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Abstract. To examine the insulating mechanism of a novel 5d-electron system Sr2IrO4, we
study the ground state properties of a three-orbital Hubbard model using a variational Monte
Carlo method. We find that the insulating state in the ground state phase diagram shows
crossover behavior from a weakly-correlated to a strongly-correlated antiferromagnetic state.
This crossover is characterized by the different mechanisms of the insulating state, i.e., changing
from an interaction-energy driven insulator to a band-energy driven insulator with increasing
the interaction. We discuss that Sr2IrO4 is located around this crossover region and displays
an anomalous behavior.

1. Introduction

Recently, a 5d transition metal oxide Sr2IrO4 [1] has attracted much attention. In this material,
three t2g orbitals of Ir atoms are hybridized with each other by the large spin-orbit coupling
(SOC) of 5d electrons, and nominally five 5d electrons occupy these orbitals. Because of
this quantum entanglement of spin and orbital degrees of freedom, an effective total angular
momentum Jeff=|L − S| = 1/2 state is stable locally at each Ir atom. As a result, many
interesting properties are experimentally observed, which include a novel Jeff = 1/2 insulating
state [2, 3, 4, 5]. The origin of this insulating state is still under debate: Although the
Mott-Hubbard type mechanism (i.e., a strongly-correlated insulator) is originally proposed for
Sr2IrO4 [2, 3], there are several reports suggesting the Slater type mechanism (i.e., a weakly-
correlated insulator) [6, 7, 8]. It should be noted, however, that experimentally the temperature
dependence of the resistivity is found insulating and no significant change is observed at the
Néel temperature [9], strongly suggesting that Sr2IrO4 is a Mott-Hubbard type insulator. In
this paper, we study the ground state properties of a three-orbital Hubbard model using a
variational Monte Carlo (VMC) method and examine the insulating mechanism of Sr2IrO4 from
the viewpoint of energy gain.

2. Model and method

We consider a three-orbital Hubbard model on a two-dimensional square lattice defined by the

following Hamiltonian H = Hkin +HSO +HI, where Hkin =
∑

kασ εα(k)c
†
kασckασ is the kinetic
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term, HSO = λ
∑

iLi · Si is the SOC term with a coupling constant λ, and

HI = U
∑

i,α

niα↑niα↓,

+
∑

i,α<β,σ

[

U ′niασniβσ̄ + (U ′ − J)niασniβσ

]

+ J
∑

i,α<β

(c†iα↑c
†
iβ↓ciα↓ciβ↑ + c†iα↑c

†
iα↓ciβ↓ciβ↑ +H.c.) (1)

is the Coulomb interactions including intraorbital (U), interorbital (U ′), and spin-flip and pair-

hopping (J) interactions. Here, c†iασ is a creation operator of electron at site i, spin σ(=↑, ↓),
and orbital α(= yz, zx, xy) corresponding three t2g orbitals.

The kinetic and SOC terms can be represented (H0 = Hkin +HSO) in the matrix form,

H0(ti, µ3, λ) =
∑

kσ

(

c†kyzσ, c
†
kzxσ, c

†
kxyσ̄

)





εyz(k) iσλ/2 −σλ/2
−iσλ/2 εzx(k) iλ/2
−σλ/2 −iλ/2 εxy(k)









ckyzσ
ckzxσ
ckxyσ̄





=
∑

kms

Em(k)a†kmsakms, (2)

where c†kασ is the Fourier transformation of c†iασ. Notice that the SOC mixes the three
orbitals and up and down spins, and the new quasiparticles, obtained by diagonalizing H0,

are characterized by the band index m and pseudospin s with a creation operator a†kms. In the
atomic limit (εyz(k) = εzx(k) = εxy(k) = 0), the sixfold degenerate states are split into doubly
degenerate Jeff = 1/2 states and fourfold degenerate Jeff = 3/2 states [2].

First, the non-interacting tight-binding energy band is constructed so as to reproduce the
result of LDA+SO (spin-orbit) calculation [2] for Sr2IrO4. The energy dispersion for three t2g
orbitals are defined as εyz(k) = −2t5 cos kx − 2t4 cos ky, εzx(k) = −2t4 cos kx − 2t5 cos ky, and
εxy(k) = −2t1(cos kx+cos ky)−4t2 cos kx cos ky−2t3(cos 2kx+cos 2ky)+µ3 [4]. Here, we choose
a set of parameters (t1, t2, t3, t4, t5, µ3, λ)=(0.36, 0.18, 0.09, 0.37, 0.06, -0.36, 0.50) eV. In the
following, we use t1 as an energy unit.

