xi) and ψF (x) =
∑

i fiwF (x − xi). Here, bi and fi are annihilation
operators of the bosons and the fermions respectively at the i-th well of the potential and w(x)
is the Wannier function. Since we are only interested in low energy behaviors of the system, we
only take account of the lowest energy Wannier function w(x). Ordinary Bose-Fermi Hubbard
Hamiltonian can be derived from the Hamiltonian H by using the expansion. In the derivation,
the terms of relatively small overlap integrals are all discarded. For example, the following gives
largest contribution to the boson-fermion interaction term.

gBF

∑

i

∫

dx |wB(x− xi)|
2 |wF (x− xi)|

2 bi
†bifi

†fi. (2)

On the other hand, the terms of the following type contain smaller overlap integrals and are
usually omitted in Bose-Fermi Hubbard model.

gBF

∑

〈i,j〉

∫

dx |wF (x− xi)|
2w∗

B(x− xi)wB(x− xj)fi
†fibi

†bj . (3)

However we consider that this kind of terms would be a key for the explanation of the
experimentally observed fermion-induced Mott transition. Including (3), the hopping term of
the bosons can be expressed as

Hhop
B = −

∑

〈i,j〉

[

t0B −∆B(fi
†fi + fj

†fj)
]

bi
†bj + h.c., (4)
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where t0B is ordinary hopping parameter in the tight binding approximation and ∆B =

−(|gBF | /2)
∫

dx |wF (x− xi)|
2w∗

B(x−xi)wB(x−xj). Here we assumed attractive boson-fermion
interactions, gBF < 0. t0F and ∆F are defined in a similar manner. With this hopping term, our
extended Hamiltonian can be written in the form

H = −
∑

〈i,j〉

[

t0B −∆B(nF,i + nF,j)
]

bi
†bj −

∑

〈i,j〉

[

t0F −∆F (nB,i + nB,j)
]

fi
†fj + h.c. (5)

+
UBB

2

∑

i

nBi(nBi − 1) + UBF

∑

i

nBinFi,

where nBi (nFi) is the number operator of the bosons (fermions) at the site i, and UBB and
UBF present on-site boson-boson and boson-fermion interactions respectively.

Note that, in this model, the hopping energy of the bosons (fermions) changes depending on
the presence of the fermions (bosons) at each site. In a pure boson system with no fermions,
the hopping parameter of the bosons is always t0B at any site. With the introduction of fermions
to the system, the hopping parameter of the bosons becomes t0B −∆B or t0B − 2∆ at the sites
where the fermions are present. Figure 1 illustrates these three cases.

t
t′ t ′′

(a) (b) (c)

Figure 1. (a), (b) and (c) illustrate effective potential wells of the bosons (filled black circle).
In (a) with no fermions, the boson hops to the next site with the transfer energy t(= t0B). In
(b) with a single fermion (open red circle) the boson hops with t′(= t0B −∆B). In (c) with two
fermions, the boson hops with t′′(= t0B − 2∆B).

In a mean-field sense, the average hopping energy of the bosons would decrease as the number
of the fermions increases. We could therefore expect that the bosons would undergo a Mott
transition when a sufficient number of the fermions are introduced to the system and when
other conditions of e.g. the number of the bosons and the boson-boson interactions are met.

3. Numerical results

To confirm that the above scenario is correct, we performed Quantum Monte Carlo
Simulation(QMC) of the extended Hubbard Hamiltonian (6) that we derived. The QMC is
based on a stochastic Green’s function method in the canonical ensemble [14, 15]. Since
fermions in one dimension can be mapped on hard-core bosons exactly through the Jordan-
Wigner transformation, we employ the hard-core bosons in the simulations to avoid a negative
sign problem but have to take account of the transformation effect in the calculation of physical
quantities of the fermions. We simulated 64 bosons on 64 sites and changed the number of the
fermions Nf from 0 to 64. To obtain a qualitative view of the transition we set t0B = t0F = 1
for simplicity. The boson-boson interaction was set to Ubb = 4 with which the bosons are in a
superfluid state in the absence of the fermions. The inverse temperature and the boson-fermion
interaction were set to β = 64 and UBF = −4 respectively.

Calculation result of the superfluid density ρb is shown in figure 2 as a function of Nf with

different ∆B. The superfluid density is calculated by ρb =
〈W 2〉

2t0
B
βL−1

[16] where W is the winding

number and L is the system size. As explained above, in the absence of fermions, the hopping
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parameter of the bosons is t0B at any site and the bosons are in the superfluid state as we chose
relatively small boson-boson interactions. In the presence of 64 fermions on 64 lattice sites, on
the other hand, the hopping energy tB is given by t0B − 2∆B for any sites. While with ∆B > 0.2
the ratio UBB/tB becomes large enough to form a bosonic Mott state. Figure 2 shows that
the superfluid density vanishes at around Nf = 45 with ∆B = 0.3 and at around Nf = 35
with ∆B = 0.4. When the attractive interaction UBF is sufficiently large, the superfluid density
decreases as the fermions are introduced, forming a bosonic Mott state. We confirmed that this
fermion-induced bosonic decoherence could also be observed in a Bose-Fermi mixture with a
confinement potential.
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Figure 2. Superfluid density as a function of NF with different ∆B and ∆F .

4. Conclusions

We numerically studied Bose-Fermi mixtures with attractive Bose-Fermi interactions on optical
lattices using an extended Bose-Fermi-Hubbard model, which was derived to take account of the
effective change of particle hopping energies due to the Bose-Fermi interactions. It was observed
in the simulations that the introduction of the fermions induced a bosonic Mott transition as
found in the experiments. More detailed calculation results will be given elsewhere.
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