Next, we introduce the the following Gutzwiller-Jastrow type trial wave function: |Ψ〉 =
PJcPG |Φ〉. |Φ〉 is the one-body part of the wave function, constructed from the ground state of
Ne number of electrons for H̄0(t̃i, µ̃3, λ̃αβ), where t̃i, µ̃3, and λ̃αβ are variational parameters.
As an effect of the many-body Coulomb interaction, the “effective” coupling constant of
the SOC has orbital dependence: λ → λ̃αβ . To consider magnetically ordered states, a
term with magnetic order parameters is added to H̄0. Here, we consider the commensurate
antiferromagnetic (AF) state with an ordering vector Q = (π, π). Two states considered are i)
an out-of-plane AF order (along z axis) and ii) an in-plane AF order (along x axis), described

by
∑

i,mM z
meiQ·ri(a†im↑aim↑ − a†im↓aim↓) and

∑

i,mMx
meiQ·ri(a†im↑aim↓ + a†im↓aim↑), respectively.

These two AF states have different energies in general since the rotational symmetry in a spin
space is broken due to the SOC and the Hund’s coupling J . However, here we consider only the
case of J = 0 and thus they are energetically degenerated [4].

For the trial wave function of superconducting states, we consider a BCS-type one in a
pseudospin representation,

|Φ〉 ∝

(

∑

kmn

fkmna
†
km↑a

†
kn↓

)Ne/2

|0〉 . (3)

24th IUPAP Conference on Computational Physics (IUPAP-CCP 2012) IOP Publishing
Journal of Physics: Conference Series 454 (2013) 012047 doi:10.1088/1742-6596/454/1/012047

2



Figure 1. (color online) The condensation energy ∆E(U) defined as the energy difference
between the AF and the paramagnetic states [see (4)]. ∆EAFI and ∆EAFM denote the
condensation energies of AF insulating and metallic states. Here, n = 5, λ/t1 = 1.4, and
J/U = 0 are used. Statistical errors are within the width of the symbols.

Here, fkmn is obtained by diagonalizing BCS-type Hamiltonian with three energy bands (6×6
matrix) and the explicit form is given in [10].

PG =
∏

i,γ [1− (1− gγ) |γ〉 〈γ|i] in |Ψ〉 is a Gutzwiller factor extended to the three-orbital

system [4]. i represents a site index and γ runs over all possible electron configurations at
each site. For the three-orbital system, there are 43 = 64 electron configurations, namely,
|0〉 = |0 0 0〉, |1〉 = |0 0 ↑〉, · · · , |63〉 = |↑↓ ↑↓ ↑↓〉. gγ is a weight of each electron configuration,
and it takes the value from 0 to 1, controlling the local electron correlations. In this study, we
classify the possible 64 patterns into 12 groups by the Coulomb interaction energy, and gγ ’s in
the same group are set to be the same.

PJc = exp
[

−
∑

i6=j vijninj

]

in |Ψ〉 is a charge Jastrow factor that controls the long-range

charge correlations. Here, we assume that vij depends only on the distances, vij = v(|ri − rj |)
and consider all independent vij . For example, there are 41 independent vij ’s for 16×16, taking
into account up to the 41st-neighbor correlation.

Using the trial wave functions described above, we optimize the variational parameters to
minimize the variational energy using the stochastic reconfiguration method [11]. Comparing the
variational energy for paramagnetic, AF, and superconducting states, we determine the ground
state phase diagram. For large size calculations, parallel computing is indispensable. The VMC
method can be efficiently parallelized by distributing the independent Monte Carlo samplings
to different processors. We parallelize the simulations using 32–128 processors and the total
number of Monte Carlo samples taken is about 105–106, for example, 10, 000× 64 samples using
64 processors with 10, 000 independent samples for each processor.

3. Results

We study the ground state properties of the three-orbital Hubbard model on a 16 × 16 square
lattice with electron density n = 5. In this paper, we consider only J = 0 and we impose the
condition U = U ′ + 2J [12], thus U = U ′.
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Figure 2. (color online) The condensation energy ∆E(U) = ∆Eband(U) + ∆Eint(U) defined
as the energy difference between the AF insulating and the paramagnetic states. ∆Eband(U)
and ∆Eint(U) are two separate contribution from the band energy and the interaction energy,
respectively. Here, n = 5, λ/t1 = 1.4, and J/U = 0 are used. Statistical errors are within the
width of the symbols.

First, we calculate the condensation energy of the AF state, which is defined by

∆E(U) = EAF − EPM, (4)

with varying U . Here, EAF (EPM) is the optimized variational energy of the AF (paramagnetic
metallic) state for a given value of U . The critical UAF for the AF order is where ∆E(U =
UAF) = 0. We find that with increasing U , the AF transition occurs at around UAF/t1 ∼ 2.5.
Furthermore, we find that a metal-insulator transition occurs simultaneously and the system
becomes an AF insulator. Namely, an AF metallic state has always larger variational energy
than the AF insulating state, as shown in figure 1, and thus it is unstable. We also calculate
the variational energies of the possible superconducting states and find that the one with dx2−y2

symmetry has the smallest variational energy. However, its variational energy is always much
larger than the AF insulating state and therefore the superconducting state is not the ground
state for this electron density.

Next, to study the character of the AF insulating state, we examine the origin of this negative
condensation energy ∆E(U) in the AF insulating state. Let us divide ∆E(U) into two parts,

∆E(U) = ∆Ekin +∆ESO +∆EU +∆EU ′ +∆EJ +∆EJ ′

= ∆Eband(U) + ∆Eint(U), (5)

where ∆Eband(U) = ∆Ekin + ∆ESO is the contribution from the band (i.e., kinetic and SOC)
energy and ∆Eint(U) = ∆EU+∆EU ′+∆EJ+∆EJ ′ is the contribution from the interaction (i.e.,
Coulomb) energy. Figure 2 shows the U dependences of ∆E(U), ∆Eband(U), and ∆Eint(U).
For small U , the energy gain of the AF insulating state is due to the interaction energy, i.e.,
∆Eint(U) < 0 but ∆Eband(U) > 0, indicating that this AF insulator is interaction-energy
driven. Instead, for large U , the AF insulating state is stabilized due to the band energy gain,
i.e., ∆Eband(U) < 0 but ∆Eint(U) > 0, strongly suggesting that this AF insulator is band-
energy driven. It is also clear in figure 2 that there is a crossover region Uco/t1 ∼ 6.5 where
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Figure 3. The ground state phase diagram for n = 5, λ/t1 = 1.4, and J/U = 0, obtained
from figure 2. PM, w-AFI, and s-AFI denote a paramagnetic metallic, a weakly-correlated AF
insulating, and a strongly-correlated AF insulating states, respectively.

∆Eband(U) and ∆Eint(U) are both negative and intersect. Note that this crossover is not a
phase transition because both insulating states are described by the same AF insulating wave
function. However, this crossover should be considered to be a boundary separating a weakly-
correlated and a strongly-correlated regions. The ground state phase diagram is summarized in
figure 3. The same kind of crossover for a AF and a superconducting states is also discussed in
a single-orbital Hubbard model [13, 14, 15, 16] and the results are consistent with ours for the
three-orbital Hubbard model.

There are several reports estimating the values of the Coulomb interactions for Ir oxides [7,
17, 18]. According to the constrained RPA calculation [7], the value of U is estimated as large
as ∼ 2.3 eV, corresponding to U/t1 ∼ 6.5 in our model. This value is very close to Uco/t1 ∼ 6.5
as seen in figure 3. We also found that Uco depends on the values of λ/t1 and J/U (a smaller
λ/t1 or a larger J/U increases Uco), however, these effects are only quantitative and overall
behaviors of ∆Eband(U), ∆Eint(U), and ∆E(U) are unchanged. Our result strongly indicates
that Sr2IrO4 should be located at around the crossover region separating the Slater type and the
Mott-Hubbard type insulators. Therefore, it is very natural to expect that Sr2IrO4 can exhibit
dual characteristics of weakly-correlated and strongly-correlated natures.

4. Summary

In this paper, using the variational Monte Carlo method, we have studied the ground state
properties of the three-orbital Hubbard model for Sr2IrO4. We have found that the insulating
state in the ground state phase diagram shows a crossover from the weakly-correlated AF
insulating state to the strongly-correlated AF insulating state, i.e., from the interaction-energy
driven to the band-energy driven AF insulating state. Our result suggests that Sr2IrO4 is located
at around this crossover region and can display an anomalous behavior.
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